Skip to main content

Motion Planning Through Model Inversion for a Gantry Crane Moving a Double Pendulum

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2023)

Abstract

This paper proposes a method for precise motion planning of a gantry crane moving a double pendulum. The payload to be moved is composed by a pendulum and a rigid-body attached to the pendulum terminal mass. The desired output coordinates are the ones of the rigid-body tip. This choice yields a non-minimum phase system, whose internal dynamics is unstable. In this paper it is stabilized through the output redefinition technique, i.e., by assuming a fictitious output within the internal dynamics. The numerical integration of the stabilized ODEs enables to compute the motion commands for the crane platform. Numerical simulations are provided to assess the effectiveness of the proposed method which is corroborated by the low contour and tracking errors obtained while performing a prescribed planar trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seifried, R.: Dynamics of Underactuated Multibody Systems. 1st edn. Springer Cham, Heidelberg New York Dordrecht London (2014)

    Google Scholar 

  2. Belotti, R., Richiedei, D., Tamellin, I., Trevisani, A.: Response optimization of underactuated vibration generators through dynamic structural modification and shaping of the excitation forces. The Int. J. Adva. Manuf. Technol. 112(1–2), 505–524 (2020). https://doi.org/10.1007/s00170-020-06083-2

    Article  Google Scholar 

  3. Bettega, J., Richiedei, D., Tamellin, I., Trevisani, A.: Stable inverse dynamics for feedforward control of nonminimum-phase underactuated systems. J. Mechani. Robot. 1–42 (2022)

    Google Scholar 

  4. Blajer, W., Kołodziejczyk, K.: A case study of inverse dynamics control of manipulators with passive joints. J. Theor. Appl. Mech. 52(3), 793–801 (2014)

    Google Scholar 

  5. O’Connor, W., Habibi, H.: Gantry crane control of a double-pendulum, distributed-mass load, using mechanical wave concepts. Mechanical Sciences 4(2), 251–261 (2013)

    Article  Google Scholar 

  6. Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Sys.Dyn. 11(4), 343–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Richiedei, D., Trevisani, A.: Delayed-reference anti-swing control of overhead crane systems. In: 2008 10th IEEE International Workshop on Advanced Motion Control, pp. 92–97. IEEE, Trento, Italy (2008)

    Google Scholar 

  8. Boscariol, P., Richiedei, D.: Robust point-to-point trajectory planning for nonlinear underactuated systems: Theory and experimental assessment. Robot. Comp. Integra. Manufact. 50, 256–265 (2018)

    Article  Google Scholar 

  9. Bettega, J., Richiedei, D., Tamellin, I., Trevisani, A.: Model inversion for precise path and trajectory tracking in an underactuated, non-minimum phase, spatial overhead crane. J. Vibr. Engineering Technologies, 1–17 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Richiedei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bettega, J., Richiedei, D., Tamellin, I., Trevisani, A. (2023). Motion Planning Through Model Inversion for a Gantry Crane Moving a Double Pendulum. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_44

Download citation

Publish with us

Policies and ethics