Skip to main content

Artificial Intelligence for Personalized Care, Wellness, and Longevity Research

  • Chapter
  • First Online:
Artificial Intelligence for Personalized Medicine (W3PHAI 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1106))

Included in the following conference series:

Abstract

Artificial intelligence (AI) has the potential to transform personalized medicine by enabling healthcare professionals to deliver more precise, targeted treatments that are tailored to the individual needs of each patient. AI tools and techniques are also revolutionizing research and development of technologies that contribute to human longevity and healthy living in several ways, including, but not limited to, predictive analytics, disease diagnosis, treatment, and monitoring, and drug discovery and development. This chapter aims to explore the significance and applications of artificial intelligence tools and techniques to improve personal care and wellness and enhance human longevity research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Ammar, J.E. Bailey, R.L. Davis, A. Shaban-Nejad, Using a personal health library-enabled mhealth recommender system for self-management of diabetes among underserved populations: use case for knowledge graphs and linked data. JMIR Form Res. 16;5(3), e24738. (2021). https://doi.org/10.2196/24738

  2. M. Barrett, J. Boyne, J. Brandts et al., Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care. EPMA J. 10, 445–464 (2019). https://doi.org/10.1007/s13167-019-00188-9

    Article  Google Scholar 

  3. A. Shaban-Nejad, M. Michalowski, S. Bianco (eds.), AI for Disease Surveillance and Pandemic Intelligence, 1st edn. (Springer, Cham, 2022). https://doi.org/10.1007/978-3-030-93080-6

  4. C.A. Melton, B.M. White, R.L. Davis, R.A. Bednarczyk, A. Shaban-Nejad, Fine-tuned sentiment analysis of COVID-19 vaccine-related social media data: comparative study. J. Med. Internet Res. 24(10), e40408 (2022). https://doi.org/10.2196/40408

    Article  Google Scholar 

  5. B.M. White, C. Melton, P. Zareie, R.L. Davis, R.A. Bednarczyk, A. Shaban-Nejad, Exploring celebrity influence on public attitude towards the COVID-19 pandemic: social media shared sentiment analysis. BMJ Health Care Inf. 30(1), e100665 (2023). https://doi.org/10.1136/bmjhci-2022-100665

    Article  Google Scholar 

  6. S. Dara, S. Dhamercherla, S.S. Jadav, C.M. Babu, M.J. Ahsan, Machine learning in drug discovery: a review. Artif. Intell. Rev. 55(3), 1947–1999 (2022). https://doi.org/10.1007/s10462-021-10058-4. (Epub 2021 Aug 11)

    Article  Google Scholar 

  7. V.R. Fuchs, Major trends in the U.S. health economy since 1950. New Engl. J. Med. 366(11), 973–977 (2012)

    Google Scholar 

  8. A. Kogan, M. Peleg, S.W. Tu, R. Allon, N. Khaitov, I. Hochberg, Towards a goal-oriented methodology for clinical-guideline-based management recommendations for patients with multimorbidity: Gocom and its preliminary evaluation. J. Biomed. Inf. 112 (2020)

    Google Scholar 

  9. M. Michalowski, S. Wilk, W. Michalowski, M. Carrier, A planning approach to mitigating concurrently applied clinical practice guidelines. Artif. Intell. Med. 112 (2021)

    Google Scholar 

  10. D. Spruijt-Metz, C.K.F. Wen, G. O’Reilly et al., Innovations in the use of interactive technology to support weight management. Curr. Obes. Rep. 4, 510–519 (2015). https://doi.org/10.1007/s13679-015-0183-6

    Article  Google Scholar 

  11. A. Shaban-Nejad, M. Michalowski, J.S. Brownstein, D.L. Buckeridge, Guest editorial explainable AI: towards fairness, accountability, transparency and trust in healthcare. IEEE J. Biomed. Health Inf. 25(7), 2374–2375 (2021)

    Article  Google Scholar 

  12. A. Shaban-Nejad, M. Michalowski, D.L. Buckeridge, Explainability and interpretability: keys to deep medicine, in Explainable AI in Healthcare and Medicine, ed. by A. Shaban-Nejad, M. Michalowski, D.L. Buckeridge. Studies in Computational Intelligence, vol. 914 (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-53352-6_1

  13. A. Shaban-Nejad, M. Michalowski, S. Bianco, J.S. Brownstein, D.L. Buckeridge, R.L. Davis, Applied artificial intelligence in healthcare: listening to the winds of change in a post-COVID-19 world. Exp. Biol. Med. (Maywood) 247(22), 1969–1971 (2022). https://doi.org/10.1177/15353702221140406

    Article  Google Scholar 

  14. A. Shaban-Nejad, M. Michalowski, S. Bianco, Multimodal artificial intelligence: next wave of innovation in healthcare and medicine, in Multimodal AI in Healthcare, ed. by A. Shaban-Nejad, M. Michalowski, S. Bianco. Studies in Computational Intelligence, vol. 1060 (Springer, Cham, 2023). https://doi.org/10.1007/978-3-031-14771-5_1

  15. Shneiderman, B. Human-Centered AI. Oxford University Press, 1st edition, February 10, 2022. Neurocomputing. 2022 May 7 (2022);485:36–46. doi: https://doi.org/10.1016/j.neucom.2022.02.040

  16. E. Gurevich, B. El Hassan, C. El Morr, Equity within AI systems: What can health leaders expect? Healthc. Manag. Forum. 36(2), 119–124 (2023). https://doi.org/10.1177/08404704221125368

    Article  Google Scholar 

  17. H. Mamiya, A. Shaban-Nejad, D.L. Buckeridge, Online public health intelligence: ethical considerations at the big data era, in Public Health Intelligence and the Internet, ed. by A. Shaban-Nejad, J. Brownstein, D. Buckeridge. Lecture Notes in Social Networks (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-68604-2_8

  18. D. Harman, The aging process. Proc. Natl. Acad. Sci. USA 78(11), 7124–7128 (1981). https://doi.org/10.1073/pnas.78.11.7124

    Article  Google Scholar 

  19. A. Zhavoronkov, Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol. Pharm. 15(10), 4311–4313 (2018). https://doi.org/10.1021/acs.molpharmaceut.8b00930

    Article  Google Scholar 

  20. S. Qiu, M.I. Miller, P.S. Joshi et al., Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat. Commun. 13, 3404 (2022). https://doi.org/10.1038/s41467-022-31037-5

    Article  Google Scholar 

  21. S. El-Sappagh, J.M. Alonso, S.M.R. Islam et al., A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Sci. Rep. 11, 2660 (2021). https://doi.org/10.1038/s41598-021-82098-3

    Article  Google Scholar 

  22. J.M. Ranson, M. Bucholc, D. Lyall, D. Newby et al., Harnessing the potential of machine learning and artificial intelligence for dementia research. Brain Inf. 10(1), 6 (2023). https://doi.org/10.1186/s40708-022-00183-3

    Article  Google Scholar 

  23. J. Harvey, R.A. Reijnders, R. Cavill et al., Machine learning-based prediction of cognitive outcomes in de novo Parkinson’s disease. npj Parkinsons Dis. 8, 150 (2022). https://doi.org/10.1038/s41531-022-00409-5

  24. U.K. Patel, A. Anwar, S. Saleem et al., Artificial intelligence as an emerging technology in the current care of neurological disorders. J. Neurol. 268(5), 1623–1642 (2021). https://doi.org/10.1007/s00415-019-09518-3

    Article  Google Scholar 

  25. A. Coravos, S. Khozin, K.D. Mandl, Developing and adopting safe and effective digital biomarkers to improve patient outcomes. npj Digit. Med. 2, 14 (2019). https://doi.org/10.1038/s41746-019-0090-4

  26. E.K. Shin, R. Mahajan, O. Akbilgic et al., Sociomarkers and biomarkers: predictive modeling in identifying pediatric asthma patients at risk of hospital revisits. npj Digital Med 1, 50 (2018). https://doi.org/10.1038/s41746-018-0056-y

  27. L. Piovesan, P. Terenziani, G. Molino, Glare-sscpm: an intelligent system to support the treatment of comorbid patients. IEEE Intell. Syst. 33(6), 37–46 (2018)

    Article  Google Scholar 

  28. C. Lopez-Otin, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging. Cell 153, 1194–1217 (2013). https://doi.org/10.1016/j.cell.2013.05.039

    Article  Google Scholar 

  29. M.L. Levine, A. Higgins-Chen, K. Thrush, C. Minteer, P. Niimi, Clock work: deconstructing the epigenetic clock signals in aging, disease, and reprogramming. BioRxiv. https://doi.org/10.1101/2022.02.13.480245

  30. S. Horvath, R. Kenneth, DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19(6), 371–384 (2018)

    Google Scholar 

  31. R.E. Marioni, S.E. Harris, S. Shah, A.F. McRae, T. von Zglinicki, C. Martin-Ruiz, N.R. Wray, P.M. Visscher, I.J. Deary, The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 45(2), 424–432 (2016). https://doi.org/10.1093/ije/dyw041

    Article  Google Scholar 

  32. L.P. de Lima Camillo, L.R. Lapierre, R. Singh, A pan-tissue DNA-methylation epigenetic clock based on deep learning. NPJ Aging. 8(1), 4 (2022). https://doi.org/10.1038/s41514-022-00085-y

    Article  Google Scholar 

  33. F. Galkin, P. Mamoshina, K. Kochetov, D. Sidorenko, A. Zhavoronkov, DeepMAge: a methylation aging clock developed with deep learning. Aging Dis. 12(5), 1252–1262 (2021). https://doi.org/10.14336/AD.2020.1202

    Article  Google Scholar 

  34. F. Della Valle, P. Reddy, M. Yamamoto et al., LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med. 14(657), eabl6057 (2022). Aug 10. https://doi.org/10.1126/scitranslmed.abl6057

  35. T. Hishida, M. Yamamoto, Y. Hishida-Nozaki et al., In vivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Rep. 39(4), 110730 (2022). https://doi.org/10.1016/j.celrep.2022.110730

    Article  Google Scholar 

  36. K.C. Browder, P. Reddy, M. Yamamoto et al., In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat Aging. 2(3), 243–253 (2022). https://doi.org/10.1038/s43587-022-00183-2

    Article  Google Scholar 

  37. T.T.H. Nguyen, V.B. Truong, V.T.K. Nguyen, Q.H. Cao, Q.K. Nguyen, Towards trust of explainable AI in thyroid nodule diagnosis, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  38. D. Stripelis, J.L. Ambite, Federated learning over harmonized data silos, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  39. H. Abdelwahab, C. Martens, N. Beck, D. Wegener, Investigation of drift detection for clinical text classification, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  40. A. Larouche, A. Durand, R. Khoury, C. Sirois, Neural bandits for data mining: searching for dangerous polypharmacy, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  41. E. Rocheteau, I. Bica, P. Liò, A. Ercole, Dynamic outcomes-based clustering of disease trajectory in mechanically ventilated patients, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  42. M. Thomas, O. Boursalie, R. Samavi, T.E. Doyle, Bayesian-based parameter estimation to quantify trust in medical devices, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  43. S.Y. Ji, S. Jayarathna, A.M. Perrotti, K. Kardiasmenos, D.H. Jeong, EEG analysis of neurodevelopmental disorders by integrating wavelet transform and visual analysis, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  44. A. Ovalle, S. Dev, J. Zhao, M. Sarrafzadeh, K.W. Chang, Auditing algorithmic fairness in machine learning for health with severity-based LOGAN, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  45. E. Werner, J.N. Clark, R.S. Bhamber, M. Ambler, C.P. Bourdeaux, A. Hepburn, C.J. McWilliams, R. Santos-Rodriguez, Identification, explanation and clinical evaluation of in-hospital patient subtypes, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  46. X. Wang, X. Tang, Automatically extracting information in medical dialogue: expert system and attention for labelling, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  47. M. Alwuthaynani, Z. Abdallah, R. Santos-Rodriguez, Transfer learning and class decomposition for detecting the cognitive decline of Alzheimer’s Disease, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  48. H. Kulkarni, S. MacAvaney, N. Goharian, O. Frieder, Knowledge augmentation for early depression detection, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  49. B. Lin, G. Cecchi, D. Bouneffouf, Deep annotation of therapeutic working alliance in psychotherapy, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  50. B. Lin, D. Bouneffouf, G. Cecchi, R. Tejwani, Neural topic modeling of psychotherapy sessions, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  51. C. von Numers, Y. Yu, A. Petkova, E. Hutchison, J. Havsol, BAUFER: a baseline-enabled facial expression recognition pipeline trained with limited annotations, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  52. S. Jain, A. Sangroya, L. Vig, C. Anantaram, Robustness for ECG classification by adversarial training over clinical features, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  53. Z. Li, A. Nagrebetsky, S. Ranjeva, N. Bi, D. Liu, M.F.V. Melo, T. Houle, L. Yin, H. Deng, A transformer-based deep learning algorithm to auto-record undocumented clinical one-lung ventilation events, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023).

    Google Scholar 

  54. A. Fisher, R. Sharma, V. Mago, Analyzing the trends of responses to COVID-19 related tweets from news stations: an analysis of three countries, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

  55. A. Gunal, I. Stewart, V. Pérez-Rosas, R. Mihalcea, Understanding the role of questions in mental health support-seeking forums, in Artificial Intelligence for Personalized Medicine: Promoting Healthy Living and Longevity. Studies in Computational Intelligence (Springer, 2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Shaban-Nejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaban-Nejad, A., Michalowski, M., Bianco, S. (2023). Artificial Intelligence for Personalized Care, Wellness, and Longevity Research. In: Shaban-Nejad, A., Michalowski, M., Bianco, S. (eds) Artificial Intelligence for Personalized Medicine. W3PHAI 2023. Studies in Computational Intelligence, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-031-36938-4_1

Download citation

Publish with us

Policies and ethics