Skip to main content

Piezoelectric and Electrostrictive Polymers as EAPs: Materials

  • Living reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

In this chapter a brief introduction on piezoelectric polymers and electrostrictive polymers is presented, and some representative polymers are given with their essential properties. The information should provide knowledge for readers to know the origin of modern research on piezoelectric and electrostrictive polymers and recent advances in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aleman C, Lotz B, Puiggali J (2001) Crystal structure of the alpha-form of poly(L-lactide). Macromolecules 34:4795–4801

    Article  Google Scholar 

  • Ando M, Kawamura H, Tajitsu Y et al (2012) Film sensor device fabricated by a piezoelectric poly-L-lactic acid film. Jpn J Appl Phys 51:09LD14-1

    Google Scholar 

  • Ando M, Kawamura H, Tajitsu Y et al (2013) A deformation detection touch panel using a piezoelectric poly(L-lactic acid) film. In: Proceedings of the 20th international display workshop, Sapporo Convention Center, Sapporo, 4–6 Dec 2013

    Google Scholar 

  • Bergman J et al (1971) Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl Phys Lett 18:203

    Article  Google Scholar 

  • Bharti V et al (1999) High electrostrictive strain under high mechanical stress in electron irradiated poly(vinylidene fluoride–trifluoroethylene) copolymer. Appl Phys Lett 75:2653

    Article  Google Scholar 

  • Bharti V et al (2000) Polarization and structural properties of high energy electron irradiated P(VDF–TrFE) copolymer films. J Appl Phys 87:452–461

    Article  Google Scholar 

  • Broadhurst M et al (1978) Piezoelectricity and pyroelectricity in polyvinylidene fluoride—A model. J Appl Phys 49:4992

    Article  Google Scholar 

  • Buckley GS et al (2002) Electrostrictive properties of poly(vinylidenefluoride–trifluoroethylene–chlorotrifluoroethylene). Chem Mater 14(6):2590–2593

    Article  Google Scholar 

  • Carpi F, Smela E (eds) (2009) Biomedical applications of electroactive polymer actuators. Wiley, Chichester

    Google Scholar 

  • Casalini R, Roland M (2001) Highly electrostrictive poly(vinylidene fluoride–trifluoroethylene) networks. Appl Phys Lett 79:2627

    Article  Google Scholar 

  • Chen G et al (1994) FTIR-ATR studies of drawing and poling in polymer bilaminate films. J Polym Sci Part B Polym Phys 32:2065

    Google Scholar 

  • Cheng Z et al (1999a) Transverse strain responses in electrostrictive poly(vinylidene fluoride–trifluoroethylene) films and development of a dilatometer for the measurement. J Appl Phys 86:2208

    Article  Google Scholar 

  • Cheng Z et al (1999b) Transverse strain responses in the electrostrictive P(VDF–TrFE) copolymer. Appl Phys Lett 74:1901–1903

    Article  Google Scholar 

  • Cheng Z et al (2000) Effect of high energy electron irradiation on the electromechanical properties of poly (vinylidene fluoride–trifluoroethylene) 50/50 and 65/35 copolymers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1296

    Article  Google Scholar 

  • Cheng Z et al (2001) Electrostrictive poly(vinylidene fluoride–trifluoroethylene) copolymers. Sensor Actuators A Phys 90:138

    Article  Google Scholar 

  • Cheng Z et al (2002) Structural changes and transitional behavior studied from both micro- and macroscale in the high-energy electron-irradiated P(VDF–TrFE) copolymer. Macromolecules 35:664

    Article  Google Scholar 

  • Chung, Petchsuk (2001) Ferroelectric polymers with large electrostriction; based on semicrystalline VDF/TrFE/CTFE terpolymers. Ferroelectr Lett Sec 28:5–6

    Google Scholar 

  • Chung, Petchsuk (2002) Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature. Macromolecules 35(20):7678–7684

    Google Scholar 

  • Curie J, Curie P (1880) Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull Sco Min de France 3:90

    Google Scholar 

  • Davis G (1992) Piezoelectric and pyroelectric polymers. In: Wong CP (ed) Polymers for electronic and photonic applications. Academic Press, Boston

    Google Scholar 

  • Fukada E (2000) History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1110–1119

    Article  Google Scholar 

  • Fukada E (2006) Recent developments of polar piezoelectric polymers. IEEE Trans Dielectr Electr Insul 13:1110–1119

    Google Scholar 

  • Furukawa T (1989) Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit 18:143

    Article  Google Scholar 

  • Furukawa T, Seo N (1990) Electrostriction as the origin of piezo-electricity in ferroelectric polymers. Jpn J Appl Phys 29(4):675

    Article  Google Scholar 

  • Galetti P et al (eds) (1988) Piezoelectric and ferroelectric properties of P(VDF-TrFE) copolymers and their application to ultrasonic transducers. In: Medical applications of piezoelectric polymers gordon and breach. New York

    Google Scholar 

  • Gao G, Scheinbeim (2000) Dipolar intermolecular interactions, structural development, and electromechanical properties in ferroelectric polymer blends of nylon-11 and poly(vinylidene fluoride). J Macromol 33:7546

    Google Scholar 

  • Gao Q et al (1999) Ferroelectric properties of nylon 11 and poly(vinylidene fluoride) blends. J Polym Sci Part B Polym Phys 37:3217

    Google Scholar 

  • Garrett J et al (2003) Electrostrictive behavior of poly(vinylidene fluoride–trifluoroethylenechlorotrifluoroethylene). Appl Phys Lett 83:1190

    Article  Google Scholar 

  • Hankel W (1881) Uber die aktinound piezoelektrischen eigen schaften des bergkrystalles und ihre beziehung zi den thermoelektrischen. Abh Sachs 12:451

    Google Scholar 

  • Huang et al (2004) Poly(vinylidene floride-trifluoroethylene) based high performance electroactive polymers. IEEE Trans Dielec Elec Insul 20:299–311

    Google Scholar 

  • Jayasuriya et al (2001) Crystal-structure dependence of electroactive properties in differently prepared poly(vinylidene fluoride/hexafluoropropylene) copolymer films. J Polym Sci Part B Polym Phys 39(22):2793–279

    Google Scholar 

  • Kawai H (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys 8:975

    Article  Google Scholar 

  • Kepler R, Anderson R (1978) Ferroelectricity in polyvinylidene fluoride. J Appl Phys 49:1232

    Article  Google Scholar 

  • Kepler R, Anderson R (1992) Ferroelectric polymers. Adv Phys 41(1):1

    Google Scholar 

  • Kobayashi J, Fukada E, Shikinami Y et al (1995) Structural and optical properties of polylactic acid. J Appl Phys 77:2957–2972

    Article  Google Scholar 

  • Lang SB (2005) Guide to the literature of piezoelectricity and pyroelectricity. Ferroelectrics 321:91–204

    Article  Google Scholar 

  • Lee (1991) Ferroelectricity and piezoelectricity of odd-numbered nylons. PhD Thesis, Rutgers, The State University of New Jersey

    Google Scholar 

  • Lee J et al (1991a) Ferroelectric polarization switching in nylon-11. J Polym Sci Part B Polym Phys 29:273

    Google Scholar 

  • Lee J et al (1991b) Effect of annealing on the ferroelectric behavior of nylon – 11 and nylon – 7. J Polym Sci Part B Polym Phys 29:279

    Google Scholar 

  • Li Z et al (2004) Recrystallization study of high-energy electron-irradiated P(VDF–TrFE) 65/35 copolymer. Macromolecules 37:79–85

    Article  Google Scholar 

  • Li Z et al (2006) Electromechanical properties of poly(vinylidene-fluoride–chlorotrifluoroethylene) copolymer. Appl Phys Lett 88:062904

    Article  Google Scholar 

  • Lovinger A (1982) Chapter 5: Poly(Vinylidene fluoride). In: Bassett DC (ed) Development in crystalline polymers I. Applied Science, London

    Google Scholar 

  • Lovinger A et al (1983) Curie transitions in copolymers of vinylidene fluoride. Ferroelectrics 50:227

    Article  Google Scholar 

  • Lu et al (2000) Giant electrostrictive response in poly(vinylidene fluoride-hexafluoropropylene) copolymers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47(6):1291–1295

    Google Scholar 

  • Mabboux, Gleason (2002) NMR characterization of electron beam irradiated vinylidene fluoridetrifluoroethylene copolymers. J Fluorine Chem 113(1):27–35

    Google Scholar 

  • Mathur S et al (1988) Piezoelectricity in uniaxially stretched and plasticized nylon 11 films. J Polym Sci Part B Polym Phys 26:447

    Google Scholar 

  • Mei, Scheinbeim (1993) Ferroelectricity and piezoelectricity of odd-numbered nylons. Ferroelectrics 144:51

    Google Scholar 

  • Nalwa H, Fukada E (eds) (1995) Ferroelectric polymers. Marcel dekker, New York

    Google Scholar 

  • Newman B et al (1980) The piezoelectricity of poly(vinylidene fluoride). J Appl Phys 51:5161

    Article  Google Scholar 

  • Omote et al (1997) Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’ films of vinylidene fluoride trifluoroethylene copolymer. J Appl Phys 81:2760

    Google Scholar 

  • Scheinbeim J et al (1991) Effect of water content on the piezoelectric technical report properties of nylon 11 and nylon 7. J Polym Sci Part B Polym Phys 24:1791

    Google Scholar 

  • Scheinbeim J, Newman B (1993) Electric field-induced changes in odd-numbered nylons. Trip 1:394

    Google Scholar 

  • Slichter (1959) Molecular motion in polyamides. J Polym Sci A 35(128):77–92

    Google Scholar 

  • Su (1992) Ferroelectricity and piezoelectricity of nylon 11-PVF2 bilaminates. Internal Technical report, Rutgers, The State University of New Jersey

    Google Scholar 

  • Su J et al (1999) Electrostrictive graft elastomers and applications. In: Proceedings of MRS Symposium, vol 600, pp 131–136, MRS Conference Publication

    Google Scholar 

  • Su J et al (2003) Electrostrictive graft elastomers, U.S. Patent No. 6,515,077, 4

    Google Scholar 

  • Su J et al (1995) Ferroelectric and piezoelectric properties of nylon 11/poly(vinylidene fluoride) bilaminate films. J Polym Sci Part B Polym Phys 33:85

    Google Scholar 

  • Tajitsu Y (2002) Giant optical rotatory power and light modulation by polylactic acid film. In: Zhang Q, Fukada E (eds) Materials research society symposium proceedings book, vol 698, pp 125–136. MRS Publication, Cambridge University Press, Cambridge

    Google Scholar 

  • Tajitsu Y (2010) Basic study on controlling piezoelectric motion of chiral polymeric fiber. IEEE Transactions Dielectr Electr Insul 17:1050–1055

    Article  Google Scholar 

  • Tajitsu Y (2013) Fundamental study on improvement of piezoelectricity of poly(l-lactic acid) and Its application to film actuators IEEE transactions of ultrasonics. Ferroelectr Freq Control 60:1625–1629

    Article  Google Scholar 

  • Takase Y (1991) Electric properties of polymers. Unpublished internal Lecture Text Book, Rutgers University

    Google Scholar 

  • Takase Y et al (1991) High-temperature characteristics of nylon-11 and nylon-7 piezoelectrics. Macromolecules 24:6644

    Article  Google Scholar 

  • Voigt W (1890) General theory of the piezo and pyroelectric properties of crystals. Abh Gott 36:1

    Google Scholar 

  • Wang Y et al (2003) Two-dimensional computational model for electrostrictive graft elastomer. Proc SPIE 5051:100–111, SPIE Publisher

    Google Scholar 

  • Wada Y, Hayakawa R (1976) Piezoelectricity and pyroelectricity of polymers. Jpn J Appl Phys 15:2041

    Article  Google Scholar 

  • Wada Y, Hayakawa R (1981) A model theory of piezo- and pyroelectricity of poly(vinylidene fluoride) electret. Ferroelectrics 32:115

    Article  Google Scholar 

  • Xia F et al (2002) High electromechanical responses in a P(VDF–TrFE–CFE) terpolymer. Adv Mater 14:1574

    Article  Google Scholar 

  • Xu H et al (2001) Ferroelectric and electromechanical properties of P(VDF–TrFE–CTFE) terpolymer. Appl Phys Lett 78:2360

    Article  Google Scholar 

  • Xu TB et al (2002) High-performance micromachined unimorph actuators based on electrostrictive P(VDF–TrFE) copolymer. Appl Phys Lett 80:1082

    Article  Google Scholar 

  • Yagi T et al (1980) Polym J 12:209

    Article  Google Scholar 

  • Yamada T et al (1982) Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J Appl Phys 53:4328–4332

    Google Scholar 

  • Zhang QM et al (1995) Characteristics of the electromechanical response and polarization of electric field biased ferroelectrics. J Appl Phys 77:2549

    Article  Google Scholar 

  • Zhang QM et al (1998) Giant electrostriction and relaxor ferroelectric behavior in electron irradiated P(VDF–TrFE). Science 280:2101

    Article  Google Scholar 

  • Zhao X et al (1998) Electromechanical properties of electrostrictive P(VDF–TrFE) copolymer. Appl Phys Lett 73:2054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Su, J., Tajitsu, Y. (2016). Piezoelectric and Electrostrictive Polymers as EAPs: Materials. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31767-0_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31767-0_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-31767-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics