Skip to main content

Cancer Cells and Effects of Glucose Starvation

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

As the main energy source for the human body, glucose metabolism plays multiple roles in the physiology of cancer cells. In the environment of hypoxia and low sugar, cancer cells transform the normal glucose metabolism to aerobic glycolysis autonomously, regulated by different molecules. Under conditions of glucose deprivation, cancer cells suffer from the inhibition of growth, the arrest of cell cycle, apoptosis, and autophagy, regulated by respective associated proteins and pathways. It is possible that glucose deprivation alone or in combination with pharmacological therapy would be effective in the treatment of cancer “addicted” to glycolysis. However, several experiments have demonstrated that cancer cells may develop tolerance to glucose deprivation. In this review, we discuss these issues in order to provide a clear understanding of effects of glucose starvation on cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMP:

Adenosine monophosphate

AMPK:

Adenosine 5′-monophosphate (AMP)-activated protein kinase

ATG14:

Autophagy-related 14

ATP:

Adenosine triphosphate

BCL-2:

B-cell lymphoma-2

GTP:

Guanosine triphosphate

HIF1α:

Hypoxia-inducible factor 1 alpha subunit

KRAS:

KRAS proto-oncogene, GTPase

LC3:

Autophagy marker light chain 3

MAX:

MYC-associated factor X

MCL-1:

Myeloid cell leukemia 1

mTORC1:

Mechanistic target of rapamycin complexes 1 and 2

MYC :

MYC proto-oncogene, bHLH transcription factor

NADPH:

Triphosphopyridine nucleotide

PAQR3:

Progestin and adipoQ receptor family member 3

PI3K/AKT:

Phosphatidylinositol 3 kinase (PI3K)/protein kinase B(AKT)

PKA:

Protein kinase A

PtdIns3P:

Phosphatidylinositol 3-phosphate

ROS-PTP-TK:

Reactive oxygen species – protein tyrosine phosphatases – tyrosine kinases

TNFα:

Tumor necrosis factor-alpha

ULK1:

unc-51-like autophagy activating kinase 1

UPR:

Unfolded protein response

References

  • Andersen JL, Kornbluth S (2013) The tangled circuitry of metabolism and apoptosis. Mol Cell 49:399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asati V, Mahapatra DK, Bharti SK (2017) K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur J Med Chem 125:299–314

    Article  CAS  PubMed  Google Scholar 

  • Bhola PD, Letai A (2016) Mitochondria-judges and executioners of cell death sentences. Mol Cell 61:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Su H, Zhang D, Wang Y, Shen Q, Liu B et al (2015) AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60:930–940

    Article  CAS  PubMed  Google Scholar 

  • Dang CV, Kim J-w, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C (2011) Sugar-free approaches to cancer cell killing. Oncogene 30:253–264

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LMR, Hebrant A, Dumont JE (2012) Metabolic reprogramming of the tumor. Oncogene 31:3999–4011

    Article  CAS  PubMed  Google Scholar 

  • Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C (2016) AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 7:17815–17828

    Article  PubMed  PubMed Central  Google Scholar 

  • Garufi A, Ricci A, Trisciuoglio D, Iorio E, Carpinelli G, Pistritto G et al (2013) Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Dis 4:e639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I et al (2012) Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol 8:589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha J, Guan K-L, Kim J (2015) AMPK and autophagy in glucose/glycogen metabolism. Mol Asp Med 46:46–62

    Article  CAS  Google Scholar 

  • Huang C, Sheng S, Li R, Sun X, Liu J, Huang G (2015a) Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep 33:875–884

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Xu Y, Wan W, Shou X, Qian J, You Z et al (2015b) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57:456–466

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kress TR, Sabo A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15:593–607

    Article  CAS  PubMed  Google Scholar 

  • Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy P, Bartosch B (2016) Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene 35:4155–4164

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73:377–392

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane M, Robinson GL, Cain K (2012) Glucose--a sweet way to die: metabolic switching modulates tumor cell death. Cell Cycle 11:3919–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy N (2015) Metabolism: MYC clocks on. Nat Rev Cancer 15:636–637

    Article  CAS  PubMed  Google Scholar 

  • Monica B, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL et al (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24:4165–4173

    Article  CAS  Google Scholar 

  • Palorini R, Cammarata FP, Balestrieri C, Monestiroli A, Vasso M, Gelfi C et al (2013) Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis 4:e732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palorini R, Votta G, Pirola Y, De Vitto H, De Palma S, Airoldi C et al (2016) Protein Kinase A activation promotes cancer cell resistance to glucose starvation and anoikis. PLoS Genet 12:e1005931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker AL, Turner N, McCarroll JA, Kavallaris M (2016) BetaIII-tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells. Carcinogenesis 37:787–798

    Article  CAS  PubMed  Google Scholar 

  • Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S (2014) Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons AL, Mattson DM, Dornfeld K, Spitz DR (2009) Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther 5(Suppl 1):S2–S6

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka Y, Yano H, Ogasawara S, Yoshioka SI, Imamura H, Okamoto K et al (2015) Mild glucose starvation induces KDM2A-mediated H3K36me2 demethylation through AMPK to reduce rRNA transcription and cell proliferation. Mol Cell Biol 35:4170–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Dai L, Luo L, Xu W, Zhang C, Zhu Y et al (2014) Non-essential amino acids attenuate apoptosis of gastric cancer cells induced by glucose starvation. Oncol Rep 32:332–340

    Article  CAS  PubMed  Google Scholar 

  • Wyld L, Tomlinson M, Reed MWR, Brown NJ (2002) Aminolaevulinic acid-induced photodynamic therapy: cellular responses to glucose starvation. Brit J Cancer 86:1343–1347

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of the tumour microenvironment. FEBS J 282:3892–3898

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Wang Z, Chen Y (2016) Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation. Autophagy 12:1047–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pan, W., Geng, X., Zhang, C. (2018). Cancer Cells and Effects of Glucose Starvation. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_100-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_100-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics