Skip to main content

NIRF Imaging with Indocyanine Green (ICG) in a Veterinary Minimally Invasive Surgery

  • Conference paper
  • First Online:
Advances in Production (ISPEM 2023)

Abstract

The use of fluorescence technology with indocyanine green has been shown to provide real-time visualization of lymphatic flow, identification of sentinel lymph nodes, assessment of intestinal perfusion, and detection of the extrahepatic bile duct. These capabilities could potentially reduce the mortality and complication rate following surgery. However, the lack of standardization in dosage and time of ICG administration requires further clinical and experimental studies. This applies in particular to veterinary medicine, which results from the lack of general access to the latest technology. Near-infrared indocyanine green (ICG) fluorescence is a great hope for the further development of minimally invasive surgery in humans and animals. The article presents the possibilities of using near-infrared indocyanine green in thoracic and general surgery and compares it with the current development of selected surgical procedures in veterinary medicine. The rapid progress of veterinary surgery, including minimally invasive surgery, makes the wide use of near-infrared indocyanine green a matter of the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki, T., et al.: Image guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J. Surg. 32, 1763–1767 (2008). https://doi.org/10.1007/s00268-008-9620-y

    Article  Google Scholar 

  2. Ashitate, Y., Tanaka, E., Stockdale, A., Choi, H.S., Frangioni, J.V.: Near-infrared fluorescence imaging of thoracic duct anatomy and function in open surgery and video-assisted thoracic surgery. J. Thorac. Cardiovasc. Surg. 142, 31–38 (2011). https://doi.org/10.1016/j.jtcvs.2011.03.004. Epub 2011 Apr 7

    Article  Google Scholar 

  3. Baiocchi, G.L., Diana, M., Boni, L.: Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions. World J. Gastroenterol. 24(27), 921–930 (2018). https://doi.org/10.3748/wjg.v24.i27.2921

    Article  Google Scholar 

  4. Bilbrey, S.A., Birchard, S.J.: Pulmonary lymphatics in dogs with experimentally induced chylothorax. JAAHA 30, 86–91 (1994)

    Google Scholar 

  5. Birchard, S.J., Smeak, D.D., McLoughlin, M.A.: Treatment of idiopathic chylothorax in dogs and cats. J. Am. Vet. Med. Assoc. 212, 653–657 (1998)

    Google Scholar 

  6. Boni, L., David, G., Dionigi, G., Rausei, S., Cassinotti, E., Fingerhut, A.: Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg. Endosc. 30, 2736–2742 (2016). https://doi.org/10.1007/s00464-015-4540-z

    Article  Google Scholar 

  7. Buchs, N.C.: Intraoperative fluorescent cholangiography using indocyanin green during robotic single site cholecystectomy. Int. J. Med. Robot. 8, 436–440 (2012). https://doi.org/10.1002/rcs.1437

  8. Buddingh, K.T., Nieuwenhuijs, V.B.: The critical view of safety and routine intraoperative cholangiography complement each other as safety measures during cholecystectomy. J. Gastrointest. Surg. 15, 1069–1070 (2011). https://doi.org/10.1007/s11605-011-1413-1

    Article  Google Scholar 

  9. Casaccia, M., Mora, M., Santori, G., Ghiggi, C., Angelucci, E.: Laparoscopic lymph node biopsy for lymphoma with a novel use of indocyanine green fluorescence in a 66- year-old male patient. Int. J. Surg. Case. Rep. 90, 106692 (2022). https://doi.org/10.1016/j.ijscr.2021.106692

    Article  Google Scholar 

  10. Chiu, C.-H., et al.: Clinical use of near-infrared fluorescence imaging with indocyanine green in thoracic surgery: a literature review. J. Thorac. Dis. 8(Suppl 9), 744–748 (2016). https://doi.org/10.21037/jtd.2016.09.70

    Article  Google Scholar 

  11. Chiu, H.C.: Successful usage of intra metatarsal pad injection of ICG/near-infrared fluorescent lymphography for VATS thoracic duct ligation in two Shiba Inu dogs with recurrent chylothorax. Vet. Surg. 48, O151 (2019). https://doi.org/10.1111/vsu.13213

    Article  Google Scholar 

  12. Culp, W.T.N., Mayhew, P.D., Brown, D.C.: The effect of laparoscopic versus open ovariectomy on postsurgical activity in small dogs. Vet. Surg. 38, 811–817 (2009). https://doi.org/10.1111/j.1532-950X.2009.00572.x

  13. Degett, T.H., Andersen, H.S., Gögenur, I.: Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch. Surg. 401, 767–775 (2016). https://doi.org/10.1007/s00423-016-1400-9

    Article  Google Scholar 

  14. Enwiller, T.M., Radlinsky, M.G., Mason, D.E., Roush, J.K.: Popliteal and mesenteric lymph node injection with methylene blue for coloration of the thoracic duct in dogs. Vet. Surg. 32, 359–364 (2003). https://doi.org/10.1053/jvet.2003.50044

    Article  Google Scholar 

  15. Favril, S., et al.: Fluorescence-guided surgery using indocyanine green in dogs with superficial solid tumours. Vet. Rec. 187(7), 273 (2020). https://doi.org/10.1136/vr.105554

  16. Flum, D.R., Dellinger, E.P., Cheadle, A., Chan, L., Koepsell, T.: Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA 289, 1639–1644 (2003). https://doi.org/10.1001/jama.289.13.1639

    Article  Google Scholar 

  17. Fossum, T.W., et al.: Thoracic duct ligation and pericardectomy for treatment of idiopathic chylothorax. J. Vet. Intern. Med. 18, 307–310 (2004). 10.1892/0891-6640(2004)18<307:tdlapf>2.0.co;2

    Google Scholar 

  18. Frangioni, J.V.: New technologies for human cancer imaging. J. Clin. Oncol. 26, 4012–4021 (2008). https://doi.org/10.1200/JCO.2007.14.3065

    Article  Google Scholar 

  19. Fransson, B.A., Mayhew, P.D.: Small Animal Laparoscopy and Thoracoscopy, pp. 236–242. Wiley-Blackwell, Iowa (2015)

    Google Scholar 

  20. Gioux, S., Choi, H.S., Frangioni, J.V.: Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol. Imag. 9, 237–255 (2010)

    Article  Google Scholar 

  21. Hackethal, A., Hirschburger, M., Eicker, S.O., Mücke, T., Lindner, C., Buchweitz, O.: Role of indocyanine green in fluorescence imaging with near-infrared light to identify sentinel lymph nodes, lymphatic vessels and pathways prior to surgery – a critical evaluation of options. Geburtshilfe Frauenheilkd. 78(1), 54–62 (2018). https://doi.org/10.1055/s-0043-123937

    Article  Google Scholar 

  22. Hayashi, K., Sicard, G., Gellasch, K., Frank, J.D., Hardie, R.J., McAnulty, J.F.: Cisterna chyli ablation with thoracic duct ligation for chylothorax: results in eight dogs. Vet. Surg. 34, 519–523 (2005). https://doi.org/10.1111/j.1532-950X.2005.00078.x

    Article  Google Scholar 

  23. Holzinger, F., Krahenbuhl, L., Schteingart, C.D., Ton-Nu, H.T., Hofmann, A.F.: Use of a fluorescent bile acid to enhance visualization of the biliary tract and bile leaks during laparoscopic surgery in rabbits. Surg. Endosc. 15, 209–212 (2001). https://doi.org/10.1007/s004640000265

    Article  Google Scholar 

  24. Iida, G., et al.: Intraoperative identification of canine hepatocellular carcinoma with indocyanine green fluorescent imaging. J. Small Anim. Pract. 54(11), 594–600 (2013). https://doi.org/10.1111/jsap.12148

    Article  Google Scholar 

  25. Ishizawa, T., Bandai, Y., Kokudo, N.: Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience. Arch. Surg. 144, 381–382 (2009). https://doi.org/10.1001/archsurg.2009.9

    Article  Google Scholar 

  26. Ito, N., Fukuta, M., Tokushima, T., Nakai, K., Ohgi, S.: Sentinel node navigation surgery using indocyanine green in patients with lung cancer. Surg. Today 34, 581–585 (2004). https://doi.org/10.1007/s00595-004-2780-y

    Article  Google Scholar 

  27. Kaburagi, T., et al.: Intraoperative fluorescence lymphography using indocyanine green in a patient with chylothorax after esophagectomy—report of a case. Surg Today. 43, 306–310 (2013). https://doi.org/10.1007/s00595-012-0391-6

    Article  Google Scholar 

  28. Kamijo, K., Kanai, E., Oishi, M., Ichihara, N., Asari, M., Yamada, K.: Perirectal injection of imaging materials for computed tomographic lymphography and near infrared fluorescent thoracoscopy in cats. Vet. Med. 64, 342–347 (2019). https://doi.org/10.17221/32/2019-VETMED

    Article  Google Scholar 

  29. Kawaguchi, Y., et al.: Portal uptake function in veno-occlusive regions evaluated by real-time fluorescent imaging using indocyanine green. J. Hepatol. 58, 247–253 (2013). https://doi.org/10.1016/j.jhep.2012.09.028

    Article  Google Scholar 

  30. Khan, O.A., Balaji, S., Branagan, G., Bennett, D.H., Davies, N.: Randomized clinical trial of routine ontable cholangiography during laparoscopic cholecystectomy. Br. J. Surg. 98, 362–367 (2011). https://doi.org/10.1002/bjs.7423

    Article  Google Scholar 

  31. Kim, H.K., et al.: Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging. Eur. J. Cardiothorac. Surg. 49, 1497–1502 (2016). https://doi.org/10.1093/ejcts/ezv367

    Article  Google Scholar 

  32. Kitai, T., Inomoto, T., Miwa, M., Shikayama, T.: Fluorescence navigation withindocyanine green for detecting sentinel lymph nodes in breastcancer. Breast Cancer 12(3), 211–215 (2005). https://doi.org/10.2325/jbcs.12.211

    Article  Google Scholar 

  33. Korpita, M.F., et al.: Thoracoscopic detection of thoracic ducts after ultrasoundguided intrahepatic injection of indocyanine green detected by near-infrared fluorescence and methylene blue in dogs. Vet. Surg. 51(Suppl 1), O118–O127 (2022). https://doi.org/10.1111/vsu.13682. Epub 2021 Jul 23

    Article  Google Scholar 

  34. LaFond, E., Weirich, W.E., Salisbury, S.K.: Omentalization of the thorax for treatment of idiopathic chylothorax with constrictive pleuritis in a cat. J. Am. Anim. Hosp. Assoc. 38, 74–78 (2002). https://doi.org/10.5326/0380074

    Article  Google Scholar 

  35. Larose, P.C., Brisson, B., Sanchez-Lazaro, A., Monteith, G., Singh, A., Zhang, M.: Near-infrared fluorescence cholangiography in dogs: a pilot study. In: ACVS (2021). https://www.eventscribe.net/2021/ACVS/fsPopup.asp?Mode=presInfo&PresentationID=915337

  36. Lim, C., et al.: Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. J. Visc. Surg. 151(2), 117–124 (2014). https://doi.org/10.1016/j.jviscsurg.2013.11.003

    Article  Google Scholar 

  37. MacDonald, N.J., Noble, P.J.M., Burrow, R.D.: Efficacy of en bloc ligation of the thoracic duct: descriptive study in 14 dogs. Vet. Surg. 37(7), 696–701 (2008). https://doi.org/10.1111/j.1532-950X.2008.00437.x

    Article  Google Scholar 

  38. Matsui, A., et al.: Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery 148, 87–95 (2010). https://doi.org/10.1016/j.surg.2009.12.004

    Article  Google Scholar 

  39. Mayhew, P.D., Mehler, S.J., Radhakrishnan, A.: Laparoscopic cholecystectomy for management of uncomplicated gall bladder mucocele in six dogs. Vet. Surg. 37, 625–630 (2008). https://doi.org/10.1111/j.1532-950X.2008.00428.x

    Article  Google Scholar 

  40. Miyashiro, I., et al.: Intraoperative diag-nosis using sentinel node biopsy with indocyanine green dyein gastric cancer surgery: an institutional trial by experiencedsurgeons. Ann. Surg. Oncol. 20(2), 542–546 (2012). https://doi.org/10.1245/s10434-012-2608-8

    Article  Google Scholar 

  41. Moukarzel, L.A., Feinberg, J., Levy, E.J., Leitao, M.M.: Current and novel mapping substances in gynecologic cancer care. Int. J. Gynecol. Cancer 30(3), 387–393 (2020). https://doi.org/10.1136/ijgc-2019-001078

    Article  Google Scholar 

  42. Muntean, M.V., Muntean, V., Ardelean, F., Georgescu, A.: Dynamic perfusion assessment during perforator flap surgery: an upto-date. Clujul. Med. 88, 293–297 (2015). https://doi.org/10.15386/cjmed-484. Epub 2015 Jul 1

    Article  Google Scholar 

  43. Noguera, J., Castro, L., Garcia, L., Mosquera, C., Gomez, A.: Lymphadenectomy guided by indocyanine-green (ICG) in colorectal cancer: a pilot study. J. Surg. Tech. Proced. 3(1), 1023 (2019)

    Google Scholar 

  44. Noura, S., et al.: Feasibility of a lateral regionsentinel node biopsy of lower rectal cancer guided by indo-cyanine green using a near-infrared camera system. Ann. Surg. Oncol. 17(1), 144–151 (2009). https://doi.org/10.1245/s10434-009-0711-2

    Article  Google Scholar 

  45. Okusanya, O.T., et al.: Intraoperative near-infrared imaging can identify pulmonary nodules. Ann. Thorac. Surg. 98, 1223–1230 (2014). https://doi.org/10.1016/j.athoracsur.2014.05.026

    Article  Google Scholar 

  46. Pacheco, P.E., Hill, S.M., Henriques, S.M., Paulsen, J.K., Anderson, R.C.: The novel use of intraoperative laser-induced fluorescence of indocyanine green tissue angiography for evaluation of the gastric conduit in esophageal reconstructive surgery. Am. J. Surg. 205, 349–352 (2013). https://doi.org/10.1016/j.amjsurg.2012.11.005

    Article  Google Scholar 

  47. Park, S.Y., Park, J.S., Kim, H.Y., Woo, I.T., Park, I.K., Choi, G.-S.: Indocyanine green fluorescence imaging-guided laparoscopic surgery could achieve radical d3 dissection in patients with advanced right-sided Colon Cancer. Dis. Colon. Rectum. 63, 441–449 (2020). https://doi.org/10.1097/DCR.0000000000001597

    Article  Google Scholar 

  48. Peltrini, R., et al.: Intraoperative use of indocyanine green fluorescence imaging in rectal cancer surgery: the state of the art. World J. Gastroenterol. 27(38), 6374–6386 (2021). https://doi.org/10.3748/wjg.v27.i38.6374

    Article  Google Scholar 

  49. Purich, K., et al.: Intraoperative fluorescence imaging with indocyanine green in hepatic resection for malignancy: a systematic review and meta-analysis of diagnostic test accuracy studies. Surg. Endosc. 34(7), 2891–2903 (2020). https://doi.org/10.1007/s00464-020-07543-2

    Article  Google Scholar 

  50. Quinlan, A.S.F., Wainberg, S.H., Phillips, E., Oblak, M.L.: The use of near infrared fluorescence imaging with indocyanine green for vascular visualization in caudal auricular flaps in two cats. Vet. Surg. 50(3), 677–686 (2021). https://doi.org/10.1111/vsu.13577

    Article  Google Scholar 

  51. Ribero, D., Mento, F., Sega, V., Lo Conte, D., Mellano, A., Spinoglio, G.: ICG-guided lymphadenectomy during surgery for colon and rectal cancer—interim analysis of the GREENLIGHT trial. Biomedicines. 10, 541 (2022). https://doi.org/10.3390/biomedicines10030541

    Article  Google Scholar 

  52. Rossanese, M., Williams, P., Tomlinson, A., Cinti, F.: Long-term outcome after cholecystectomy without common bile duct catheterization and flushing in dogs. Animals 12, 2112 (2022). https://doi.org/10.3390/ani12162112

    Article  Google Scholar 

  53. Sakurai, N.: Clinical impact of near-infrared fluorescence imaging with indocyanine green on surgical treatment for hepatic masses in dogs. BMC Vet. Res. 18(1), 374 (2022). https://doi.org/10.1186/s12917-022-03467-2

  54. Sanford, D.E.: An update on technical aspect of cholecystectomy. Surg. Clin. N. Am. 99, 245–258 (2018). https://doi.org/10.1016/j.suc.2018.11.005

    Article  Google Scholar 

  55. Schaafsma, B.E., et al.: The clinical use of indocyanine green as a near infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 104, 323–332 (2011). https://doi.org/10.1002/jso.21943

    Article  Google Scholar 

  56. Scott, J., et al.: Perioperative complications and outcome of laparoscopic cholecystectomy in 20 dogs. Vet. Surg. 45(S1), O49–O59 (2016). https://doi.org/10.1111/vsu.12534

    Article  MathSciNet  Google Scholar 

  57. Shariati, E., Bakhtiari, J., Khalaj, A., Niasari-Naslaji, A.: Comparison between two portal laparoscopy and open surgery for ovariectomy in dogs. Vet. Res. Forum. 5, 219–223 (2014)

    Google Scholar 

  58. Shen, R., Zhang, Y., Wang, T.: Indocyanine green fluorescence angiography and the incidence of anastomotic leak after colorectal resection for colorectal cancer: a meta-analysis. Dis. Colon Rectum. 61(10), 1228–1234 (2018). https://doi.org/10.1097/DCR.0000000000001123

    Article  Google Scholar 

  59. Smeak, D.D., et al.: Treatment of chronic pleural effusion with pleuroperitoneal shunts in dogs: 14 cases (1985–1999). J. Am. Vet. Med. Assoc. 219, 1590–1597 (2001). https://doi.org/10.2460/javma.2001.219.1590

    Article  Google Scholar 

  60. Spinoglio, G., et al.: Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg. Endosc. 27, 2156–2162 (2013). https://doi.org/10.1007/s00464-012-2733-2

    Article  Google Scholar 

  61. Steffey, M.A., Mayhew, P.D.: Use of direct near-infrared fluorescent lymphography for thoracoscopic thoracic duct identification in 15 dogs with chylothorax. Vet. Surg. 47, 267–276 (2018). https://doi.org/10.1111/vsu.12740. Epub 2017 Nov 6

    Article  Google Scholar 

  62. Suh, Y.J., et al.: Indocyanine green as a near-infrared fluorescent agent for identifying parathyroid glands during thyroid surgery in dogs. Surg. Endosc. 29(9), 2811–2817 (2015). https://doi.org/10.1007/s00464-014-3971-2

    Article  Google Scholar 

  63. Tan, I.C., et al.: Investigational lymphatic imaging at the bedside in a pediatric postoperativechylothorax patient. Pediatr. Cardiol. 35, 1295–1300 (2014). https://doi.org/10.1007/s00246-014-0946-y

    Article  Google Scholar 

  64. Tanaka, R., Nakashima, K., Fujimoto, W.: Sentinel lymph nodedetection in skin cancer using fluorescence navigation withindocyanine green. J. Dermatol. 36(8), 468–470 (2009). https://doi.org/10.1111/j.1346-8138.2009.00679.x

    Article  Google Scholar 

  65. Tobis, S., et al.: Near infrared fluorescenceimaging after intravenous indocyanine green: initial clinicalexperience with open partial nephrectomy for renal corticaltumors. Urology 79(4), 958–964 (2012). https://doi.org/10.1016/j.urology.2011.10.016

    Article  Google Scholar 

  66. Townsend, K.L., Milovancev, M., Bracha, S.: Feasibility of near-infrared fluorescence imaging for sentinel lymph node evaluation of the oral cavity in healthy dogs. Am. J. Vet. Res. 79(9), 995–1000 (2018). https://doi.org/10.2460/ajvr.79.9.995

  67. Ushijima, H., et al.: Visualization of lymphatic flow in laparoscopic colon cancer surgery using indocyanine green fluorescence imaging. Sci. Rep. 10, 14274 (2020)

    Article  Google Scholar 

  68. Wada, T., et al.: ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg. Endosc. 31, 4184–4193 (2017). https://doi.org/10.1007/s00464-017-5475-3

    Article  Google Scholar 

  69. Wada, T., Kawada, K., Hanada, K., Obama, K.: Quantitative analysis of colonic perfusion using ICG fluorescence angiography and its consequences for anastomotic healing in a rat model. Cancers 14, 4024 (2022). https://doi.org/10.3390/cancers14164024

    Article  Google Scholar 

  70. Wakaiki, S., et al.: Indocyanine green angiography for examining the normal ocular fundus in dogs. J. Vet. Med. Sci. 69(5), 465–470 (2007). https://doi.org/10.1292/jvms.69.465

    Article  Google Scholar 

  71. Wan, J., Oblak, M.L., Ram, A., Singh, A., Nykamp, S.: Determining agreement between preoperative computed tomography lymphography and indocyanine green near infrared fluorescence intraoperative imaging for sentinel lymph node mapping in dogs with oral tumours. Vet. Comp. Oncol. 19, 295–303 (2021). https://doi.org/10.1111/vco.12675

    Article  Google Scholar 

  72. Wang, C., et al.: Application of near-infrared fluorescent cholangiography using indocyanine green in laparoscopic cholecystectomy. J. Int. Med. Res. 48(12), 300060520979224 (2020). https://doi.org/10.1177/0300060520979224

    Article  Google Scholar 

  73. Yamashita, S., et al.: Video-assisted thoracoscopic indocyanine green fluorescence imaging system shows sentinel lymph nodes in non-small-cell lung cancer. J. Thorac. Cardiovasc. Surg. 141, 141–144 (2011). https://doi.org/10.1016/j.jtcvs.2010.01.028

    Article  Google Scholar 

  74. Yang, F., Zhou, J., Hao, L.: Near-infrared fluorescence-guided thoracoscopic surgical intervention for post-operative chylothorax. Interact Cardiovasc. Thorac. Surg. 26, 171–175 (2018). https://doi.org/10.1093/icvts/ivx3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Prządka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prządka, P., Kiełbowicz, Z., Tunikowska, J. (2023). NIRF Imaging with Indocyanine Green (ICG) in a Veterinary Minimally Invasive Surgery. In: Burduk, A., Batako, A., Machado, J., Wyczółkowski, R., Antosz, K., Gola, A. (eds) Advances in Production. ISPEM 2023. Lecture Notes in Networks and Systems, vol 790. Springer, Cham. https://doi.org/10.1007/978-3-031-45021-1_2

Download citation

Publish with us

Policies and ethics