Skip to main content

Thermal Analysis on Gels, Glasses, and Powders

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

In the present chapter, the basics of thermal analysis and the most appropriate thermal investigation methods of gels, glasses, and powders obtained by sol–gel procedure are presented. Representative data obtained by applying these methods for the mono- and polycomponent gels and powders obtained both by alcoholic and aqueous route are given. The differences that occur between the thermal properties of the materials obtained by the two methods of preparation are underlined. In both cases, it was established that the thermal methods corroborated with other structural investigations (XRD, FT-IR, Raman) allow obtaining information not only about the thermal behavior but also on the chemical composition of the as-prepared gels and powders. Information given by the thermal analysis methods used in order to establish the experimental conditions to transform the gels into (bulk) glasses and to determine their glass transition and crystallization temperature were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akpan UG, Hameed BH. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal Gen. 2010;375:1–11.

    Article  Google Scholar 

  • Anastasescu C, Zaharescu M, Balint I. Unexpected photocatalytic activity of simple and platinum modified tubular SiO2 for the oxidation of oxalic acid to CO2. Catal Lett. 2009;132:81–6.

    Article  Google Scholar 

  • Anastasescu C, Anastasescu M, Teodorescu VS, Gartner M, Zaharescu M. SiO2 nanospheres and tubes obtained by sol–gel method. J Non-Cryst Solids. 2010;356:2634–40.

    Article  Google Scholar 

  • Anastasescu C, Anastasescu M, Zaharescu M, Balint I. Platinum-modified SiO2 with tubular morphology as efficient membrane-type microreactors for mineralization of formic acid. J Nanopart Res. 2012;14:1198 (12 pages).

    Article  Google Scholar 

  • Auffredic JP, Louёr D. Etude thermodynamique de la décomposition thermique des hydroxynitrates de zinc. J Solid State Chem. 1983;46:245–52.

    Article  Google Scholar 

  • Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed. 2011;50:11312–59.

    Article  Google Scholar 

  • Barnes PA. Applications of new methods and instrumentation in thermal analysis. Thermochim Acta. 1987;114:1–13.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel-glass: I. Gelation and gel structure. J Non-Cryst Solids. 1985;70:301–22.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel science. The physics and chemistry of sol–gel processing. Boston: Academic; 1990.

    Google Scholar 

  • Brinker CJ, Keefer KD, Schaffer DW, Ashley C. Sol–gel transition in simple silicates. J Non-Cryst Solids. 1982;42:47–64.

    Article  Google Scholar 

  • Chappell JS, Procopio LJ, Birchall JD. Observations on modifying particle formation in the hydrolysis of titanium (IV) tetra-ethoxide. J Mater Sci Lett. 1990;9:1329–31.

    Article  Google Scholar 

  • Coats AW, Redfern JP. Thermogravimetric analysis: a review. Analyst. 1963;88:906–24.

    Article  Google Scholar 

  • Crisan M, Jitianu A, Crisan D, Balasoiu M, Dragan N, Zaharescu M. Sol–gel monocomponent nano-sized oxide powders. J Optoelectron Adv Mat. 2000;2:339–44.

    Google Scholar 

  • Crişan M, Răileanu M, Drăgan N, Crişan D, Ianculescu A, Niţoi I, Oancea P, Şomăcescu S, Stănică N, Vasile B, Stan C. Sol–gel iron-doped TiO2 nanopowders with photocatalytic activity. Appl Catal A-Gen. 2015;504:130–42.

    Article  Google Scholar 

  • Dean JA. The analytical chemistry handbook. New York: McGraw Hill; 1995. p. 15.1–5.

    Google Scholar 

  • Dudley GB, Richert R, Stiegman AE. On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem Sci. 2015;6:2144–52.

    Article  Google Scholar 

  • Dumbrava A, Georgescu A, Damache G, Badea C, Enache I, Oprea C, Gartu MA. Dye-sensitized solar cells based on nanocrystalline TiO2 and natural pigments. J Optoelectron Adv Mat. 2008;10:2996–3002.

    Google Scholar 

  • Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc. 1959;42:438–42.

    Article  Google Scholar 

  • Filipovic S, Obradovic N, Pavlovic VB, Markovic S, Mitric M, Ristic MM. Influence of mechanical activation on microstructure and crystal structure of sintered MgO-TiO2 system. Sci Sinter. 2010;42:143–51.

    Article  Google Scholar 

  • Haines PJ. Principles of thermal analysis and calorimetry. Cambridge: Royal Society of Chemistry; 2002.

    Book  Google Scholar 

  • Hsiang HI, Lin SC. Effects of aging on the phase transformation and sintering properties of TiO2 gels. Mater Sci Eng A. 2004;380:67–72.

    Article  Google Scholar 

  • ICTAC. For better thermal analysis and calorimetry. 3rd ed. Bundoora: International Confederation for Thermal Analysis; 1991.

    Google Scholar 

  • Iler RK. The chemistry of silica. Chichester: Wiley; 1979.

    Google Scholar 

  • Jitianu A, Lammers K, Arbuckle-Kiel GA, Klein LC. Thermal analysis of organically modified siloxane melting gels. J Therm Anal Calorim. 2012;107:1039–45.

    Article  Google Scholar 

  • Jitianu A, Gonzalez G, Klein LC. Hybrid sol–gel glasses with glass-transition temperatures below room temperature. J Am Ceram Soc. 2015;98:3673–9.

    Article  Google Scholar 

  • Kappe CO, Pieber B, Dallinger D. Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed. 2013;52:1088–94.

    Article  Google Scholar 

  • Klein LC, Garvey GJ. Monolithic dried gels. J Non-Cryst Solids. 1982;48:97–104.

    Article  Google Scholar 

  • Klein LC, Gallo TA, Garvey GJ. Densification of the monolithic silica gels below 1000 °C. J Non-Cryst Solids. 1984;63:23–33.

    Article  Google Scholar 

  • Kupec A, Mocioiu OC, Cilenšek J, Zaharescu M, Malič B. Study of thermal decomposition of (K0.5Na0.5)NbO3 thin-films precursors with different amounts of alkali-acetate excess. Acta Chim Slov. 2014;61:548–54.

    Google Scholar 

  • Livage J, Henry M, Sanchez C. Sol–gel chemistry of transition metal oxides. Prog Solid State Chem. 1988;18:259–341.

    Article  Google Scholar 

  • Małecka B, Gajerski R, Małecki A, Wierzbicka M, Olszewski P. Mass spectral studies on the mechanism of thermal decomposition of Zn(NO3)2 · nH2O. Thermochim Acta. 2003;404:125–32.

    Article  Google Scholar 

  • Malič B, Kupec A, Kosec M. Thermal analysis. In: Schneller T, Waser R, Kosec M, Payne D, editors. Chemical solution deposition of functional thin films. Springer: Springer-Verlag Wien; 2013. p. 163–79.

    Google Scholar 

  • McNaught AD, Wilkinson A. IUPAC compendium of chemical technology. 2nd ed. Oxford: Blakwell; 1997.

    Google Scholar 

  • Mihaiu S, Madarász J, Pokol G, Szilágyi IM, Kaszás T, Mocioiu OC, Atkinson I, Toader A, Munteanu C, Marinescu VE, Zaharescu M. Thermal behavior of ZnO precursor powders obtained from aqueous solutions. Rev Roum Chim. 2013;58:335–45.

    Google Scholar 

  • Mullens J, Carleer R, Reggers R, Yperman J, Vanhees J, Van Poucke LC. Coupling between FTIR (Bruker IFS 66) and TG (Du Pont TGA 951–2000). Thermochim Acta. 1992;212:219–25.

    Article  Google Scholar 

  • Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng. 2000;10:136–46.

    Article  Google Scholar 

  • Nakamura H, Matsui Y. Silica gel nanotubes obtained by the sol–gel method. J Am Chem Soc. 1995;117:2651–2.

    Article  Google Scholar 

  • Nogami M, Moriya Y. Glass formation through hydrolysis of Si(OC2H5)4 with NH4OH and HCl solutions. J Non-Cryst Solids. 1980;37:191–201.

    Article  Google Scholar 

  • Nogami M, Moriya Y. Glass formation of the SiO2-B2O3 system by the gel process from metal alkoxides. J Non-Cryst Solids. 1982;48:359–66.

    Article  Google Scholar 

  • O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–40.

    Article  Google Scholar 

  • Paulik F, Paulik J, Erdey L. Derivatography. A complex method in thermal analysis. Talanta. 1966;13(10):1405–30.

    Article  Google Scholar 

  • Pierre AC. Introduction to the sol–gel process. Boston: Kluwer Academic; 1998.

    Book  Google Scholar 

  • Predoana L, Jitianu A, Voicescu M, Apostol N, Zaharescu M. Study of formation of LiCoO2 using a modified Pechini aqueous sol–gel process. J Sol-gel Sci Technol. 2015a;74:406–18.

    Article  Google Scholar 

  • Predoana L, Jitianu A, Preda S, Malic B, Zaharescu M. Thermal behavior of Li-Co-citric acid water-based gels as precursors for LiCoO2 powders. J Therm Anal Calorim. 2015b;119(1):145–53.

    Article  Google Scholar 

  • Price D, Dollimore D, Fatemi NS, Whitehead R. Mass spectrometric determination of kinetic parameters for solid state decomposition reactions. Part 1. Method; calcium oxalate decomposition. Thermochim Acta. 1980;42:323–32.

    Article  Google Scholar 

  • Pungor E. A practical guide to instrumental analysis. Boca Raton: CRC Press; 1995. p. 181–91.

    Google Scholar 

  • Ranganathan V, Klein LC. Sol–gel synthesis of erbium-doped yttrium silicate glass–ceramics. J Non-Cryst Solids. 2008;354:3567–357.

    Article  Google Scholar 

  • Roedel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovi D. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009;92:1153–77.

    Article  Google Scholar 

  • Schmidt H. Chemistry of material preparation by the sol–gel process. J Non-Cryst Solids. 1988;100:51–64.

    Article  Google Scholar 

  • Scott JF. Applications of modern ferroelectrics. Science. 2007;315:954–9.

    Article  Google Scholar 

  • Segal E, Budrugeac P, Carp O, Doca N, Popescu C, Vlase T. Analiza termicᾰ. Fundamente şi aplicaţii (in Romanian). Bucharest: Ed. Academiei Române; 2013.

    Google Scholar 

  • Skoog DA, Holler FJ, Nieman T. Principles of instrumental analysis. Philadelphia/Orlando: Saunders College Pub/Harcourt Brace College Publishers; 1998.

    Google Scholar 

  • Stanciu I, Predoana L, Anastasescu C, Culita DC, Preda S, Pandele Cusu J, Munteanu C, Rusu A, Balint I, Zaharescu M. Structure and properties of vanadium doped TiO2 powders prepared by slol-gel method. Rev Roum Chim. 2014;59:919–29.

    Google Scholar 

  • Tahir M, Amin NAS. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energ Conver Manage. 2013;76:194–214.

    Article  Google Scholar 

  • Todan L, Dascalescu T, Preda S, Andronescu C, Munteanu C, Culita DC, Rusu A, State R, Zaharescu M. Porous nano sized oxide powders in the MgO-TiO2 binary system obtained by sol–gel method. Ceram Int. 2014;40:15693–701.

    Article  Google Scholar 

  • Villegas MA, Fernandez Navarro JM. Characterization of B2O3-SiO2 glasses prepared via sol–gel. J Mater Sci. 1988;23:2464–78.

    Article  Google Scholar 

  • Wang QS, Sun JH, Chen CH, Zhou XM. Thermal properties and kinetics study of charged LiCoO2 by TG and C80 methods. J Therm Anal Calorim. 2008;92:563–6.

    Article  Google Scholar 

  • Wedelant WWM. Thermal analysis. 3rd ed. New York: Wiley; 1986.

    Google Scholar 

  • Wei X, Yang Z, Tay SL, Gao W. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating. Appl Surf Sci. 2014;290:274–9.

    Article  Google Scholar 

  • Yoldas BE. Alumina gels that form porous transparent Al2O3. J Mater Sci. 1975;10:1856–60.

    Article  Google Scholar 

  • Zaharescu M, Pîrlog C, Crişan M, Sahini M. Structural characterization of vitreous SiO2 made from gels. Rev Roum Chim. 1989;34(2):703–7.

    Google Scholar 

  • Zaharescu M, Jitianu A, Braileanu A, Badescu V, Pokol G, Madarasz J, Novak Cs. Thermal stability of SiO2-based inorganic-organic hybrid materials. J Therm Anal Calorim. 1999;56:191–8.

    Google Scholar 

  • Zarzycki J. Gel → glass transition. J Non-Cryst Solids. 1982;48:105–16.

    Article  Google Scholar 

  • Zhang S, Xia R, Shrout TR. Lead-free piezoelectric ceramics vs. PZT? J Electroceram. 2007;19:251–7.

    Article  Google Scholar 

  • Zheng J, Li X, Yu Y, Feng X, Zhao Y. Novel high phosphorus content phosphaphenanthrene-based efficient flame retardant additives for lithium-ion battery. J Therm Anal Calorim. 2014;117:319–24.

    Article  Google Scholar 

  • Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev. 2014;114:6462–555.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zaharescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Zaharescu, M., Predoana, L., Pandele-Cusu, J. (2016). Thermal Analysis on Gels, Glasses, and Powders. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_99-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_99-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics