Skip to main content

Einfluss von kombiniertem Ausdauer- und Krafttraining auf die Körperzusammensetzung und Gesundheit

  • Chapter
  • First Online:
Kombiniertes Ausdauer- und Krafttraining

Zusammenfassung

Für die meisten Menschen gehört körperliches Training zu den wichtigsten modifizierbaren Faktoren, um die Körperzusammensetzung zu verbessern und kardiometabolische Risikofaktoren zu mindern. Allerdings sind viele durch körperliches Training induzierte Anpassungen trainingsspezifisch. Kombiniertes Ausdauer- und Krafttraining ist für die Verbesserung des allgemeinen Gesundheitszustands besonders wichtig, da es die Vorteile der jeweils einzelnen Trainingsart kombiniert, um lokale (z. B. Skelettmuskeln) und systemische physiologische Anpassungen zu bewirken. In diesem Kapitel werden die aktuellen Erkenntnisse über die Vorteile von kombiniertem Training für die Körperzusammensetzung und gesundheitsbezogene Aspekte erörtert. Dazu werden zunächst die grundsätzlichen Möglichkeiten von kombiniertem Ausdauer- und Krafttraining zur Reduktion der Gesamt- bzw. abdominalen Fettmasse dargestellt. Im zweiten Teil werden dann auch Effekte des kombinierten Trainings auf gesundheitsbezogene Biomarker wie Blutzucker, zirkulierende Lipide und Blutdruck diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. WHO. Obesity and overweight – fact sheet [internet]. World Health Organization. 2017. http://www.who.int/mediacentre/factsheets/fs311/en/.

  2. Haslam D, Sattar N, Lean M. Obesity – time to wake up. BMJ. 2006;333(7569):640–2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ross R, Dagnone D, Jones PJH, Smith H, Paddags A, Hudson R, et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med. 2000;133(2):92–103.

    Article  CAS  PubMed  Google Scholar 

  4. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–63.

    Article  CAS  PubMed  Google Scholar 

  5. Häkkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89(1):42–52.

    Article  PubMed  Google Scholar 

  6. Donges CE, Duffield R, Guelfi KJ, Smith GC, Adams DR, Edge JA. Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men. Appl Physiol Nutr Metab. 2013;38(7):779–88.

    Article  CAS  PubMed  Google Scholar 

  7. Schumann M, Küüsmaa M, Newton RU, Sirparanta A-I, Syväoja H, Häkkinen A, et al. Fitness and lean mass increases during combined training independent of loading order. Med Sci Sport Exerc. 2014;46(9):1758–68.

    Article  Google Scholar 

  8. Sillanpää E, Laaksonen DE, Häkkinen A, Karavirta L, Jensen B, Kraemer WJ, et al. Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur J Appl Physiol. 2009;106(2):285–96.

    Article  PubMed  Google Scholar 

  9. Eklund D, Häkkinen A, Laukkanen JA, Balandzic M, Nyman K, Häkkinen K. Fitness, body composition and blood lipids following 3 concurrent strength and endurance training modes. Appl Physiol Nutr Metab. 2016;41(7):767–74.

    Article  CAS  PubMed  Google Scholar 

  10. Monteiro PA, Chen KY, Lira FS, Saraiva BTC, Antunes BMM, Campos EZ, et al. Concurrent and aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents. Lipids Health Dis. 2015;14(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, Bales CW, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol. 2012;113(12):1831–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293–307.

    Article  PubMed  Google Scholar 

  13. Bouchard C, Tremblay A, Nadeau A, Dussault J, Després J-P, Threiault G, et al. Long-term exercise training with constant energy intake. 1: effect on body composition and selected metabolic variables. Int J Obes. 1990;14:57–73.

    CAS  PubMed  Google Scholar 

  14. Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflügers Arch Eur J Physiol. 1985;403(4):369–76.

    Article  CAS  Google Scholar 

  15. Calles-Escandón J, Goran MI, O’Connell M, Nair KS, Danforth E. Exercise increases fat oxidation at rest unrelated to changes in energy balance or lipolysis. Am J Physiol Endocrinol Metab. 1996;270:E1009–14.

    Article  Google Scholar 

  16. Friedlander AL, Casazza GA, Horning MA, Buddinger TF, Brooks GA. Effects of exercise intensity and training on lipid metabolism in young women. Am J Physiol Endocrinol Metab. 2011;275(5 Pt 1):853–63.

    Google Scholar 

  17. Sparti A, DeLany JP, de la Bretonne JA, Sander GE, Bray GA. Relationship between resting metabolic rate and the composition of the fat-free mass. Metabolism. 1997;46(10):1225–30.

    Article  CAS  PubMed  Google Scholar 

  18. Byrne HK, Wilmore JH. The effects of a 20-week exercise training program on resting metabolic rate in previously sedentary, moderately obese women. Int J Sport Nutr Exerc Metab. 2001;11:15–31.

    Article  CAS  PubMed  Google Scholar 

  19. Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk – a review of the literature. Eur J Clin Nutr. 2010;64(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  20. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48.

    Article  PubMed  Google Scholar 

  21. Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy x-ray absorptiometry for quantification of visceral fat. Obesity. 2012;20(6):1313–8.

    Article  PubMed  Google Scholar 

  22. Pouliot M-C, Després J, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circunference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(1):460–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13(1):68–91.

    Article  CAS  PubMed  Google Scholar 

  24. Dutheil F, Lac G, Lesourd B, Chapier R, Walther G, Vinet A, et al. Different modalities of exercise to reduce visceral fat mass and cardiovascular risk in metabolic syndrome: the RESOLVE* randomized trial. Int J Cardiol. 2013;168(4):3634–42.

    Article  PubMed  Google Scholar 

  25. Schwingshackl L, Dias S, Strasser B, Hoffmann G. Impact of different training modalities on anthropometric and metabolic characteristics in overweight/obese subjects: a systematic review and network meta-analysis. PLoS One. 2013;8(12):e82853.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cadore EL, Izquierdo M, Pinto SS, Alberton CL, Pinto RS, Baroni BM, et al. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age (Omaha). 2013;35(3):891–903.

    Article  Google Scholar 

  27. Pinto S, Cadore E, Alberton C, Zaffari P, Bagatini N, Baroni B, et al. Effects of intra-session exercise sequence during water-based concurrent training. Int J Sports Med. 2013;35(1):41–8.

    Article  PubMed  Google Scholar 

  28. Wilhelm EN, Rech A, Minozzo F, Botton CE, Radaelli R, Teixeira BC, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol. 2014;60:207–14.

    Article  PubMed  Google Scholar 

  29. Collins MA, Snow TK. Are adaptations to combined endurance and strength training affected by the sequence of training? J Sports Sci. 1993;11(6):485–91.

    Article  CAS  PubMed  Google Scholar 

  30. Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res. 2008;22(4):1037–45.

    Article  PubMed  Google Scholar 

  31. Gravelle BL, Blessing DL. Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res. 2000;14(1):5–13.

    Google Scholar 

  32. de Souza EO, Tricoli V, Franchini E, Paulo AC, Regazzini M, Ugrinowitsch C. Acute effect of two aerobic exercise modes on maximum strength and strength endurance. J Strength Cond Res. 2007;21(4):1286–90.

    PubMed  Google Scholar 

  33. Wilhelm EN, Radaelli R, Perin D, Cunha GS, Cadore EL, Laitano O, et al. The influence of running and cycling on subsequent maximal muscular performance. Isokinet Exerc Sci. 2014;22(2):115–22.

    Article  Google Scholar 

  34. Thornton MK, Potteiger JA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sport Exerc. 2002;34(4):715–22.

    Article  Google Scholar 

  35. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sport Med. 2001;31(15):1033–62.

    Article  CAS  Google Scholar 

  36. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol. Arch Intern Med. 2007;167(10):999–1008.

    Article  CAS  PubMed  Google Scholar 

  37. Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Prev Med (Baltim). 2009;48(1):9–19.

    Article  CAS  Google Scholar 

  38. Balducci S, Zanuso S, Cardelli P, Salvi L, Bazuro A, Pugliese L, et al. Effect of high- versus low-intensity supervised aerobic and resistance training on modifiable cardiovascular risk factors in type 2 diabetes; the Italian Diabetes and Exercise Study (IDES). PLoS One. 2012;7(11):e49297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tseng M-L, Ho C-C, Chen S-C, Huang Y-C, Lai C-H, Liaw Y-P. A simple method for increasing levels of high-density lipoprotein cholesterol: a pilot study of combination aerobic- and resistance-exercise training. Int J Sport Nutr Exerc Metab. 2013;23(3):271–81.

    Article  CAS  PubMed  Google Scholar 

  40. Singh IM, Shishehbor MH, Ansell BJ. High-density lipoprotein as a therapeutic target. J Am Med Assoc. 2007;298(7):786–98.

    Article  CAS  Google Scholar 

  41. Libardi CA, de Souza GV, Cavaglieri CR, Madruga VA, Chacon-Mikahil MPT. Effect of resistance, endurance, and concurrent training on TNF-α, IL-6, and CRP. Med Sci Sport Exerc. 2012;44(1):50–6.

    Article  CAS  Google Scholar 

  42. Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57(9):1789–97.

    Article  CAS  PubMed  Google Scholar 

  43. Colberg SR, Albright AL, Blissmer BJ, Braun B, Chasan-Taber L, Fernhall B, et al. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Med Sci Sport Exerc. 2010;42(12):2282–303.

    Article  Google Scholar 

  44. Diabetes Prevention Program Research Group, Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  PubMed Central  Google Scholar 

  45. Anderssen SA, Carroll S, Urdal P, Holme I. Combined diet and exercise intervention reverses the metabolic syndrome in middle-aged males: results from the Oslo Diet and Exercise Study. Scand J Med Sci Sports. 2007;17(6):687–95.

    Article  CAS  PubMed  Google Scholar 

  46. Umpierre D, Ribeiro PAB, Kramer C, Leitão CB, Zucatti ATN, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA 1c levels in type 2 diabetes. JAMA. 2011;305(17):1790.

    Article  CAS  PubMed  Google Scholar 

  47. Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46(8):1071–81.

    Article  PubMed  Google Scholar 

  48. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes. Ann Intern Med. 2007;147:357–69.

    Article  PubMed  Google Scholar 

  49. Church TS, Blair SN, Cocreham S, Johnson W, Kramer K, Mikus CR, et al. Effects of aerobic and resistance training on hemoglobin A 1c levels in patients with type 2 diabetes. JAMA. 2010;304(20):2253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Umpierre D, Ribeiro PAB, Schaan BD, Ribeiro JP. Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: a systematic review with meta-regression analysis. Diabetologia. 2013;56(2):242–51.

    Article  CAS  PubMed  Google Scholar 

  51. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines. Hypertension. 2017;71(6):e13–115.

    PubMed  Google Scholar 

  52. Pescatello LS, Franklin BA, Fagard R, Farqhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sport Exerc. 2004;36(3):533–53.

    Article  Google Scholar 

  53. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17(11):87.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Corso LML, MacDonald HV, Johnson BT, Farinatti P, Livingston J, Zaleski AL, et al. Is concurrent training efficacious antihypertensive therapy? A meta-analysis. Med Sci Sport Exerc. 2016;48(12):2398–406.

    Article  CAS  Google Scholar 

  55. Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil. 2007;14(1):12–7.

    Article  PubMed  Google Scholar 

  56. DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–7.

    Article  CAS  PubMed  Google Scholar 

  57. Rush JWE, Denniss SG, D a G. Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Can J Appl Physiol. 2005;30(4):442–74.

    Article  CAS  PubMed  Google Scholar 

  58. Olson TP, Dengel DR, Leon AS, Schmitz KH. Moderate resistance training and vascular health in overweight women. Med Sci Sport Exerc. 2006;38(9):1558–64.

    Article  Google Scholar 

  59. Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology. 2011;26(3):132–45.

    Article  PubMed  Google Scholar 

  60. Maiorana A, O’Driscoll G, Cheetham C, Dembo L, Stanton K, Goodman C, et al. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol. 2001;38(3):860–6.

    Article  CAS  PubMed  Google Scholar 

  61. Vona M, Codeluppi GM, Iannino T, Ferrari E, Bogousslavsky J, von Segesser LK. Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation. 2009;119(12):1601–8.

    Article  CAS  PubMed  Google Scholar 

  62. Okamoto T, Masuhara M, Ikuta K. Combined aerobic and resistance training and vascular function: effect of aerobic exercise before and after resistance training. J Appl Physiol. 2007;103(5):1655–61.

    Article  PubMed  Google Scholar 

  63. Goto K, Higashiyama M, Ishii N, Takamatsu K. Prior endurance exercise attenuates growth hormone response to subsequent resistance exercise. Eur J Appl Physiol. 2005;94(3):333–8.

    Article  CAS  PubMed  Google Scholar 

  64. Napoli R, Guardasole V, Angelini V, D’Amico F, Zarra E, Matarazzo M, et al. Acute effects of growth hormone on vascular function in human subjects. J Clin Endocrinol Metab. 2003;88(6):2817–20.

    Article  CAS  PubMed  Google Scholar 

  65. Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2013;47(6):393–6.

    Article  PubMed  Google Scholar 

  67. Rakobowchuk M, McGowan CL, de Groot PC, Bruinsma D, Hartman JW, Phillips SM, et al. Effect of whole body resistance training on arterial compliance in young men. Exp Physiol. 2005;90(4):645–51.

    Article  CAS  PubMed  Google Scholar 

  68. Kawano H, Tanaka H, Miyachi M. Resistance training and arterial compliance: keeping the benefits while minimizing the stiffening. J Hypertens. 2006;24(9):1753–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronei Silveira Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilhelm, E.N., Pinto, R.S. (2023). Einfluss von kombiniertem Ausdauer- und Krafttraining auf die Körperzusammensetzung und Gesundheit. In: Schumann, M., Rønnestad, B.R. (eds) Kombiniertes Ausdauer- und Krafttraining. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-36310-8_19

Download citation

Publish with us

Policies and ethics