Skip to main content

Plasma in the Thermal Spray Coating Industry

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

Thermal plasma spraying (TPS) offered distinct advantages compared to alternate cold spray or combustion-based thermal spray technologies. Early applications of wire arc spraying were in the area of corrosion protection of marine large infrastructure such as bridges. The high temperatures and high velocities attained by DC spraying combined with the excellent control of the properties and the purity of the spray medium, especially with radiofrequency induction plasma spraying (RF-IPS), have further propelled the thermal plasma technology to a wider range of applications. Its downside, however, mostly in its complexity and high investment and operation cost, has limited its initial industrial-scale applications to the coating of high-end, high added-value parts in the aerospace and medical fields. With the further development of the technology and improvements in spray process automation, processing cost has steadily dropped, allowing the TPS technology to penetrate new areas such as the textile, paper, and chemical process industries, and, more recently, the automobile industry.

In this chapter, following a brief review of the evolution of the thermal spray coating (TSC) industry on the international scale, a comparative analysis is made of the principal technologies, positioning the plasma-based technologies in comparison to alternate cold spray or combustion-based approaches. A survey of TSC applications by industrial sector is presented next, highlighting the areas in which TPS has been competitive and well-integrated on an industrial-scale production. The last part of this chapter is devoted to a technoeconomic analysis giving an order of magnitude of the investment cost associated with different thermal spray technologies and a comparative analysis of operating cost. Due to the dependence of the economic parameters on the regional infrastructure and local cost factors, emphasis is placed more on the methodology and the identification of the principal cost factors affecting the process economics rather than their absolute value that can change rapidly with time depending on the local economical context.

Emil Pfender: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACP:

Amorphous calcium phosphate

ALTM:

Air lock transition module

APS:

Air plasma spraying

APS:

Atmospheric plasma spraying

AS:

As-sprayed

BAG:

Bioactive glass

BM:

Base material

BOF:

Basic oxygen furnace

BRT:

Burner rig test

CAGR:

Compound annual growth rate

CAPS:

Controlled atmosphere plasma spraying

CFRP:

Carbon fiber-reinforced plastics rolls

CMAS:

Acronym for CaO, MgO, Al2O3, SiO2

CNT:

Carbon nanotubes

CS:

Cold spray

C-SS-CS:

Composite of stainless steel and carbon steel

CTE:

Coefficient of thermal expansion

CVD:

Chemical vapor deposition

CW:

Corrosion wear

dBA:

Decibel

DC:

direct current

D-gun:

Detonation gun

DRC:

Diamond-reinforced composite

DWTS:

Direct write thermal spray

EAF:

Electric arc furnace

EBC:

Environmental barrier coating

EB-PVD:

Electron beam-physical vapor deposition

E–C:

Erosion–corrosion

EHC:

Electrolytic hard chrome

EIS:

Electrochemical impedance spectroscopy

EMI:

Electromagnetic interference

EW:

Erosive wear

FAC:

Fe-based alloy coatings

FBC:

Fluidized-bed combustor

fcc:

Face center cubic

FDA:

Food and Drug Administration

FG:

Functionally graded

FGC:

Functionally graded coating

FW:

Fatigue wear

GDC:

Acronym for, Ce0.8Gd0.2O1.9

GS:

Gas shroud

HA:

Hydroxyapatite Ca10 (PO4)6 (OH)2

HAT:

HA top coating

HB:

Hardness Brinell

HC:

Hard chrome

HCC:

Hard chromium coating

HEPS:

High-energy plasma spray

HIP:

Hot isostatically pressed

HPAL:

High-pressure acid leach

HPPS:

High-power plasma spray

HTBC:

HA/TiO2 (50 vol.% each) bond coat

HTH:

(HA)/HA + TiO2 bond coat

HVAF:

High-velocity air flame

HVFS:

High-velocity flame spraying

HVLF:

High-velocity liquid fuel

HVOF:

High-velocity oxy-fuel flame

HVPS:

High-velocity plasma spray

HV-SFS:

High-velocity SFS

IACS:

International Annealed Copper Standard

ICP:

Inductively coupled plasma

IGT:

Industrial gas turbine

IPS:

Induction plasma spraying

LaMA:

La MgAl11O19

LBT:

Land-based turbine

LPPS:

Low-pressure plasma spraying

LPPS®-TF:

LPPS-thin film

LSCF:

La0.6 Sr0.4 Co0.2 Fe0.8 O32-δ

LTA:

LaTi2Al9O19

LTE:

Local thermodynamic equilibrium

MLCC:

Multilayer ceramic capacitors

MMC:

Metal matrix composite

MSWI:

Municipal solid waste incinerators

NTSRS:

Net thermal spraying residual stress

ODS:

Oxide-dispersion strengthened

OEM:

Original equipment manufacturer

PA-12:

Polyamide 12

PAH:

Progressive abradability hardness

PE-CVD:

Plasma-enhanced CVD

PEEK:

Polyether ether ketone

PEI:

Polyether imide

PGDS:

Pulsed gas dynamic spraying

PM:

Post melted

PMC:

Polymer matrix composite

PS:

Plasma spraying

PSD:

Particle size distribution

PS-PVD:

Plasma spray PVD

PTA:

Plasma-transferred arc

PTS:

Polymer thermal spray

PVD:

Physical vapor deposition

QC:

Quality control

RCF:

Rolling contact fatigue

RF:

Radiofrequency

RF-IPS:

RF induction plasma spraying

RH:

Relative air humidity

SBF:

Simulated body fluid

SER:

Specific energy requirement

SFS:

Suspension flame spraying

SFW:

Surface fatigue wear

SPS:

Spark plasma sintering

TBC:

Thermal barrier coating

ULPPS:

Ultra-low-pressure plasma spraying

VPS:

Vacuum plasma spraying

WAS:

Wire arc spraying

References

  • Ahmaniemi S, Tuominen J, Vuoristo P, Mäntylä T (2002a) Sealing procedures for thick thermal barrier coatings. J Thermal Spray Technol 11(3):320–332

    Article  Google Scholar 

  • Ahmaniemi S, Vippola M, Vuoristo P, Mäntylä T, Buchmann M, Gadow R (2002b) Residual stresses in aluminum phosphate sealed plasma sprayed oxide coatings and their effect on abrasive wear. Wear 252:614–623

    Article  Google Scholar 

  • American Welding Society (1985) Thermal spraying, practice, theory and application. American Welding Society, Miami

    Google Scholar 

  • Barbezat G (2003) Low-cost high-performance coatings produced by internal plasma spraying for the production of high efficiency engines. In: Moreau C, Marple B (eds) International thermal spray conference 2003. ASM International, Materials Park, pp 139–142

    Google Scholar 

  • Barbezat G (2005) Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry. Surf Coat Technol 200:1990–1993

    Article  Google Scholar 

  • Barbezat G (2006) Application of thermal spraying in the automobile industry. Surf Coat Technol 201:2028–2031

    Article  Google Scholar 

  • Beardsley MB (1997) Thick thermal barrier coatings for diesel engines. J Thermal Spray Technol 6(2):181–186

    Article  Google Scholar 

  • Berard G, Brun P, Lacombe J, Montavon G, Denoirjean A, Antou G (2008) Influence of a sealing treatment on the behavior of plasma-sprayed alumina coatings operating in extreme environments. J Thermal Spray Technol 17(3):410–419

    Article  Google Scholar 

  • Berndt CC, Brogan JA, Montavon G, Claudon A, Coddet C (1998) Mechanical properties of metal- and ceramic-polymer composites formed via thermal spray consolidation. J Thermal Spray Technol 7(3):337–339

    Article  Google Scholar 

  • Billah BM, Ahmad Khalid F, Nusair Khan A (2012) Behavior of calcia-stabilized zirconia coating at high temperature, deposited by air plasma spraying system. J Thermal Spray Technol 21(1):121–131

    Article  Google Scholar 

  • Bolelli G, Cannillo V, Lusvarghi L, Manfredini T (2006a) Wear behavior of thermally sprayed ceramic oxide coatings. Wear 261:1298–1315

    Article  Google Scholar 

  • Bolelli G, Cannillo V, Lusvarghi L, Ricco S (2006b) Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf Coat Technol 200:2995–3009

    Article  Google Scholar 

  • Bolelli G, Giovnardi R, Lusvarghi L, Manfredini T (2006c) Corrosion resistance of HVOF-sprayed coatings for hard chrome replacement. Corros Sci 48:3375–3397

    Article  Google Scholar 

  • Bolelli G, Lusvarghi L, Giovanardi R (2008) A comparison between the corrosion resistances of some HVOF-sprayed metal alloy coatings. Surf Coat Technol 202:4793–4809

    Article  Google Scholar 

  • Bose S, de Masi-Marcin J (1997) Thermal barrier coating experience in gas turbine engines at Pratt & Whitney. J Thermal Spray Technol 6(1):99–104

    Article  Google Scholar 

  • Boulos MI, Fauchais PL, Heberlein JVR (2021) Thermal spray fundamentals, from powder to part, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Brogan JA, Margolies S, Sampath H, Herman CC, Berndt SD (1995) Adhesion of combustion-sprayed polymer coatings. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, pp 521–526

    Google Scholar 

  • Buyukkaya E, Cerit M (2007) Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method. Surf Coat Technol 202:398–402

    Article  Google Scholar 

  • Celotto S, Pattison J, Ho JS, Johnson AN, O’Neill W (2007) The economics of the cold spray process. In: Champagne V (ed) Cold spray materials deposition process – fundamentals and applications. Woodhead, Sawston

    Google Scholar 

  • Chang C, Shi J, Huang J, Hu Z, Ding C (1998) Effects of power level on characteristics of vacuum plasma sprayed hydroxyapatite coating. J Thermal Spray Technol 7(4):484–488

    Article  Google Scholar 

  • Chen H, Zhao H, Qu J, Shao H (1999) Erosion-corrosion of thermal-sprayed nylon coatings. Wear 233–235:431–435

    Article  Google Scholar 

  • Chen Z, Mabon J, Wen J-G, Trice R (2009) Degradation of plasma-sprayed yttria-stabilized zirconia coatings via ingress of vanadium oxide. J Eur Ceram Soc 29:1647–1656

    Article  Google Scholar 

  • Choa JE, Hwang SY, Kim KY (2006) Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment. Surf Coat Technol 200:2653–2662

    Article  Google Scholar 

  • Chun-long Y, Yun-qi A, Ya-tan S (2009) Three years corrosion tests of nanocomposite epoxy sealer for metalized coatings on the East China Sea. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 1090–1093

    Google Scholar 

  • Cipitria A, Golosnoy IO, Clyne TW (2009) A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings. Acta Mater 57:980–992

    Article  Google Scholar 

  • Curry N, Markocsan N, Li X-H, Tricoire A, Dorfman M (2011) Next generation thermal barrier coatings for the gas turbine industry. J Thermal Spray Technol 20(1–2):108–115

    Article  Google Scholar 

  • Davis JR (ed) (2004) Handbook of thermal spray technology. Sections introduction to applications for thermal spray processing and selected applications. ASM International, Materials Park

    Google Scholar 

  • de Botton O (1988) Master of science in technology and policy. MIT, Cambridge, MA

    Google Scholar 

  • de Munter AJ, Bult A, de Jong JA (2002) On the economic and environmental aspects of TSA coatings. In: Lugscheider E (ed) International thermal spray conference 2002. DVS, Düsseldorf, e-Proc

    Google Scholar 

  • Dorfman M, Sharma A (2013a) Commentary challenges and strategies for growth of thermal spray markets: the six-pillar plan. J Thermal Spray Technol Comment 22(5):559–563

    Article  Google Scholar 

  • Dorfman MR, Sharma A (2013b) Challenges and strategies for growth of thermal spray, keynote lecture presented at ITSC-2012, Houston, TX, USA. J Thermal Spray Technology 22(5):559–563

    Article  Google Scholar 

  • Döring J-E, Hoebener F, Langer G (2008) Review of applications of thermal spraying in the printing industry in respect to OEMs. In: Lugscheider E (ed) Thermal spray conference: crossing the border. DVS, Düsseldorf, e-Proc

    Google Scholar 

  • Drnovšek N, Novak S, Dragin U, Čeh M, Gorenšek M, Gradišar M (2012) Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants. Int Orthop 36:1739–1745

    Article  Google Scholar 

  • Ducos M (1988) Plasma transferred arc reclamation. In: Laroche G, Orfeuil M (eds) Plasmas in industry. Dopee Diffusion, France, pp 251–262. (in French)

    Google Scholar 

  • Ducos M (2006) Evaluating the costs of thermal spraying, ALIDERTE course. ALIDERTE, Limoges. (in French)

    Google Scholar 

  • Ducos M, Durand JP (2001) Thermal coatings in Europe, a business perspective. In: Berndt CC, Khor KH, Lugscheider E (eds) Thermal spray 2001. ASM International, Materials Park, pp 1267–1276

    Google Scholar 

  • Espallargas N, Berget J, Guilemany JM, Benedetti AV, Suegama PH (2008) Cr3C2–NiCr and WC–Ni thermal spray coatings as alternatives to hard chromium for erosion–corrosion resistance. Surf Coat Technol 202:1405–1417

    Article  Google Scholar 

  • Evdokimenko YI, Kisel’ VM, Kadyrov VK, Korol’ AA, Get’man OI (2001) High-velocity flame spraying of powder aluminum protective coatings. Powder Metall Metal Ceram 40(3–4):121–126

    Google Scholar 

  • Fauchais P, Montavon G, Lima RS, Marple BR (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys 44:093001

    Article  Google Scholar 

  • Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, Hitchman N (2008) Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review. J Thermal Spray Technol 17(2):199–213

    Article  Google Scholar 

  • Fukumoto M (2008) The current status of thermal spraying in Asia. J Therm Spray Technol 17(1):5–13, Hwang SY Status of thermal spraying in Korea; Li C-J The current state of thermal spray activities in China

    Article  Google Scholar 

  • Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Thermal Spray Technol 15(2):223–232

    Article  Google Scholar 

  • Gibbons GJ, Hansell RG (2006) Down-selection and optimization of thermal-sprayed coatings for aluminum mould tool protection and upgrade. J Thermal Spray Technol 15(3):340–347

    Article  Google Scholar 

  • Gibbons GJ, Hansell RG (2008) Thermal-sprayed coatings on aluminium for mould tool protection and upgrade. J Mater Process Technol 204:184–191

    Article  Google Scholar 

  • Godoya C, Lima MM, Castro MMR, Avelar-Batista JC (2004) Structural changes in high-velocity oxy-fuel thermally sprayed WC–Co coatings for improved corrosion resistance. Surf Coat Technol 188–189:1–6

    Article  Google Scholar 

  • Golosnoy IO, Cipitria A, Clyne TW (2009) Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Thermal Spray Technol 18(5–6):809–821

    Article  Google Scholar 

  • Gross KA, Kovalevskis A (1996) Mold manufacture with plasma spraying. J Thermal Spray Technol 5(4):469–475

    Article  Google Scholar 

  • Gross KA, Walsh W, Swarts E (2004) Analysis of retrieved hydroxyapatite-coated hip prostheses. J Thermal Spray Technol 13(2):190–199

    Article  Google Scholar 

  • Gruner H (2001) Thermal spray coatings on titanium in textbook “Titanium in Medicine”. Springer, Berlin, Heidelberg New York., ISBN 3–540–66936-1, pp 375–416

    Google Scholar 

  • Gruner H (2008) EUR-Patent Nr 2(224):970

    Google Scholar 

  • Guilemany JM, Torrell M, Miguel JR (2007) Properties of HVOF coating of Ni based alloy for MSWI boilers protection. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, pp 1115–1119, e-Proc

    Google Scholar 

  • Hahn M, Fischer A (2010) Characterization of thermal spray coatings for cylinder running surfaces of diesel engines. J Thermal Spray Technol 19(5):866–872

    Article  Google Scholar 

  • Hamashima K (2007) Application of new boride cermet coating to forming of glass sheets. J Thermal Spray Technol 16(1):32–33

    Article  Google Scholar 

  • Han M-S, Woo Y-B, Ko S-C, Jeong Y-J, Jang S-K, Kim S-J (2009) Effects of thickness of Al thermal spray coating for STS 304. Trans Nonferrous Met Soc China 19:925–929

    Article  Google Scholar 

  • Hanneforth P (2006) The global thermal spray industry—100 years of success: so what’s next? iTTSe 1(1):14–16. ASM International, Materials Park

    Google Scholar 

  • Hejwowski T, Weronski A (2002) The effect of thermal barrier coatings on diesel engine performance. Vacuum 65:427–432

    Article  Google Scholar 

  • Henne RH, Schitter C (1995) Plasma spraying of high-performance thermoplastics. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, pp 527–532

    Google Scholar 

  • Henne R, Müller M, Proß E, Schiller G, Gitzhofer F, Boulos M (1999) Near-net-shape forming of metallic bipolar plates for planar solid oxide fuel cells by induction plasma spraying. J Thermal Spray Technol 8(1):110–116

    Article  Google Scholar 

  • Hernandez MT, Karlsson AM, Bartsch M (2009) On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings. Surf Coat Technol 203:3549–3558

    Article  Google Scholar 

  • Higuera HV, Belzunce Varela FJ, Carriles Menéndez A, Poveda Martinez S (2001a) A comparative study of high-temperature erosion wear of plasma-sprayed NiCrBSiFe and WC–NiCrBSiFe coatings under simulated coal-fired boiler conditions. Tribol Int 34:161–169

    Article  Google Scholar 

  • Higuera HV, Belzunce Varela J, Carriles Menéndez A, Poveda Martiınez S (2001b) High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear 247:214–222

    Article  Google Scholar 

  • Hospach A, Mauer G, Vaßen R, Stöver D (2012) Characteristics of ceramic coatings made by thin film low pressure plasma spraying (LPPS-TF). J Thermal Spray Technol 21(3–4):435–440

    Article  Google Scholar 

  • Huang XO, Wang RJ, Zhang TJ, Luo HJ, Lü YF (2007) Several application cases of thermal spraying technology on industrial components and its considerations. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, e-proc

    Google Scholar 

  • Isakaev E, Yablonsky A, Kogan A, Katarzhis V, Kutnov V, Ivanov P (1999) The repair of railway frogs using plasma sprayed coatings, heat and mass transfer under plasma conditions. Ann N Y Acad Sci 891:231–235

    Article  Google Scholar 

  • İşcan B, Aydın H (2012) Improving the usability of vegetable oils as a fuel in a low heat rejection diesel engine. Fuel Process Technol 98:59–64

    Article  Google Scholar 

  • Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, Kuroda S (2005) Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. J Thermal Spray Technol 14(3):384–390

    Article  Google Scholar 

  • Ivosevic M, Coguill SL, Galbraith SL (2009) Polymer thermal spraying: a novel coating process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, OH, pp 1078–1083

    Google Scholar 

  • Iyengar RK (2009) Thermal spray coating for steel processing. Technovations International, Littleton

    Google Scholar 

  • Jones RL (1997) Some aspects of the hot corrosion of thermal barrier coatings. J Thermal Spray Technol 6(1):77–84

    Article  Google Scholar 

  • Juhasz JA, Best SM (2012) Bioactive ceramics: processing, structures and properties. J Mater Sci 47:610–624

    Article  Google Scholar 

  • Karger M, Vaßen R, Stöver D (2011) Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: spraying process, microstructure and thermal cycling behaviour. Surf Coat Technol 206:16–23

    Article  Google Scholar 

  • Kashirin A, Klyuev O, Buzdygar T, Shkodkin A (2007) DYMET technology evolution and application. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, pp 141–145

    Google Scholar 

  • Kaushal G, Singh H, Prakash S (2011) High-temperature erosion-corrosion performance of high-velocity oxy-fuel sprayed Ni-20Cr coating in actual boiler environment. Metall Mater Trans A 42(7):1836–1846

    Article  Google Scholar 

  • Khan FF, Bae G, Kang K, Na H, Kim J, Jeong T, Lee C (2011) Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings. J Thermal Spray Technol 20(5):1022–1034

    Article  Google Scholar 

  • Khor KA, Cheang P, Wang Y (1997a) The thermal spray processing of HA powders and coatings. JOM 49:51–57

    Article  Google Scholar 

  • Khor KA, Yip CS, Cheang P (1997b) Ti-6AI-4V hydroxyapatite composite coatings prepared by thermal spray techniques. J Thermal Spray Technol 6(1):109–115

    Article  Google Scholar 

  • Kim H-J, Kweon Y-G (1996) The application of thermal sprayed coatings for pig iron ingot molds. J Thermal Spray Technol 5(4):463–468

    Article  Google Scholar 

  • Landor I, Vavrik P, Sosna A, Jahoda D, Hahn H, Daniel M (2007) Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch Orthop Trauma Surg 127(2):81–89

    Article  Google Scholar 

  • Lathabai S, Ottmuller M, Fernandez I (1998) Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings. Wear 221:93–108

    Article  Google Scholar 

  • Lebedev AS, Kostennikov SV (2008) Trends in increasing gas-turbine units’ efficiency. Therm Eng 55(6):461–468

    Article  Google Scholar 

  • Lee C (2009) Market direction and application opportunities for T/S growth in Korea. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, OH, pp 505–510, e-Proc

    Google Scholar 

  • Leivo E, Wilenius T, Kinos T, Vuoristo P, Mäntylä T (2004) Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Prog Org Coat 49:69–73

    Article  Google Scholar 

  • Li L, Hitchman N, Knapp J (2010a) Failure of thermal barrier coatings subjected to CMAS attack. J Thermal Spray Technol 19(1–2):148–155

    Article  Google Scholar 

  • Li Y, Li C-J, Yang G-J, Xing L-K (2010b) Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying. Surf Coat Technol 205:2225–2233

    Article  Google Scholar 

  • Lima RS, Marple BR (2005) Superior performance of high-velocity oxyfuel-sprayed nanostructured TiO2 in comparison to air plasma-sprayed conventional Al2O3-13TiO2. J Thermal Spray Technol 14(3):397–404

    Article  Google Scholar 

  • Lima RS, Li H, Khor KA, Marple BR (2006) Biocompatible nanostructured high-velocity oxyfuel sprayed titania coating: deposition, characterization, and mechanical properties. J Thermal Spray Technol 15(4):623–627

    Article  Google Scholar 

  • Lima RS, Dimitrievska S, Bureau MN, Marple BR, Petit A, Mwale F, Antoniou J (2010) HVOF-sprayed Nano TiO2-HA coatings exhibiting enhanced biocompatibility. J Thermal Spray Technol 19(1–2):336–343

    Article  Google Scholar 

  • Lins VFC, Branco JRT, Diniz FRC, Brogan JC, Berndt CC (2007) Erosion behavior of thermal sprayed, recycled polymer and ethylene–methacrylic acid composite coatings. Wear 262:274–281

    Article  Google Scholar 

  • Longo FN (1992) Industrial guide–markets, materials, and applications for thermal-sprayed coatings. J Thermal Spray Technol 1(2):143–145

    Article  Google Scholar 

  • MAGETEX (n.d.) Thermal coatings in Europe: a business prospective. MAGETEX, les bureaux de Sèvres, 2 rue Troyon, 92316 Sèvres

    Google Scholar 

  • Markocsan N, Nylén P, Wigren J, Li X-H, Tricoire A (2009) Effect of thermal aging on microstructure and functional properties of zirconia-base thermal barrier coatings. J Thermal Spray Technol 18(2):201–208

    Article  Google Scholar 

  • Marx S, Paul A, Köhler A, Hüttl G (2006) Cold spraying: innovative layers for new applications. J Thermal Spray Technol 15(2):177–183

    Article  Google Scholar 

  • Meng H (2010) The performance of different WC-based cermet coatings in oil and gas applications–a comparison. ITSC-2010 Thermal spray: global solutions, future applications. DVS, Düsseldorf, e-Proc

    Google Scholar 

  • Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Thermal Spray Technol 6(1):35–42

    Article  Google Scholar 

  • Mizuno H, Kitamura J (2007) MoB/CoCr cermet coatings by HVOF spraying against erosion by molten Al-Zn alloy. J Thermal Spray Technol 16(3):404–413

    Article  Google Scholar 

  • Mohan P, Patterson T, Yao B, Sohn Y (2010) Degradation of thermal barrier coatings by fuel impurities and CMAS: thermochemical interactions and mitigation approaches. J Thermal Spray Technol 19(1–2):156–167

    Article  Google Scholar 

  • Molz R, Hawley D (2007) A method of evaluating thermal spray process performance. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, e-Proc

    Google Scholar 

  • Moskowitz LN (1993) Application of HVOF thermal spraying to solve corrosion problems in the petroleum industry—an industrial note. J Thermal Spray Technol 2(1):21–29

    Article  Google Scholar 

  • Muehlberger E, Meyer P (2009) LPPS – thin film processes: overview of origin and future possibilities. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 737–740

    Google Scholar 

  • Murakami K, Shimada M (2009) Development of thermal spray coatings with corrosion protection and antifouling properties. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 1041–1044

    Google Scholar 

  • Mutasim Z, Brentnall W (1997) Thermal barrier coatings for industrial gas turbine applications: an industrial note. J Thermal Spray Technol 6(1):105–108

    Article  Google Scholar 

  • Nagai M, Shigemura S, Yoshiya A (2009) Thermal-sprayed CFRP roll with resistant to thermal shock and wear - for papermaking machine. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 607–611

    Google Scholar 

  • Nakahira A (2009) Current status and future prospect of thermal spray coating applications and coating service market of job shops in Japan. Proceedings (ITSC-2009) conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Eds., ASM Inter. p 499-504 e-Proc

    Google Scholar 

  • Nelson WA, Orenstein RM (1997) Land based gas turbines TBC experience in land-based gas turbines. J Thermal Spray Technol 6(2):176–180

    Article  Google Scholar 

  • Nelson GM, Nychka JA, McDonald AG (2011) Flame spray deposition of titanium alloy-bioactive glass composite coatings. J Thermal Spray Technol 20(6):1339–1351

    Article  Google Scholar 

  • Ong JL, Appleford M, Oh S, Yang Y, Chen W-H et al (2006) The characterization and development of bioactive hydroxyapatite coatings. JOM 58(7):67–69

    Article  Google Scholar 

  • Pacheo da Silva C et al (1991) 2nd Plasma Technik symposium 1. Plasma Technik, Wohlen, pp 363–373

    Google Scholar 

  • Parks WP, Hoffman EE, Lee WY, Wright IG (1997) Thermal barrier coatings issues in advanced land-based gas turbines. J Thermal Spray Technol 6(2):187–192

    Article  Google Scholar 

  • Parlak A, Yasar H, Eldogan O (2005) The effect of thermal barrier coating on a turbo-charged diesel engine performance and exergy potential of the exhaust gas. Energy Convers Manag 46:489–499

    Article  Google Scholar 

  • Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, New York

    Google Scholar 

  • Pawlowski L (1996) Technology of thermally sprayed anilox rolls: state of art, problems, and perspectives. J Thermal Spray Technol 5(3):317–334

    Article  Google Scholar 

  • Petrovicova E, Schadler LS (2002) Thermal spraying of polymers. Int Mater Rev 47(4):169–190

    Article  Google Scholar 

  • Pint BA, Haynes JA, Zhang Y (2010) Effect of superalloy substrate and bond coating on TBC lifetime. Surf Coat Technol 205:1236–1240

    Article  Google Scholar 

  • Pomeroy MJ (2005) Coatings for gas turbine materials and long-term stability issues. Mater Design 26:223–231

    Article  Google Scholar 

  • Prevéy PS (2000) X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings. J Thermal Spray Technol 9(3):369–376

    Article  Google Scholar 

  • Rajendran R (2012) Gas turbine coatings – an overview. Eng Fail Anal 26:355–369

    Article  Google Scholar 

  • Richer P, Yandouzi M, Beauvais L, Jodoin B (2010) Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf Coat Technol 204:3962–3974

    Article  Google Scholar 

  • Sacriste D, Goubot N, Dhers J, Ducos M, Vardelle A (2001) An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high-power plasma spraying MCrAlY coatings. J Thermal Spray Technol 10(2):352–358

    Article  Google Scholar 

  • Sampath S (2010) Thermal spray applications in electronics and sensors: past, present, and future. J Thermal Spray Technol 19(5):921–949

    Article  Google Scholar 

  • Sanz A (2001) Tribological behavior of coatings for continuous casting of steel. Surf Coat Technol 146–147:55–64

    Article  Google Scholar 

  • Schilke, PW (2004) ‘Advanced gas turbine materials and coatings’, GER-3569G, General Electric Company, August 2004

    Google Scholar 

  • Schmidt DP, Shaw BA, Sikora E, Shaw WW, Laliberte LH (2006) Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment. Prog Org Coat 57:352–364

    Article  Google Scholar 

  • Schulz U, Bernardi O, Ebach-Stahl A, Vaßen R, Sebold D (2008a) Improvement of EB-PVD thermal barrier coatings by treatments of a vacuum plasma-sprayed bond coat. Surf Coat Technol 203:160–170

    Article  Google Scholar 

  • Schulz U, Fritscher K, Ebach-Stahl A (2008b) Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats. Surf Coat Technol 203:449–455

    Article  Google Scholar 

  • Seonga BG, Hwanga SY, Kima MC, Kimb KY (2001) Reaction of WC-co coating with molten zinc in a zinc pot of a continuous galvanizing line. Surf Coat Technol 138:101–110

    Article  Google Scholar 

  • Sidhu BS, Prakash S (2006) Erosion-corrosion of plasma as sprayed and laser remelted Stellite-6 coatings in a coal fired boiler. Wear 260:1035–1044

    Article  Google Scholar 

  • Sidhu TS, Prakash S, Agrawal RD (2005) Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41(6):805–823

    Article  Google Scholar 

  • Sidhu HS, Sidhu BS, Prakash S (2006a) Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes. J Mater Eng Perform 5(6):699–704

    Article  Google Scholar 

  • Sidhu TS, Prakash S, Agrawal RD (2006b) Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Thermal Spray Technol 15(3):387–399

    Article  Google Scholar 

  • Singh H, Ang A, Matthews S, DeVilliers-Lovelock H, Singh Sidu B (2019) Thermal spray for extreme environments, editorial. J Thermal Spray Technol 28:1339–1345

    Article  Google Scholar 

  • Smyth RT, Anderson JC (1975) Production of resistors by arc plasma spraying. Electrocompon Sci Technol 2:135–145

    Article  Google Scholar 

  • Song JX, Han YF, Li SS, Xiao CB (2005) Repair of NiCrAlYSi overlay coating on Ni3Al base alloy IC6. Intermetallics 13:351–355

    Article  Google Scholar 

  • Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6(2):135–176

    Article  Google Scholar 

  • Souza VAD, Neville A (2007) Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion–corrosion environments. Wear 263:339–346

    Article  Google Scholar 

  • Sundararajan G, Mahajan YR, Joshi SV (2009a) Thermal spraying in India: status and prospects. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 511–516

    Google Scholar 

  • Sundararajan, G, Y.R. Mahajan, S.V. Joshi (2009b) Thermal spraying in India: status and prospects. Proceedings (ITSC-2009), Marple BR, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Eds., ASM Int., p 511–516

    Google Scholar 

  • Sweet GK (1993) Applying thermoplastic/thermoset powder with a modified plasma system. In: Berndt CC, Bernicki F (eds) Proceedings NTSC-1993. ASM International, Materials Park, pp 381–384

    Google Scholar 

  • Tamura M, Takahashi M, Ishii J, Suzuki K, Sato M, Shimomur K (1999) Multilayered thermal barrier coating for land-based gas turbines. J Thermal Spray Technol 8(1):68–72

    Article  Google Scholar 

  • Tani K, Nakahira H (1992) Status of thermal spray technology in Japan. J Thermal Spray Technol 1(4):333–339

    Article  Google Scholar 

  • Tao K, Zhou X-L, Cui H, Zhang J-S (2009) Oxidation and hot corrosion behaviors of HVAF-sprayed conventional and nanostructured NiCrC coatings. Trans Nonferrous Met Soc China 19:1151–1160

    Article  Google Scholar 

  • Tapphorn R, Henness J, Gabel H (2009) Kinetic metallization-a repair process for damaged IVD-Al coatings, Mg, and Al alloy components. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, OH, pp 261–266

    Google Scholar 

  • Thintri Inc (2013) Thermal spray wear coatings find growing markets and greater competition. Spraytime 20(1):1–36

    Google Scholar 

  • Toscano J, Vaβen R, Gil A, Subanovic M, Naumenko D, Singheiser L, Quadakkers WJ (2006) Parameters affecting TGO growth and adherence on MCrAlY-bond coats for TBC’s. Surf Coat Technol 201:3906–3910

    Article  Google Scholar 

  • Tucker RC (ed) (2013) ASM handbook, vol 5A: thermal spray technology. ASM International, Materials Park

    Google Scholar 

  • Uusitalo MA, Vuoristo PMJ, Mäntylä TA (2002) Elevated temperature erosion–corrosion coatings in chlorine containing environments of thermal sprayed. Wear 252:586–594

    Article  Google Scholar 

  • Valarezo A (2012) Latin America: an emerging and growing market for thermal spray. Proceedings (ITSC-2012), conference Houston, TX, 2012

    Google Scholar 

  • Vaßen R, Giesen S, Stöver D (2009a) Lifetime of plasma-sprayed thermal barrier coatings: comparison of numerical and experimental results. J Thermal Spray Technol 18(5–6):835–845

    Article  Google Scholar 

  • Vaßen R, Stuke A, Stöver D (2009b) Recent developments in the field of thermal barrier coatings. J Thermal Spray Technol 18(2):181–186

    Article  Google Scholar 

  • Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205:938–942

    Article  Google Scholar 

  • Vetter J, Barbezat G, Crummenauer J, Avissar J (2005) Surface treatment selections for automotive applications. Surf Coat Technol 200:1962–1968

    Article  Google Scholar 

  • Vuoristo P, Nylén P (2009) Industrial and research activities in thermal spray technology in the Nordic region of Europe. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 517–522, e-Proc

    Google Scholar 

  • Wang B (1996) Erosion-corrosion of thermal sprayed coatings in FBC boilers. Wear 199:24–32

    Article  Google Scholar 

  • Wang B-Q, Verstak A (1999) Elevated temperature erosion of HVOF Cr3C2/TiC– NiCrMo cermet coating. Wear 233–235:342–351

    Article  Google Scholar 

  • Weiss LE, Thuel DG, Schultz L, Prinz FB (1994) Arc-sprayed steel-faced tooling. J Thermal Spray Technol 3(3):275–281

    Article  Google Scholar 

  • Wright IG, Gibbons TB (2007) Recent developments in gas turbine materials and technology and their implications for syngas firing. Int J Hydrog Energy 32:3610–3621

    Article  Google Scholar 

  • Yamakawa O, Nihonmatsu H, Morisasa M, Hotta H (2009) Plasma sprayed ceramic tray members for firing ceramic capacitor. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 624–627

    Google Scholar 

  • Yang Q, Senda T, Hirose A (2006a) Sliding wear behavior of WC–12% Co coatings at elevated temperatures. Surf Coat Technol 200:4208–4212

    Article  Google Scholar 

  • Yang Y, Oh N, Liu Y, Chen W, Oh S, Appleford M, Kim S, Kim K, Park S, Bumgardner J, Haggard W, Ong J (2006b) Enhancing osseo-integration using surface-modified titanium implants. JOM 58:71–76

    Article  Google Scholar 

  • Yilmaz R, Kurt AO, Demir A, Tatli Z (2007) Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating. J Eur Ceram Soc 27:1319–1323

    Article  Google Scholar 

  • Yoshiya A, Shigemura S, Nagai M, Yamanaka M (2009) Advances of thermal sprayed carbon roller in paper industry. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings ITSC-2009. ASM International, Materials Park, pp 601–606

    Google Scholar 

  • Zeng Z, Sakoda N, Tajiri T, Kuroda S (2008) Structure and corrosion behavior of 316L stainless steel coatings formed by HVAF spraying with and without sealing. Surf Coat Technol 203:284–290

    Article  Google Scholar 

  • Zhang T, Gawne DT, Bao Y (1997) The influence of process parameters on the degradation of thermally sprayed polymer coatings. Surf Coat Technol 96:337–344

    Article  Google Scholar 

  • Zhang G, Liao H, Yu H, Ji V, Huang W, Mhaisalkar SG, Coddet C (2006) Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surf Coat Technol 200:6690–6695

    Article  Google Scholar 

  • Zhang G, Liao H, Cherigui M, Paulo Davim J, Coddet C (2007) Effect of crystalline structure on the hardness and interfacial adherence of flame sprayed (poly-ether–ether–ketone) coatings. Eur Polym J 43:1077–1082

    Article  Google Scholar 

  • Zhang C, Zhang G, Ji V, Liao H, Costil S, Coddet C (2009) Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Prog Org Coat 66:248–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P.L., Henne, R.H., Pfender, E. (2022). Plasma in the Thermal Spray Coating Industry. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12183-3

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics