Skip to main content

Polymer Gels as EAPs: Fundamentals

  • Living reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 246 Accesses

Abstract

Smart hydrogels are soft polymer particles that swell and deswell by taking up water according to external stimuli. After a general introduction, we extensively discuss the thermodynamics that governs the swelling equilibrium of neutral and polyelectrolyte gels. The kinetics of gel swelling is then presented in two models: The Tanaka-Fillmore model that is based on pure mechanics and the more advanced model by Doi which includes thermodynamic processes as the reason for swelling and deswelling. In the following section, the possible sensitivities with which smart hydrogels have been equipped are discussed. Finally we outline the current challenges of fabricating hydrogels with improved mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some authors use the Gibbs free energy \( G \) which results in a completely equivalent description, since both external pressure and total volume of the system are considered constant.

  2. 2.

    These values are calculated from the values given in Hirotsu’s paper, who states them in a different shape based on the chemical potential.

References

  • Arndt MC, Sadowski G (2014) Thermodynamic model for polyelectrolyte hydrogels. J Phys Chem B 118:10534–10542. doi:10.1021/jp501798x

    Article  Google Scholar 

  • Arndt K-F, Richter A, Ludwig S et al (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polym 50:383–390. doi:10.1002/(SICI)1521-4044(19991201)50:11/12<383::AID-APOL383>3.0.CO;2-Z

    Article  Google Scholar 

  • Arndt K-F, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505. doi:10.1002/1099-1581(200008/12)11:8/12<496::AID-PAT996>3.0.CO;2-7

    Article  Google Scholar 

  • Arndt K-F, Schmidt T, Menge H (2001a) Poly(vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322. doi:10.1002/1521-3900(200102)164:1<313::AID-MASY313>3.0.CO;2-D

    Article  Google Scholar 

  • Arndt K-F, Schmidt T, Reichelt R (2001b) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation. Polymer 42:6785–6791. doi:10.1016/S0032-3861(01)00164-1

    Article  Google Scholar 

  • Baldi A, Gu Y, Loftness PE et al (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12:613–621. doi:10.1109/JMEMS.2003.818070

    Article  Google Scholar 

  • Bashir R, Hilt JZ, Elibol O et al (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81:3091–3093. doi:10.1063/1.1514825

    Article  Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590. doi:10.1038/35007047

    Article  Google Scholar 

  • Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8:8194–8203. doi:10.1039/C2SM25467K

    Article  Google Scholar 

  • Boyko V, Lu Y, Richter A, Pich A (2003) Preparation and characterization of acetoacetoxyethyl methacrylate-based gels. Macromol Chem Phys 204:2031–2039. doi:10.1002/macp.200350058

    Article  Google Scholar 

  • Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens Bioelectron 17:973–981. doi:10.1016/S0956-5663(02)00089-1

    Article  Google Scholar 

  • Chu Y, Varanasi PP, McGlade MJ, Varanasi S (1995) pH-induced swelling kinetics of polyelectrolyte hydrogels. J Appl Polym Sci 58:2161–2176. doi:10.1002/app.1995.070581203

    Article  Google Scholar 

  • De SK, Aluru NR, Johnson B et al (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromechanical Syst 11:544–555. doi:10.1109/JMEMS.2002.803281

    Article  Google Scholar 

  • Doi M (2009) Gel dynamics. J Phys Soc Jpn 78:052001. doi:10.1143/JPSJ.78.052001

    Article  Google Scholar 

  • Dolbow J, Fried E, Ji H (2004) Chemically induced swelling of hydrogels. J Mech Phys Solids 52:51–84. doi:10.1016/S0022-5096(03)00091-7

    Article  Google Scholar 

  • English AE, Edelman ER, Tanaka T (2000) Polymer hydrogel phase transitions, Chapter 6. In: Tanaka T (ed) Experimental methods in polymer science. Academic, Boston, pp 547–589

    Chapter  Google Scholar 

  • Filipcsei G, Fehér J, Zrınyi M (2000) Electric field sensitive neutral polymer gels. J Mol Struct 554:109–117. doi:10.1016/S0022-2860(00)00564-0

    Article  Google Scholar 

  • Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61. doi:10.1063/1.1723621

    Article  Google Scholar 

  • Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35:51–75. doi:10.1021/cr60110a002

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Flory PJ, Rehner J (1943a) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520. doi:10.1063/1.1723791

    Article  Google Scholar 

  • Flory PJ, Rehner J (1943b) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11:521–526. doi:10.1063/1.1723792

    Article  Google Scholar 

  • Gehrke SH (1993) Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. In: Dušek PK (ed) Responsive gels: volume transitions II. Springer, Berlin/Heidelberg, pp 81–144

    Chapter  Google Scholar 

  • Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. doi:10.1002/adma.200304907

    Article  Google Scholar 

  • Greiner R, Allerdissen M, Voigt A, Richter A (2012) Fluidic microchemomechanical integrated circuits processing chemical information. Lab Chip 12:5034–5044. doi:10.1039/C2LC40617A

    Article  Google Scholar 

  • Han IS, Han M-H, Kim J et al (2002) Constant-volume hydrogel osmometer: a new device concept for miniature biosensors. Biomacromolecules 3:1271–1275. doi:10.1021/bm0255894

    Article  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124. doi:10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

    Article  Google Scholar 

  • Hermans JJ (1947) Deformation and swelling of polymer networks containing comparatively long chains. Trans Faraday Soc 43:591–600. doi:10.1039/TF9474300591

    Article  Google Scholar 

  • Hirotsu S (1991) Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J Chem Phys 94:3949–3957. doi:10.1063/1.460672

    Article  Google Scholar 

  • Hong W, Zhao X, Suo Z (2010) Large deformation and electrochemistry of polyelectrolyte gels. J Mech Phys Solids 58:558–577. doi:10.1016/j.jmps.2010.01.005

    Article  Google Scholar 

  • Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440. doi:10.1063/1.1750930

    Article  Google Scholar 

  • Huggins ML (1943) Thermodynamic properties of solutions of high polymers: the empirical constant in the activity equation. Ann N Y Acad Sci 44:431–443. doi:10.1111/j.1749-6632.1943.tb52763.x

    Article  Google Scholar 

  • Irie M, Misumi Y, Tanaka T (1993) Stimuli-responsive polymers: chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendent crown ether groups. Polymer 34:4531–4535. doi:10.1016/0032-3861(93)90160-C

    Article  Google Scholar 

  • Kataoka K, Miyazaki H, Bunya M et al (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on−off regulation of insulin release. J Am Chem Soc 120:12694–12695. doi:10.1021/ja982975d

    Article  Google Scholar 

  • Kittel CH, Kroemer H (1980) Thermal physics, 2nd edn. W. H. Freeman, New York

    Google Scholar 

  • Kuckling D, Adler H-JP, Arndt K-F et al (2000) Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide)-copolymers. Macromol Chem Phys 201:273–280. doi:10.1002/(SICI)1521-3935(20000201)201:2<273::AID-MACP273>3.0.CO;2-E

    Article  Google Scholar 

  • Kuhn W, Kunzle O, Katchalsky A (2010) Dénouement de molécules en chaînes polyvalentes par des charges électriques en solution. Bull Soc Chim Belg 57:421–431. doi:10.1002/bscb.19480571002

    Article  Google Scholar 

  • Kurauchi T, Shiga T, Hirose Y, Okada A (1991) Deformation behaviors of polymer gels in electric field. In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels. Plenum Press, New York, pp 237–246

    Chapter  Google Scholar 

  • Larobina D, Greco F (2012) Prediction of the effects of constitutive viscoelasticity on stress-diffusion coupling in gels. J Chem Phys 136:134904. doi:10.1063/1.3699978

    Article  Google Scholar 

  • Li W, Zhao H, Teasdale PR et al (2002) Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41. doi:10.1016/S1381-5148(02)00055-X

    Article  Google Scholar 

  • Lifshitz EM, Kosevich AM, Pitaevskii LP (1986) Fundamental equations, Chapter I. In: Lifshitz EM, Kosevich AM, Pitaevskii LP (eds) Theory of elasticity, 3rd edn. Butterworth-Heinemann, Oxford, pp 1–37

    Google Scholar 

  • Liu X, Zhang X, Cong J et al (2003) Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating. Sens Actuators B 96:468–472. doi:10.1016/S0925-4005(03)00605-1

    Article  Google Scholar 

  • Luo Q, Mutlu S, Gianchandani YB et al (2003) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. ELECTROPHORESIS 24:3694–3702. doi:10.1002/elps.200305577

    Article  Google Scholar 

  • Marshall AJ, Blyth J, Davidson CAB, Lowe CR (2003) pH-sensitive holographic sensors. Anal Chem 75:4423–4431

    Article  Google Scholar 

  • Milimouk I, Hecht AM, Beysens D, Geissler E (2001) Swelling of neutralized polyelectrolyte gels. Polymer 42:487–494. doi:10.1016/S0032-3861(00)00360-8

    Article  Google Scholar 

  • Mitsumata T, Ikeda K, Gong JP, Osada Y (1998) Solvent-driven chemical motor. Appl Phys Lett 73:2366–2368. doi:10.1063/1.122505

    Article  Google Scholar 

  • Mitsumata T, Ikeda K, Gong JP, Osada Y (2000) Controlled motion of solvent-driven gel motor and its application as a generator. Langmuir 16:307–312. doi:10.1021/la990483o

    Article  Google Scholar 

  • Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769. doi:10.1038/21619

    Article  Google Scholar 

  • Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 1–14

    Chapter  Google Scholar 

  • Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487. doi:10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T

    Article  Google Scholar 

  • Osada Y, Gong J-P (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837. doi:10.1002/(SICI)1521-4095(199808)10:11<827::AID-ADMA827>3.0.CO;2-L

    Article  Google Scholar 

  • Osada Y, Takeuchi Y (1981) Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores. Function of chemical valve. I. J Polym Sci Polym Lett Ed 19:303–308. doi:10.1002/pol.1981.130190605

    Article  Google Scholar 

  • Osada Y, Takeuchi Y (1983) Protein and sugar separation by mechanochemical membrane having “chemical valve” function. Polym J 15:279–284. doi:10.1295/polymj.15.279

    Article  Google Scholar 

  • Peppas NA, Huang Y (2002) Polymers and gels as molecular recognition agents. Pharm Res 19:578–587. doi:10.1023/A:1015389609344

    Article  Google Scholar 

  • Peters EC, Svec F, Fréchet JMJ (1997) Thermally responsive rigid polymer monoliths. Adv Mater 9:630–633. doi:10.1002/adma.19970090807

    Article  Google Scholar 

  • Richter A (2006) Hydrogel-based μTAS. In: Leondes CT (ed) MEMS/NEMS. Springer US, New York, pp 473–503

    Chapter  Google Scholar 

  • Richter A (2009) Hydrogels for actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 221–248

    Chapter  Google Scholar 

  • Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21:979–983. doi:10.1002/adma.200802737

    Article  Google Scholar 

  • Richter A, Kuckling D, Howitz S et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753. doi:10.1109/JMEMS.2003.817898

    Article  Google Scholar 

  • Richter A, Bund A, Keller M, Arndt K-F (2004) Characterization of a microgravimetric sensor based on pH sensitive hydrogels. Sens Actuators B 99:579–585. doi:10.1016/j.snb.2004.01.011

    Article  Google Scholar 

  • Richter A, Wenzel J, Kretschmer K (2007) Mechanically adjustable chemostats based on stimuli-responsive polymers. Sens Actuators B 125:569–573. doi:10.1016/j.snb.2007.03.002

    Article  Google Scholar 

  • Richter A, Paschew G, Klatt S et al (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581. doi:10.3390/s8010561

    Article  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Sakai T, Matsunaga T, Yamamoto Y et al (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384. doi:10.1021/ma800476x

    Article  Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249. doi:10.1016/0079-6700(92)90023-R

    Article  Google Scholar 

  • Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30. doi:10.1002/(SICI)1521-3935(19980101)199:1<1::AID-MACP1>3.0.CO;2-M

    Article  Google Scholar 

  • Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819. doi:10.1246/bcsj.79.1799

    Article  Google Scholar 

  • Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038. doi:10.1039/C2SM25325A

    Article  Google Scholar 

  • Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75:641–659. doi:10.1246/bcsj.75.641

    Article  Google Scholar 

  • Skouri R, Schosseler F, Munch JP, Candau SJ (1995) Swelling and elastic properties of polyelectrolyte gels. Macromolecules 28:197–210. doi:10.1021/ma00105a026

    Article  Google Scholar 

  • Suzuki M (1991) Amphoteric polyvinyl alcohol hydrogel and electrohydrodynamic control method for artificial muscles. In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels. Plenum Press, New York, pp 221–236

    Chapter  Google Scholar 

  • Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710. doi:10.1063/1.470608

    Article  Google Scholar 

  • Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347. doi:10.1038/346345a0

    Article  Google Scholar 

  • Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823. doi:10.1103/PhysRevLett.40.820

    Article  Google Scholar 

  • Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218. doi:10.1063/1.437602

    Article  Google Scholar 

  • Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59:5151–5159. doi:10.1063/1.1680734

    Article  Google Scholar 

  • Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469. doi:10.1126/science.218.4571.467

    Article  Google Scholar 

  • Tanaka T, Wang C, Pande V et al (1995) Polymer gels that can recognize and recover molecules. Faraday Discuss 101:201–206. doi:10.1039/FD9950100201

    Article  Google Scholar 

  • Tomari T, Doi M (1994) Swelling dynamics of a gel undergoing volume transition. J Phys Soc Jpn 63:2093–2101. doi:10.1143/JPSJ.63.2093

    Article  Google Scholar 

  • Wall FT (1942) Statistical thermodynamics of rubber. J Chem Phys 10:132–134. doi:10.1063/1.1723668

    Article  Google Scholar 

  • Wall FT (1943) Statistical thermodynamics of rubber. III. J Chem Phys 11:527–530. doi:10.1063/1.1723793

    Article  Google Scholar 

  • Wall FT, Flory PJ (1951) Statistical thermodynamics of rubber elasticity. J Chem Phys 19:1435–1439. doi:10.1063/1.1748098

    Article  Google Scholar 

  • Wang X (2007) Modeling the nonlinear large deformation kinetics of volume phase transition for the neutral thermosensitive hydrogels. J Chem Phys 127:174705. doi:10.1063/1.2779029

    Article  Google Scholar 

  • Wang X, Hong W (2012) A visco-poroelastic theory for polymeric gels. Proc R Soc Lond Math Phys Eng Sci 468:3824–3841. doi:10.1098/rspa.2012.0385

    Article  Google Scholar 

  • Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media 1:3–25. doi:10.1007/BF01036523

    Article  Google Scholar 

  • Zrínyi M, Szabó D (2001) Muscular contraction mimicked by magnetic gels. Int J Mod Phys B 15:557–563. doi:10.1142/S0217979201005015

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bernhard Ferse for fruitful discussions about the thermodynamics of hydrogels and inhomogeneous networks. This work was supported by the German Research Foundation (DFG) within the cluster of excellence “Center for Advancing Electronics Dresden” and by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Voigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Voigt, A., Richter, A. (2016). Polymer Gels as EAPs: Fundamentals. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31767-0_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31767-0_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-31767-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics