Skip to main content

Thermodynamic Properties of Plasmas

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

Physical and chemical processes occurring in thermal plasmas, and their interactions with gases, particulate matter, or liquids, are highly complex and require knowledge of composition, thermodynamic, and transport properties of the plasma. In this chapter, the relationships between thermodynamic functions and partition functions for plasmas in local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE) are discussed. The methods of calculation of these partition functions are given, followed by a review of the different ways to calculate the composition of a plasma, and of the corresponding thermodynamic properties. As has been shown in the chapter 4, Sect. 4.4, even if the plasma core can be assumed to be in complete thermodynamic equilibrium (CTE), this may not be the case in the fringes or in the plume of the thermal plasmas, where two different temperatures can be defined (one for the electrons and the other for the heavy species). Separate discussions for the effects of such deviations from LTE or LCE, on the thermodynamic and transport properties of plasmas, are presented in the chapters 9 and 10 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LCE:

Local chemical equilibrium

LTE:

Local thermodynamic equilibrium

CTE:

Complete thermodynamic equilibrium

References

  • Al-Mamun SA, Tanaka Y, Uesugi Y (2009) Observation of non-chemical equilibrium effect on Ar–CO2–H2 thermal plasma model by changing pressure. Thin Solid Films 518:943–951

    Article  Google Scholar 

  • André P, Aubreton J, Elchinger MF (2001) A new modified pseudo-equilibrium calculation to determine the composition of hydrogen and nitrogen plasmas at atmospheric pressure. Plasma Chem Plasma Process 21(1):83–105

    Article  Google Scholar 

  • Bacri J, Raffanel S (1987) Calculation of some thermodynamic properties of air plasmas: internal partition functions, plasma composition, and thermodynamic functions. Plasma Chem Plasma Process 7(1):53–87

    Article  Google Scholar 

  • Barin I, Knacke O (1973 and 1977) Thermochemical properties of inorganic substances. Springer, Berlin/New York

    Google Scholar 

  • Beyer RP (1982) A computer program for calculating thermodynamic properties from spectroscopic data. Information circular 8871 US Department of the Interior, Bureau of Mines

    Google Scholar 

  • Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications. Plenum press, New York, 448 pages

    Book  Google Scholar 

  • Bourdin E (1976) Contribution à l’étude théorique et expérimentale des nitrures et oxynitrures par réaction de jets de plasma d’azote avec des poudres d’aluminium, de silicium et de leurs oxyde. Thèse 3ème cycle, Université de Limoges, France

    Google Scholar 

  • Bousrih S, Ershov-Pavlov E, Megy S, Baronnet J-M (1995) Hydrogen/argon plasma jet with methane addition. Plasma Chem Plasma Process 15(2):333–351

    Article  Google Scholar 

  • Burcat A, Ruscic B (2005) Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from Active thermochemical tables (Argonne National Laboratory), Report number ANL-05/20. http://www.chem.leeds.ac.uk/combustion/combustion.html

  • Capitelli M, Ficocelli E, Molinari E (1969) Equilibrium compositions and thermodynamic properties of mixed plasmas I, He-N2, Ar-N2 and Xe-Ne plasmas at one atmosphere between 5 000 K and 35 000 K, internal report. University of Bari, Italy

    Google Scholar 

  • Chang CH, Ramshaw JD (1993) Numerical simulations of argon plasma jets flowing into cold air. Plasma Chem Plasma Process 13(2):189–209

    Article  Google Scholar 

  • Chang CH, Ramshaw JD (1996) Computational study of high-speed plasma flow impinging on an enthalpy probe. Plasma Chem Plasma Process 16(1):17–38

    Article  Google Scholar 

  • Chase MW, Davies CA Jr (1998) NIST-JANAF thermochemical tables, 4th edn. American Institute of Physics for the National Institute of Standards and Technology, New York

    Google Scholar 

  • Coufal O (2007) Composition and thermodynamic properties of thermal plasma up to 50 kK. J Phys D Appl Phys 40:3371–3385

    Article  Google Scholar 

  • Coufal O, Živný O (2010) Composition and thermodynamic properties of thermal plasma with condensed phases. Eur Phys J D 61(1):131–151

    Article  Google Scholar 

  • Coufal O, Sezemsky P, Zivny O (2005) Database system of thermodynamic properties of individual substances at high temperatures. J Phys D Appl Phys 38:1265–1274

    Article  Google Scholar 

  • Drawin HW et al (1972) Thermodynamic properties of the equilibrium and nonequilibrium states of plasmas. In: Venugopalan M (ed) Reactions under plasma conditions. Wiley Interscience, New York

    Google Scholar 

  • Drellishak KS (1963) Partition functions and thermodynamic properties of high temperature gases, Ph.D. thesis. Northwestern University, Illinois

    Google Scholar 

  • Fauchais P (1962) Etude des propriétés thermodynamiques des plasmas produits par un générateur à arc, Thèse de Doctorat d’Etat. Université de Poitiers

    Google Scholar 

  • Fauchais P (1979) Propriétés thermodynamiques des plasmas d’azote, d’hydrogène et de leur mélange. Rev Int Hautes Températures et Réfract 6:77

    Google Scholar 

  • Fauchais P, Vasseur A, Manson N (1969) Détermination des caractéristiques thermodynamiques des plasmas de mélanges de gaz. Rev Int Hautes Températures et Réfract 6:5

    Google Scholar 

  • Fauchais P, Baronnet JM, Bayard S (1975) Problèmes posés par le calcul des fonctions de partition des espèces mono et diatomiques dans un plasma. Rev Int Hautes Temp et Réfract 12:221

    Google Scholar 

  • Fowler FH, Guggenheim EA (1956) Statistical thermodynamics. University Press, Cambridge

    MATH  Google Scholar 

  • Gleizes A, Razafinimanana M, Vacquie S (1986) Calculation of thermodynamic properties and transport coefficients for SF6-N2 mixtures in the temperature range 1,000–30,000 K. Plasma Chem Plasma Process 6(1):65–78

    Article  Google Scholar 

  • Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modeling. J Phys D Appl Phys 38(9):R153

    Article  Google Scholar 

  • Glouchko VP (1962) Propriétés thermodynamiques des corps purs. Mir, Moscou

    Google Scholar 

  • Gordon S, Mcbride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications, NASA report RP-1311. NASA Lewis Research Center, Washington, DC

    Google Scholar 

  • Gurvich LV, Kvlividze VA, Fis Z (1961) Khim 35:1672

    Google Scholar 

  • Herzberg G (1950) Molecular spectra and molecular structure I. Spectra of diatomic molecules. Van Nostrand, New York: D

    Google Scholar 

  • Hill TL (1987) An introduction to statistical thermodynamics. Dover Books on Physics, Addison-Wesley Educational Publishers Inc.

    Google Scholar 

  • Hsu KC, Pfender E (1981) Calculation of thermodynamic and transport properties of a two-temperature argon plasma. In: Proceedings 5th international symposium on plasma chemistry, vol 1. Heriot-Watt University Edinburgh, Scotland, pp 144–150

    Google Scholar 

  • Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. Constants of diatomic molecules. Litton Educational Publishing, New York

    Book  Google Scholar 

  • Iwata M, Adachi K, Furukawa S, Amakawa T (2004) Synthesis of purified AlN nano powder by transferred type arc plasma. J Phys D Appl Phys 37:1041–1047

    Article  Google Scholar 

  • JANAF (1971) Thermochemical data compiled and calculated by the Dow Chemical Company. Thermal Laboratory, Midland

    Google Scholar 

  • Janisson S, Vardelle A, Coudert JF, Meillot E, Pateyron B, Fauchais P (1999) Plasma spraying using Ar-He-H2 gas mixtures. J Therm Spray Technol 8(4):545–552

    Article  Google Scholar 

  • Krenek P (2008) Thermophysical properties of H2O–Ar plasmas at temperatures 400–50,000 K and pressure 0.1 MPa. Plasma Chem Plasma Process 28:107–122

    Article  Google Scholar 

  • Landau L, Lifschitz E (1967) Physique statistique. Mir, Moscou

    Google Scholar 

  • Lee YC, Pfender E (1987) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part III. Thermal plasma jet reactors and multiparticle injection. Plasma Chem Plasma Process 7(1):1–27

    Article  Google Scholar 

  • Lesinski J, Boules M (1990) Thermodynamic and transport properties of argon, nitrogen and oxygen at atmospheric pressure over the temperature range 300–30,000 K, internal report. University of Sherbrooke, Quebec

    Google Scholar 

  • Mayer JE, Mayer GM (1966) Statistical mechanics, lthth edn. Wiley, New York

    MATH  Google Scholar 

  • Mc Bride BJ, Gordon S (1967) Fortran IV program for calculation of thermodynamic data. NASATN-D-4097, Washington, DC

    Google Scholar 

  • Mc Bride BJ, Gordon S (1992) Computer program for calculating and fitting thermodynamic functions. NASA Ref. Pub. 1271, Washington, DC

    Google Scholar 

  • McKelliget J, Szekely J, Vardelle M, Fauchais P (1982) Temperature and velocity fields in a gas stream exiting a plasma torch. A mathematical Model and its experimental verification. Plasma Chem Plasma Process 2(3):317–332

    Article  Google Scholar 

  • Moore CE (1949) Atomic energy levels, vol 1. NBS Circular 467, Washington, DC

    Google Scholar 

  • Moore CE (1952) Atomic energy levels, vol 2. NBS Circular 467, Washington, DC

    Google Scholar 

  • Moore CE (1958) Atomic energy levels, vol 3. NBS Circular 467, Washington, DC

    Google Scholar 

  • Mostaghimi-Tehrani J, Pfender E (1984) Effects of metallic vapor on the properties of an argon arc plasma. Plasma Chem Plasma Process 4(2):129–139

    Article  Google Scholar 

  • Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15(2):279–307

    Article  Google Scholar 

  • Murphy AB, Arundelli CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490

    Article  Google Scholar 

  • Napolitano L (1971) Thermodynamique des systèmes composites en équilibre ou hors équilibre. Gauthier-Villars, Paris

    Google Scholar 

  • Pateyron B, Delluc G (1986) Free download software TTWinner. http://ttwinner.free.fr

  • Pateyron B, Aubreton J, Elchinger MF, Delluc G, Fauchais P (1986) Thermodynamic and transport properties of N2, 02, H2, Ar, He and their mixtures, internal report. Laboratoire Céramiques Nouvelles URA 320 CNRS, University of Limoges, France

    Google Scholar 

  • Pateyron B, Elchinger M-F, Delluc G, Fauchais P (1992) Thermodynamic and transport properties of Ar-H2 and Ar-He plasma gases used for spraying at atmospheric pressure. I: properties of the mixtures. Plasma Chem Plasma Process 12(4):421–448

    Article  Google Scholar 

  • Pateyron B, Elchinger MF, Delluc G, Fauchais P (1996) Sound velocity in different reacting thermal plasma systems. Plasma Chem Plasma Process 16(1):39–57

    Article  Google Scholar 

  • Pateyron B, Delluc G, Fauchais P (2005) Chemical and transport properties of carbon–oxygen–hydrogen plasmas in isochoric conditions. Plasma Chem Plasma Process 25(5):485–502

    Article  Google Scholar 

  • Pousse J, Chervy B, Bilodeau J-F, Gleizes A (1996) Thermodynamic and transport properties of argon/carbon and helium/carbon mixtures in fullerene synthesis. Plasma Chem Plasma Process 16(4):605–634

    Article  Google Scholar 

  • Sansonetti JE, Martin WC (2009) updated (2013) Handbook of basic atomic spectroscopic data, NIST

    Google Scholar 

  • Storey SH, Van Zeggeren F (1970) The computation of chemical equilibria. University Press, Cambridge

    Google Scholar 

  • Veits IV, Gurvich LV, Rtishcheva NP (1958) Zhr Zig Khim 32:2532

    Google Scholar 

  • Wei Zong Wang, Murphy AB, Yan JD, Ming Zhe Rong, Spencer JW, Fang MTC (2012a) Thermophysical properties of high-temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. Part 1: equilibrium composition and thermodynamic properties. Plasma Chem Plasma Process 32:75–96

    Article  Google Scholar 

  • Wei Zong Wang, Yi Wu, Ming Zhe Rong, Ehn L, Cernusak I (2012b) Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6 and C3F8 plasma. J Phys D Appl Phys 45:285201 (16 pp)

    Article  Google Scholar 

  • Westhoff R, Trapaga G, Szekely J (1992) Plasma-particle interactions in plasma spraying systems. J Metall Trans B 23(6):683–693

    Article  Google Scholar 

  • White WB, Dantzig GB, Johnson SM (1958) Chemical equilibrium in complex mixtures. J Chem Phys 28:751. doi:10.1063/1.1744264

    Article  Google Scholar 

  • Zeleznick FJ, Gordon S (1961) Simultaneous least squares approximation of a function and its first integrals with applications to thermodynamic data. NASA-TN, Washington, DC, p. 767

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Nomenclature and Greek Symbols

aγ

Frozen velocity

B(T)

Second virial coefficient

Bij(T)

Second virial coefficient related to the interaction between particles i and j

cp

Specific heat at constant pressure (kJ/kg.K)

c rP

Reactional specific heat at constant pressure (kJ/kg.K)

c fP

Frozen specifie heat at constant pressure (kJ/kg.K)

dij

Distance at which interaction between particles i and j has to be taken into account (m)

i

Rate of production of species i

De

Energy difference between the equilibrium position of the nuclei and the free atoms for a diatomic molecule (eV or cm−1)

e

Symbol of electron

en

Base of natural logarithm (en = 2.7182818)

Ei,s

Energy of the chemical species i in the excited state, s (eV or cm−1)

E 00,i

Energy of the chemical species i in its ground state related to an absolute reference state (eV or cm−1)

Ee

Electronic energy of a given particle (eV or cm−1)

Ei

Energy of the i state or of the electronic (e), or vibrational (v) or rotational (r) state

Bv(e)

Vibrational energy of a given particle in the electronic state e (eV or cm−1)

Er(e,v)

Rotational energy of a given particle in the electronic state e and the vibrational state v (eV or cm−1)

E DX

Dissociation energy of the diatomic molecule X2 (eV)

\( {\mathrm{E}}_{{\mathrm{X}}^{+}}^{\mathrm{I}} \)

Ionization energy of the atom X (eV)

F

Helmholtz free energy (J)

F0

Reference energy (J)

gi,s

Statistical weight of the chemical species i in the excited state s

gv

Vibrational statistical weight

gr

Rotational statistical weight

ge

Electronic statistical weight

G

Gibbs free enthalpy (J)

h

Planck’s constant (h = 6.626 × 10−34 J.s)

hg

Specific enthalpy of the gas (kJ/kg)

Hi

Molar enthalpy of the chemical species i (kJ/mole)

H DX

Dissociation enthalpy of the molecule X2 (J)

H IX

Ionization enthalpy of the molecule X(J)

J

Angular momentum of the spectral level under consideration

i

Index of the chemical species

k

Boltzmann’s constant (1.38 × I0-23 J/K)

Kc(X)

Equilibrium constant to produce the species X

Kp(X+)

Partial pressure equilibrium constant for ionization of X

Kp(X)

Partial pressure equilibrium constant for dissociation of X2

ij

Mean free path between collision of particles of type i and j (m)

mi

Mass of a particle of chemical species i (kg)

Mi

Atomic mass of chemical species i (kg)

n

Principal quantum number

n *

Maximum value of n for the calculation of the partition function

ni

Number density of chemical species i regardless of their excitation state (m−3)

ni,s

Number density of chemical species, i in the excited state, s (m−3)

n i

Mole number of chemical species i regardless of their excitation state

nT

Total number density (nT = p/kT) (m−3)

N

Total number of particles

Nav

Avogadro number (Nav = 6.022 141 29 × 1023)

Ni

Number of particles of chemical species, i whatever their excited state may be

Ni,s

Number of particles of chemical species, i in the excited stat, s

p

Pressure of the gas (Pa)

pi

Partial pressure of the chemical species, i (Pa)

Qi

Partition function of the chemical species, i

Q tri

Translational partition function of the chemical species, i

Q inti

Internal partition function of the chemical species, i

Qtot

Total partition function of the gas \( \left({\mathrm{Q}}_{\mathrm{tot}}={\displaystyle {\prod}_{\mathrm{i}}{\mathrm{Q}}_{\mathrm{i}}^{{\mathrm{N}}_{\mathrm{i}}}}/{\displaystyle {\prod}_{\mathrm{i}}{\mathrm{N}}_{\mathrm{i}}}\right) \)

s

Index of the excited state

s*

Maximum value of s for the calculation of the partition function

S

Entropy of the gas (kJ/kg.K)

T

Equilibrium temperature (K)

Th

Heavy species temperature (K)

Ti

Temperature of species i (K)

Te

Electron temperature (K)

V

Volume of the gas or of the plasma (m3)

Vij

Interaction potential between particles of type i and j

xi

Molar fraction of chemical species, i

Zi

Effective charge of the chemical species, i (Zi = 0 for atoms or molecules, Zi = 1 for the first ion, and so on…)

\( \upgamma \)

Specific heat ratio (cp / cv)

\( \updelta {\mathrm{E}}_{{\mathrm{X}}^{+}}^{\mathrm{I}} \)

Ionization potential lowering for X+ ion production (eV)

Δp

Lowering of the pressure (Pa)

ΔH

Enthalpy change of a thermodynamic state at T and p with respect to a reference state (J)

Γ

Isentropic coefficient

εo

Vacuum permittivity (εo = 8.854 187 817 × 10−12 F/m)

λD

Debye length (m)

Λo

de Broglie’s wavelength for the chemical species, i (m)

μi

Chemical potential for the chemical species, i (J)

μ oi

Part of the chemical potential of chemical species i that depends only on temperature (J)

Υ

Vibrational frequency (s−1)

ωe

Vibrational energy of the molecule at rest (cm−1)

θ

Ratio of electron to heavy particle temperature

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2015). Thermodynamic Properties of Plasmas. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics