Skip to main content

Laser for Onychomycosis

  • Living reference work entry
  • First Online:
Lasers, Lights and Other Technologies

Abstract

Onychomycosis is a common fungal infection that affects the nail plate or the nail bed and is responsible for approximately 50% of the pathologies affecting the nails (Ghannoum Microbiology 157:3232–42, 2011). Its treatment remains a challenge, even though progress has occurred with the introduction of new antifungal drugs in the 1990s, since many cases linger for decades without a clinical cure (Sigurgeirsson J Europ Acad Dermatol Venerol 24:679–684, 2010). Most cases are caused by dermatophyte fungi; however, in recent years there has been a progressive increase of records of onychomycosis caused by nondermatophyte fungi (yeast and filamentous fungi) that do not respond to antifungal agents (Ranawaka et al. Dermatol Online Journal 18(1):7, (2012); Hwang et al. Ann. Dermatol 24(2):175–180, 2012). Photobiomodulation and photoinactivation studies indicate that lasers in the range of the infrared electromagnetic spectrum (870, 930, 1,064 nm), when applied with biochemical energy, are able to improve the microcirculation, to stimulate the metabolism of cells, and to inhibit the fungal and bacterial multiplication through the action in the wall of the microorganisms, by altering the electric charges and favoring the formation of ROS (singlet oxygen radicals, free radicals). This technique can be associated with the application in the nails of the fractional CO2 laser so that in a drug delivery system it can be associated with antifungal and/or antibacterial agents in order to act synergistically and thus reduce the number of sessions of sub-millisecond 1,064 nm laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015;33(4):183–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andes DR, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004;72:6023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo AJG, Souza MAJ. Onicomicoses por fungos emergentes:analise critica, diagnostico laboratorial e revisão. An Bras Dermatol. 2003;78(4):445–55.

    Article  Google Scholar 

  • Bizerra FC, Nakamura CV, De Poersch C, Estivalet Svidzinski TI, Borsato Quesada RM, Goldenberg S, Krieger MA, Yamada-Ogatta SF. Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res. 2008;8:442–50.

    Article  CAS  PubMed  Google Scholar 

  • Bloom W, Fawcett Don W. Tratado de Histologia. Rio de Janeiro: Interamericana; 1977.

    Google Scholar 

  • Bornstein E. A review of current research in light-based technologies for treatment of podiatric infections disease states. JAPMA. 2009;99:348–52.

    Google Scholar 

  • Bornstein ES, Hermann W, Gridley S. Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol. 2009a;85:1364–74.

    Article  CAS  PubMed  Google Scholar 

  • Bornstein E, Hermans W, Gridley S, Manni J. Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol. 2009b;85:1364–74.

    Article  CAS  PubMed  Google Scholar 

  • Bueno JG, Martinez C, Zapata B, Sanclemente G, Gallego M, Mesa AC. In vitro activity of fluconazole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis. Clin Exp Dermatol. 2010;35:658–63.

    Article  CAS  PubMed  Google Scholar 

  • Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol. 2002;47:629–31.

    Article  PubMed  Google Scholar 

  • Cannizzo FT, Eraso E, Ezkurra PA, Villar-Vidal M, Bollo E, Castellá G, Cabañes FJ, Vidotto V, Quindós G. Biofilm development by clinical isolates of Malassezia pachydermatis. Med Mycol. 2007;45:357–61.

    Article  PubMed  Google Scholar 

  • Carney C, Tosti A, Daniel R, Scher R, Rich P, DeCoster J, Elewski B. A new classification system for grading the severity of onychomycosis. Arch Dermatol. 2011;147(11):1277–82.

    Article  PubMed  Google Scholar 

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183:5385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiacchio N, Kadunc BV, Almeida ART, Madeira CL. Nail abrasion. J Cosmet Dermatol. 2004;2:150–2.

    Article  Google Scholar 

  • Costa-Orlandi CB, Sardi JCO, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJS. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling. 2014;30:719–27.

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.

    Article  CAS  PubMed  Google Scholar 

  • Cushion MT, Collins MS, Linke MJ. Biofilm formation by Pneumocystis spp. Eukaryot Cell. 2009;8:197–206.

    Article  CAS  PubMed  Google Scholar 

  • D’Antonio D, Parruti G, Pontieri E, Di Bonaventura G, Manzoli L, Sferra R, Vetuschi A, Piccolomini R, Romano F, Staniscia T. Slime production by clinical isolates of Blastoschizomyces capitatus from patients with hematological malignancies and catheter-related fungemia. Eur J Clin Microbiol Infect Dis. 2004;23:787–9.

    Article  PubMed  Google Scholar 

  • Dang YY, Ren QS, Liu HX, Ma JB, Zhang JS. Comparison of histologic biochemical and mechanical properties of murine skin treated with 1064nm and 1320nm Nd-YAG lasers. Exp Dermatol. 2005;14:876–82.

    Article  CAS  PubMed  Google Scholar 

  • Davis LE, Cook G, Costerton JW. Biofilm on ventriculoperitoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis. 2002;8:376–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayan SH, Vartanian J, Mernaker G, Mobley SR, Dayan AN. Nonablative laser resurfacing using the low-pulse (1064nm) Nd:YAG laser. Arch Facial Plast Surg. 2003a;5:310–5.

    Article  PubMed  Google Scholar 

  • Dayan S, Damrose JF, Bhattachryyat K, Mobley SR, Patel MK, O’Grady K, Mandrea S. Histological evaluations following 1,064nm Nd:YAG laser resurfacing. Lasers Surg Med. 2003b;33:126–31.

    Article  PubMed  Google Scholar 

  • de Araújo AJ, Souza MAJ, Bastos OM, de Oliveira JC. Ocorrência de onicomicose em pacientes atendidos em consultórios dermatológicos da cidade do Rio de Janeiro. An Bras Dermatol. 2003;78:299–308.

    Google Scholar 

  • di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D’Antonio D, Piccolomini R. Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother. 2006;50:3269–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JAG, Carr JH, Starling CEF, de Resende MA, Donlan RM. Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob Agents Chemother. 2009;53:4377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch J, Arenas R, Baran R. Fungal melanonychia. J Am Acad Dermatol. 2012;66(5):830–41.

    Article  PubMed  Google Scholar 

  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    CAS  PubMed  Google Scholar 

  • Garcez AS, Núñez SC, Baptista MS, Daghastanli NA, Itri R, Hamblin MR, Ribeiro MS. Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide. Photochem Photobiol Sci. 2010;10(4):483–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, Sullivan S, Daniel R, Krusinski P, Fleckman P, Rich P, Odom R, Aly R, Parise D, Zaiac M, Rebell G, Lesher J, Gerlach B. A large-scale north American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol. 2000;43(4):641–8.

    Article  CAS  PubMed  Google Scholar 

  • Guffey JS, Motts S, Payne W. Using visible and near-IR light to facilitate photobiomodulation: a review of current research. Eur J Acad Essay. 2014;1(3):113–6.

    Google Scholar 

  • Haedersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR. Fractional CO2 laser-assisted drug delivery. Lasers Surg Med. 2010;42:113–22.

    Article  PubMed  Google Scholar 

  • Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochman LG. Laser treatment of onychomycosis using a novel 0.65-millisecond pulsed Nd:YAG 1064-nm laser. J Cosmet Laser Ther. 2011;13:2–5. [Online] p.1–4. Available from: http://informahealthcare.com. Accessed: 26th Jan 2011.

    Article  PubMed  Google Scholar 

  • Hwang SM, Suh MK, Ha GY. Onychomycosis due to nondermatophytic molds. Ann Dermatol. 2012;24(2):175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imamura Y, Chandra J, Mukherjee PK, Lattif AA, Szczotka-Flynn LB, Pearlman E, Lass JH, O’Donnell K, Ghannoum MA. Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob Agents Chemother. 2008;52:171–82.

    Article  CAS  PubMed  Google Scholar 

  • Kimura U, et al. Treating onychomycosis of the toenail: clinical efficacy of the sub-millisecond 1,064nm Nd:YAG laser using a 5mm spot diameter. J Drugs Dermatol. 2012;11(4):496–504.

    CAS  PubMed  Google Scholar 

  • Kipshidze N, Nicolaychik V, Muckerheidei M, Keelan MH, Chekanov V, Maternowski M, Chawla P, Hernandez I, Iyers S, Danga G, Sahota H, Leon MB, Rowbin G, Moses JW. Effect of short pulsed nonablative infrared laser irradiation on vascular cells in vitro and neointimal hyperplasia in a rabbit balloon injury model. Circulation. 2001;104:1850–5.

    Article  CAS  PubMed  Google Scholar 

  • Knappe V, Frank F, Rohde E. Principles of lasers and biophotonic effects. Photomed Laser Surg. 2004;22(5):411–7.

    Article  PubMed  Google Scholar 

  • Koh BK, Lee CK, Chae K. Photorejuvenation with submillisecond neodymium doped yttrium aluminum garnet (1,064nm) laser: a 24 week follow-up. Dermatol Surg. 2010;36:1–8.

    Article  Google Scholar 

  • Kosarev J, Vizintin Z. Novel laser therapy in treatment of onychomycosis. J LAHA. 2010;1:1–8.

    Google Scholar 

  • Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002a;46:1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2002b;71:878–88.

    Article  Google Scholar 

  • Kumamoto CA. Candida biofilms. Curr Opin Microbiol. 2002;5:608–11.

    Article  CAS  PubMed  Google Scholar 

  • Landsman AS, Robbins AH, Angelini PF, Wu CC, Cook J, Oster M, Bornstein ES. Treatment of mild, moderate, severe onychomycosis using 870 and 930nm light exposure. J Am Podiatr Med Assoc. 2010;100(3):166–77.

    Article  PubMed  Google Scholar 

  • Lattif AA, Mukherjee PK, Chandra J, Swindell K, Lockhart SR, Diekema DJ, Pfaller MA, Ghannoum MA. Characterization of biofilms formed by Candida parapsilosis, C. metapsilosis, and C. orthopsilosis. Int J Med Microbiol. 2010;300:265–70.

    Article  PubMed  Google Scholar 

  • Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M, Ghannoum MA. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology. 2011;157:3232–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Coloe S, Baird R, Pedersen J. Application of PCR to the identification of dermatophyte fungi. J Med Microbiol. 2000;49:493–7.

    Article  CAS  PubMed  Google Scholar 

  • Lurati M, Rosselet FB, Vernez M, Spring P, Bontems O, Fratti M, Monod M. Efficacious treatment of non-dermatophyte mould onychomycosis with topical amphotericin B. Dermatology. 2011;223:289–92.

    Article  CAS  PubMed  Google Scholar 

  • Martinez LR, Casadevall A. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol. 2007;73:4592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia. 2009;169:323–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses. 2012;55:80–5.

    Article  CAS  PubMed  Google Scholar 

  • Meral G, et al. Factors affecting the antibacterial effects of Nd-YAG laser in vivo. Lasers Surg Med. 2003;32:197–202.

    Article  PubMed  Google Scholar 

  • Montagna W, Parakkal LPF. The structure and function of skin. New York: Academic; 1974.

    Google Scholar 

  • Morales-Cardona CA, Valbuena-Mesa MC, Alvarado Z, Solorzano-Amador A. Non-dermatophyte mould onychomycosis: a clinical and epidemiological study at a dermatology referral centre in Bogota, Colombia. Mycoses. 2014;57:284–93.

    Article  PubMed  Google Scholar 

  • Mowat E, Williams C, Jones B, McChlery S, Ramage G. The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Med Mycol. 2009;47 Suppl 1:120–6.

    Article  Google Scholar 

  • Mukherjee PK, Chandra J. Candida biofilm resistance. Drug Resist Updat. 2004;7:301–9.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Yu C, Sun Y, Pearlman E, Ghannoum MA. Characterization of Fusarium keratitis outbreak isolates: contribution of biofilms to antimicrobial resistance and pathogenesis. Investig Ophthalmol Vis Sci. 2012;53:4450–7.

    Article  CAS  Google Scholar 

  • Nett JE, Crawford K, Marchillo K, Andes DR. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother. 2010a;54:3505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nett JE, Sanchez H, Cain MT, Andes DR. Genetic basis of Candida biofilm resistance due to drug sequestering matrix glucan. J Infect Dis. 2010b;202:171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nucci M, Anaissie E. Fusarium infections in immunocompromised patients. Clin Microbiol Rev. 2007;20:695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes JM, Bizerra FC, Ferreira RCE, Colombo AL. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother. 2013;57:382–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nusbaum AG, Kirsner RS, Charles CA. Biofilms in dermatology. Skin Therapy Lett. 2012;17:1–5.

    CAS  PubMed  Google Scholar 

  • Ortiz AE, Avram MM, Wanner MA. A review of lasers and light for the treatment of onychomycosis. Lasers Surg Med. 2014;46:117–24.

    Article  PubMed  Google Scholar 

  • Ortoneda M, Capilla J, Pastor FJ, Pujol I, Guarro J. In vitro interactions of licensed and novel antifungal drugs against Fusarium spp. Diagn Microbiol Infect Dis. 2004;48:69–71.

    Article  CAS  PubMed  Google Scholar 

  • Pariser D, Elewski B, Rich P, Scher RK. Update on onychomycosis: effective strategies for diagnosis and treatment. Semin Cutan Med Surg. 2013;32(2s):1–13.

    Article  Google Scholar 

  • Pasquini C. Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J Braz Chem Soc. 2003;14(2):198–219.

    Article  CAS  Google Scholar 

  • Perumal P, Mekala S, Chaffin WL. Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother. 2007;51:2454–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitangui NS, Sardi JCO, Silva JF, Benaducci T, Moraes da Silva RA, Rodríguez-Arellanes G, Taylor ML, Mendes-Giannini MJS, Fusco-Almeida AM. Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. Biofouling. 2012;28:711–8.

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Van de Walle K, Wickes BL, Lopez-Ribot JL. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol. 2001;18:163–70.

    CAS  PubMed  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002;49:973–80.

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Saville SP, Thomas DP, Lopez-Ribot JLJL. Candida biofilms: an update. Eukaryot Cell. 2005;4:633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol. 2012;1:1–14.

    Article  Google Scholar 

  • Ranawaka RR, Silva N, Ragunathan RW. Non-dermatophyte mold onychomycosis in Sri Lanka. Dermatol Online J. 2012;18(1):7.

    PubMed  Google Scholar 

  • Reynolds TB, Fink GR. Bakers’ yeast, a model for fungal biofilm formation. Science. 2001;291:878–81.

    Article  CAS  PubMed  Google Scholar 

  • Ross V, Cooke LM, Timkoa L, Overstreet KA, Graham BS, Barnette DJ. Treatment of pseudofolliculitis barbae in skin types IV, V, and VI with a long-pulsed neodymium:yttrium aluminum garnet laser. J Am Acad Dermatol. 2002;47:263–70.

    Article  PubMed  Google Scholar 

  • Sá Guimarães CMD. Tratamento da onicomicose com laser Nd-YAG: resultados em 30 pacientes. Surg Cosmet Dermatol. 2014;6(2):155–60.

    Google Scholar 

  • Sardi JDCO, Pitangui NDS, Rodríguez-Arellanes G, Taylor ML, Fusco-Almeida AM, Mendes-Giannini MJS. Highlights in pathogenic fungal biofilms. Rev Iberoam Micol. 2014;31:22–9.

    Article  Google Scholar 

  • Scher RK, Tavakkol A, Sirgurgeisson B. Onychomycosis: diagnosis and definition of cure. J Am Acad Dermatol. 2007;56:939–44.

    Article  PubMed  Google Scholar 

  • Schmults CD, Phelps R, Goldberg DJ. Nonablative facial remodeling. Arch Dermatol. 2004;140:1373–6.

    Article  PubMed  Google Scholar 

  • Seneviratne C, Jin L, Samaranayake L. Biofilm lifestyle of Candida: a mini review. Oral Dis. 2008;14:582–90.

    Article  CAS  PubMed  Google Scholar 

  • Sigurgeirsson B. Prognostic factors for cure following treatment of onychomycosis. J Eur Acad Dermatol Venerol. 2010;24:679–84.

    Article  CAS  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. TRENDS Microbiol. 2011;19:241–7.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Shivaprakash MR, Chakrabarti A. Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology. 2011;157:2611–8.

    Article  CAS  PubMed  Google Scholar 

  • Snell RS. Histologia Clínica. Rio de Janeiro: Interamericana; 1985.

    Google Scholar 

  • Tan M, Dover J, Hsu T, Arndt KA, Stewart B. Clinical evaluation of enhanced nonablative skin rejuvenation using a combination of 532nm and 1,064nm laser. Lasers Surg Med. 2004;34:349–445.

    Article  Google Scholar 

  • Vediyappan G, Rossignol T, d’Enfert C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother. 2010;54:2096–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila TVM, Rosental S, de Sá Guimarães CMD. A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Laser Med Sci. 2014;30(3):1031–9.

    Article  Google Scholar 

  • Vlassova N, Han A, Zenilman JM, James G, Lazarus GS. New horizons for cutaneous microbiology: the role of biofilms in dermatological disease. Br J Dermatol. 2011;165:751–9.

    Article  CAS  PubMed  Google Scholar 

  • Vural E, Winfield HL, Shingleton AW, Horn TD, Shafirstein. The effects of laser irradiation on Trichophyton rubrum growth. Lasers Med Sci. 2008;23:349–53.

    Article  PubMed  Google Scholar 

  • Warshaw EM, St. Clair KR. Prevention of onychomycosis reinfection for patients with complete cure of all 10 toenails: results of a double-blind, placebo-controlled, pilot study of prophylactic miconazole powder 2%. J Am Acad Dermatol. 2005;53(4):717–20.

    Article  PubMed  Google Scholar 

  • Weiss L, Greep RO. Histology. New York: McGraw-Hill; 1977.

    Google Scholar 

  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj AS, Fontaine J, Sanchez H, Hatfield RD, et al. Novel entries in a fungal biofilm matrix encyclopedia. MBio. 2014;5:1333–14.

    Article  Google Scholar 

  • Zhang X, Sun X, Wang Z, Zhang Y, Hou W. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility. Investig Ophthalmol Vis Sci. 2012;53:7774–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Maria Duarte de Sá Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Guimarães, C.M.D., Vila, T.V.M., Bittencourt-Sampaio, S. (2016). Laser for Onychomycosis. In: Issa, M., Tamura, B. (eds) Lasers, Lights and Other Technologies. Clinical Approaches and Procedures in Cosmetic Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-20251-8_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20251-8_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20251-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics