Skip to main content

Neuronale Anpassungen an Krafttraining

  • Chapter
  • First Online:
Kombiniertes Ausdauer- und Krafttraining
  • 1977 Accesses

Zusammenfassung

Wissenschaftliche Untersuchungen des Krafttrainings der letzten Jahre, haben eine Reihe physiologischer Mechanismen zum Vorschein gebracht, die dazu beitragen: (1) akute Ermüdung nach einer einzigen Krafttrainingseinheit und (2) chronische Anpassungen an wiederholtes und systematisches Krafttraining zu verstehen. Daher sollen in diesem Kapitel zunächst mögliche neuronale Mechanismen erörtert werden, die die Kraftgenerierung aus der Perspektive einer einzelnen Wiederholung beeinflussen. Anschließend werden in diesem Kapitel wissenschaftliche Belege für mögliche neuronale Mechanismen aufgezeigt, die die Kraftgenerierung während einer einzelnen Krafttrainingseinheit akut begrenzen, sowie für langfristige Anpassungen, die durch Krafttraining induziert werden. Für einige dieser potenziellen neuronalen Mechanismen gibt es solide wissenschaftliche Belege, für andere wurden in den letzten Jahren interessante Date erhoben, die einer weiteren Untersuchung bedürfen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Moritani T. Motor unit and motoneurone excitability during explosive movement. In: Komi PV, Herausgeber. Strength and power in sport. 2. Aufl. Oxford: Blackwell Science Ltd; 2003. S. 27–49.

    Google Scholar 

  2. Burke RE. Motor unit types of cat triceps surae muscle. J Physiol. 1967;193(1):141–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28:560–80.

    Article  CAS  PubMed  Google Scholar 

  4. Grillner S, Udo M. Recruitment in the tonic stretch reflex. Acta Physiol Scand. 1971;81(4):571–3.

    Article  CAS  PubMed  Google Scholar 

  5. Kulkilka CG, Clamann HP. Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res. 1981;219(1):45–55.

    Article  Google Scholar 

  6. Oya T, Riek S, Cresswell AG. Recruitment and rate coding organization for soleus motor units across entire range of voluntary isometric plantar flexions. J Physiol. 2009;587(19):4737–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desmedt JE, Godaux E. Ballistic contractions in fast or slow human muscles: discharge patterns of single motor units. J Physiol. 1978;285:185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Milner-Brown HS, Stein RB, Yemm R. The orderly recruitment of human motor units during voluntary isometric contraction. J Physiol. 1973;230(2):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behavior contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(1):295–305.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Seki K, Narusawa M. Firing rate modulation of human motor units in different muscles during isometric contraction with various forces. Brain Res. 1996;719(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mullany H, O’Malley M, St Clair Gibson A, Vaughan C. Agonist-antagonist common drive during fatiguing knee extension efforts using surface electromyography. J Electromyogr Kinesiol. 2002;12(5):375–84.

    Article  PubMed  Google Scholar 

  12. Klein CS, Rice CL, Marsh GD. Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol. 2001;91(3):1341–9.

    Article  CAS  PubMed  Google Scholar 

  13. Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol. 1992;73(3):911–7.

    Article  CAS  PubMed  Google Scholar 

  14. Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, Kraemer WJ, Newton RU, Alen M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998;84(4):1314–49.

    Article  Google Scholar 

  15. Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol. 2000;83(1):51–62.

    Article  PubMed  Google Scholar 

  16. Tillin NA, Pain MT, Folland JP. Short-term unilateral resistance training affects the agonist-antagonist but not the force-agonist activation relationship. Muscle Nerve. 2011;43(3):375–84.

    Article  PubMed  Google Scholar 

  17. Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008;586(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  18. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2014;117(11):1215–30.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Häkkinen K. Neuromuscular fatigue in males and females during strenuous heavy resistance loading. Electromyogr Clin Neurophysiol. 1994;34(4):205–14.

    PubMed  Google Scholar 

  20. Häkkinen K. Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. Int J Sports Med. 1993;14(2):53–9.

    Article  PubMed  Google Scholar 

  21. McCaulley GO, McBride JM, Cormie P, Hudson MB, Nuzzo JL, Quindry JC, Triplett TN. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695–704.

    Article  CAS  PubMed  Google Scholar 

  22. Linnamo V, Häkkinen K, Komi PV. Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur J Appl Physiol. 1998;77(1–2):176–81.

    CAS  Google Scholar 

  23. Izquierdo M, Ibañez J, Calbet JA, González-Izal M, Navarro-Amézqueta I, Granados C, Malanda A, Idoate F, González-Badillo JJ, Häkkinen K, Kraemer WJ, Tirapu I, Gorostiaga EM. Neuromuscular fatigue after resistance training. Int J Sports Med. 2009;30(8):614–23.

    Article  CAS  PubMed  Google Scholar 

  24. Walker S, Davis L, Avela J, Häkkinen K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J Electromyogr Kinesiol. 2012;22(3):356–62.

    Article  PubMed  Google Scholar 

  25. Gonzalez-Izal M, Malanda A, Navarro-Amezqueta I, Gorostiaga EM, Mallor F, Ibanez J, Izquierdo M. EMG spectral indices and muscle power fatigue during dynamic contractions. J Electromyogr Kinesiol. 2010;20(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  26. Walker S, Peltonen H, Avela J, Häkkinen K. Neuromuscular fatigue in young and older men using constant or variable resistance. Eur J Appl Physiol. 2013;113(4):1069–79.

    Article  PubMed  Google Scholar 

  27. Ruotsalainen I, Ahtiainen JP, Kidgell DJ, Avela J. Changes in corticospinal excitability during an acute bout of resistance exercise in the elbow flexors. Eur J Appl Physiol. 2014;114(7):1545–53.

    Article  PubMed  Google Scholar 

  28. Solomonow M, Baten C, Smit J, Baratta R, Hermens H, D’Ambrosia R, Shoji H. Electromyogram power spectra frequencies associated with motor unit recruitment strategies. J Appl Physiol (1985). 1990;68(3):1177–1185.

    Google Scholar 

  29. Weytjens JL, van Steenberghe D. The effects of motor unit synchronization on the power spectrum of the electromyogram. Biol Cybern. 1984;51(2):71–7.

    Article  CAS  PubMed  Google Scholar 

  30. Yao W, Fluglevand RJ, Enoka RM. Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J Neurophysiol. 2000;83(1):441–52.

    Article  CAS  PubMed  Google Scholar 

  31. Milner-Brown HS, Stein RB, Lee RG. Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electromyogr Clin Neurophysiol. 1975;38(3):245–54.

    Article  CAS  Google Scholar 

  32. Semmler JG, Nordstrom MA. Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res. 1998;119(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  33. Ahtiainen JP, Häkkinen K. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. J Strength Cond Res. 2009;23(4):1129–34.

    Article  PubMed  Google Scholar 

  34. Merton PA. Voluntary strength and fatigue. J Physiol. 1954;123(3):553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol. 2017;122(5):1068–76.

    Article  CAS  PubMed  Google Scholar 

  36. Aagaard P, Thorstensson A. Neuromuscular aspects of exercise-adaptive responses evoked by strength training. In: Kjaer M, Krosgaard M, Magnusson P, Herausgeber. Textbook of sports medicine: basic science and clinical aspects of sports injury and physical activity. Chichester: Wiley; 2003. S. 70–106.

    Google Scholar 

  37. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptations to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol. 2002;92(6):2309–18.

    Article  PubMed  Google Scholar 

  38. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increase rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):1318–26.

    Article  PubMed  Google Scholar 

  39. Häkkinen K, Komi PV. Electromyographic changes during strength training and detraining. Med Sci Sports Exerc. 1983;15(6):455–60.

    Article  PubMed  Google Scholar 

  40. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol. 1989;59(4):310–9.

    Article  CAS  Google Scholar 

  41. Suetta C, Aagaard P, Rosted A, Jakobsen AK, Duus B, Kjaer M, Magnusson SP. Training-induced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. J Appl Physiol. 2004;97(5):1954–61.

    Article  PubMed  Google Scholar 

  42. Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Häkkinen K. Greater gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front Physiol. 2016;7:149.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Häkkinen K, Komi PV, Alen M. Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiol Scand. 1985;125(4):587–600.

    Article  PubMed  Google Scholar 

  44. Tillin NA, Pain MT, Folland JP. Short-term training for explosive strength causes neural and mechanical adaptations. Exp Physiol. 2012;97(5):630–41.

    Article  PubMed  Google Scholar 

  45. Arabadzhiev TI, Dimitrov VG, Dimitrov GV. The increase in surface EMG could be a misleading measure of neural adaptation during early gains in strength. Eur J Appl Physiol. 2014;114(8):1645–55.

    Article  PubMed  Google Scholar 

  46. Kidgell DJ, Sale MV, Semmler JG. Motor unit synchronization measured by cross-correlation is not influenced by short-term training of a hand muscle. Exp Brain Res. 2006;175(4):745–53.

    Article  PubMed  Google Scholar 

  47. Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve. 2010;41(5):651–60.

    Article  PubMed  Google Scholar 

  48. Knight CA, Kamen G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J Electromyogr Kinesiol. 2001;11(6):405–12.

    Article  CAS  PubMed  Google Scholar 

  49. Weier AT, Pearce AJ, Kidgell DJ. Strength training reduces intracortical inhibition. Acta Physiol. 2012;206(2):109–19.

    Article  CAS  Google Scholar 

  50. Unhjem R, Lundestad R, Fimland MS, Mosti MP, Wang E. Strength training-induced responses in older adults: attenuation of descending neural drive with age. Age. 2015;37(3):9784.

    Article  PubMed  Google Scholar 

  51. Vila-Cha C, Falla D, Correia MV, Farina D. Changes in H reflex and V wave following short-term endurance and strength training. J Appl Physiol. 2012;112(1):54–63.

    Article  PubMed  Google Scholar 

  52. Kidgell DJ, Stokes MA, Castricum TJ, Pearce AJ. Neurophysiological responses after short-term strength training of the biceps brachii muscle. J Strength Cond Res. 2010;24(11):3123–32.

    Article  PubMed  Google Scholar 

  53. Lee M, Gandevia SC, Carroll TJ. Short-term strength training does not change cortical voluntary activation. Med Sci Sports Exerc. 2009;41(7):1452–60.

    Article  Google Scholar 

  54. Latella C, Kidgell DJ, Pearce AJ. Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training. Eur J Appl Physiol. 2012;112(8):3097–107.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walker, S. (2023). Neuronale Anpassungen an Krafttraining. In: Schumann, M., Rønnestad, B.R. (eds) Kombiniertes Ausdauer- und Krafttraining. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-36310-8_6

Download citation

Publish with us

Policies and ethics