Skip to main content

On the Stability Margins of Parametrically Excited Rotating Shafts on Gas Foil Bearings: Linear and Nonlinear Approach

  • Conference paper
  • First Online:
Advances in Active Bearings in Rotating Machinery (ABROM 2022)

Abstract

Parametric excitation is applied in a realistic multi-segmented rotating shaft of a turbopump mounted on two active gas foil bearings. The active configuration of the two gas foil bearings is defined by a periodic external load of specific amplitude and frequency which alternates the top foil configuration and in this manner the gas film impedance forces experience periodic variation.

The analytical model of the rotor is obtained using a reduced finite element model, and the Reynolds equation for the compressible flow of the gas is solved applying a reduced finite difference scheme.

Fully balanced rotors are investigated on their potential to shift the threshold speed of instability defined by the rotating speed at which the first bifurcation of limit cycles occurs. The limit cycles are evaluated through pseudo arc length continuation with an embedded collocation method. The respective amplitude and frequency of applied external excitation (parametric excitation) is investigated in order to define those characteristics (amplitude and frequency) which render parametric antiresonance in the rotating system. Two approaches are included. At the first, the parametric excitation is implemented in the system, through periodically varying stiffness and damping coefficients of the gas foil bearings, which are evaluated solving the perturbed Reynolds equation; this is the linear version of the dynamic system. At the second, direct implementation of gas bearing impedance forces is considered; this is the nonlinear version of the dynamic system. Comparing the two approaches, it is found that antiresonance occurs in specific excitation frequencies, and the rotating system operates without bifurcation at speeds two times higher than the respective speed of the reference system without excitation. Several design scenarios for rotor slenderness and bearing configuration are included in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolotin, V.: The Dynamic Stability of Elastic Systems. Holden-Day (1964)

    Google Scholar 

  2. Seyramian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications. World Scientific Publishing Co. 13 (2003)

    Google Scholar 

  3. Schmidt,G.: Parametererregte Schwingungen (In German, Translated Title ‘Parametrically Excited Oscillations’). Deutcher Verlag der Wissenschafte ( 1975)

    Google Scholar 

  4. Tondl, A.: On the interaction between self excited and parametric vibrations. Monographs and Memoranda, National Research Institute for Machine Design. 25 (1978)

    Google Scholar 

  5. Tondl, A.: To the problem of quenching self-excited vibrations. ACTA Technol. 43, 109–116 (1998)

    Google Scholar 

  6. Dohnal, F., Ecker, H., Springer, H.: Enhanced damping of a cantilever beam by axial parametric excitation. Arch. Appl. Math. 78, 935–947 (2008)

    Google Scholar 

  7. Breunung, T., Dohnal, F., Pfau, B: An approach to account for interfering parametric resonances and anti-resonances applied to examples from rotor dynamics. Springer Nature B.V (2019)

    Google Scholar 

  8. Dohnal, F., Chasalevris, A.: Improving stability and operation of turbine rotors using adjustable journal bearings. Tribology International (2016)

    Google Scholar 

  9. Boyaci, A., Hetzler, H., Seemann, W., Proppe, C., Wauer, J.: Analytical bifurcation analysis of a rotor supported by floating ring bearings. Nonlinear Dyn. 57, 97–507 (2009)

    Google Scholar 

  10. Boyaci, A., Lu, D., Schweizer, B.: Stability and bifurcation phenomena of Laval/Jeffcott rotors in semi-floating ring bearings, Nonlinear Dyn. 79, 1535–1561(2015)

    Google Scholar 

  11. Van Breemen, F. C.: Stability analysis of a Laval rotor on hydrodynamic bearings by numerical continuation: Investigating the influence of rotor flexibility, rotor damping and external oil pressure on the rotor dynamic behavior, M.Sc. thesis, Delft University of Technology (2016)

    Google Scholar 

  12. Rubel, J.: Vibrations in nonlinear Rotordynamics Dissertation, PhD thesis, Ruprecht-Karls-Universität Heidelberg (2009)

    Google Scholar 

  13. Amamou, A., Chouchane, M.: Bifurcation of limit cycles in fluid film bearings. Int. J. Non-Linear Mech. 46, 1258–1264 (2011)

    Google Scholar 

  14. Sghir, R., Chouchane, M.: Prediction of the nonlinear hysteresis loop for fluid-film bearings by numerical continuation. Proc. IMechE Part C: J Mech. Eng. Sci. 229(4), 651–662 (2015)

    Google Scholar 

  15. Sghir, R., Chouchane, M.: Nonlinear stability analysis of a flexible rotor-bearing system by numerical continuation. J. Vib. Control 22(13), 3079–3089 (2016)

    Article  MathSciNet  Google Scholar 

  16. Becker, K.: DynamischesVerhaltenhydrodynamischgelagerterRotorenunterberücksichtigungveranderlicherLagergeometrienm Ph.D. Thesis, Karlsruhe Institute of Technology, Germany (2019)

    Google Scholar 

  17. Leister, T.: Dynamics of Rotors on Refrigerant Lubricated Gas Foil Bearings, Ph.D. Thesis, Karlsruhe Institute of Technology, Germany (2021)

    Google Scholar 

  18. Dohnal, F.: Optimal dynamic stabilisation of a linear system by periodic stiffness excitation. J. Sound Vib. 320, 777–792 (2009)

    Article  Google Scholar 

  19. Peng, J.P., Carpino, M.: Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. J. Tribol. 115, 20–27 (1993)

    Article  Google Scholar 

  20. Heshmat, H., Walowit, J.A., Pinkus, O.: Analysis of gas-lubricated foil journal bearings. J. Lubr. Technol. 105, 647–655 (1983)

    Article  Google Scholar 

  21. Baum, C., Hetzler, H., Schroders, S., Leister, T., Seemann, W.: A computationally efficient nonlinear foil air bearing model for fully coupled transient rotor dynamic investigations. Tribol. Int. 153, 10434(2020)

    Google Scholar 

  22. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics, Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  23. Meijer, H., Dercole, F., Olderman, B.: Numerical bifurcation analysis. In: R. A. Meyers (ed.) Encyclopedia of Complexity and Systems Science, Springer New York, pp. (6329–6352). https://doi.org/10.1007/978-0-387-30440-3_373

  24. Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory 2nd ed., Applied Mathematical Sciences, Springer, New York (1998). https://doi.org/10.1007/978-1-4757-3978-7

  25. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley series in nonlinear science. Wiley, Hoboken (1995)

    Book  MATH  Google Scholar 

  26. Doedel, E.J., Keller, H.B., Kernevez, J. P.: Numerical analysis and control of bifurcation problems (II) Bifurcation in infinite dimensions. Int. J. Bifurcat. Chaos 1(3), 745–772(1991)

    Google Scholar 

  27. Doedel, E.J.: Lecture notes on numerical analysis of nonlinear equations. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems. UCS, pp. 1–49. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6356-5_1

    Chapter  Google Scholar 

  28. Bhore, S.P., Darpe, A.K.: Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. J. of Sound and Vib. 332, 5135–5150 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The work in this paper is outcome of the ongoing research synergy between National Technical University of Athens and Karlsruhe Institute for Technology, entitled “Nonlinear Dynamics of Rotor Systems with Controllable Bearings”, funded by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Chasalevris .

Editor information

Editors and Affiliations

Appendix: Implementation of Parametric Excitation

Appendix: Implementation of Parametric Excitation

The following analysis considers the physical and geometrical properties (inner /outer radius \(R_{i,r} ,R_{o,r}\), young modulus of elasticity, Poisson’s ratio \(v_{r}\)) of the bearing ring as known and denotes:

$$ \begin{array}{*{20}c} {\kappa_{1} = 1 - \frac{{\left( {R_{o,r}^{4} - R_{i,r}^{4} } \right)}}{{2R_{i,r}^{2} \left( {R_{o,r}^{2} - R_{i,r}^{2} } \right)}} + \frac{{1.33\left( {1 + 2v_{r} } \right)R_{o,r} }}{{\pi \left( {R_{o,r}^{2} - R_{i,r}^{2} } \right)}},} & {\kappa_{2} = 1 - \frac{{\left( {R_{o,r}^{4} - R_{i,r}^{4} } \right)}}{{2R_{i,r}^{2} \left( {R_{o,r}^{2} - R_{i,r}^{2} } \right)}}} \\ \end{array} $$
(26)

Inspired by the analytically computed deformation of a ring under the effect of a periodic vertical load \(F_{0} \left( {1 + \sin \left( {\overline{\Omega }_{ex} \tau } \right)} \right)\), the author defines the horizontal and vertical deformation of the bearing ring as in Eq. (27) where \(F_{0}\) denotes the amplitude of the periodic vertical load and \(I_{r}\) denotes the polar moment of inertia of the deformable ring.

$$ \begin{gathered} q_{r} \left( {\theta = 0,\pi ,\tau } \right) = dh = \frac{{F_{0} }}{2}\frac{{R_{o,r}^{3} }}{{4.2 \cdot 10^{11} I_{r} }}\left( {\frac{2}{\pi }\kappa_{2}^{2} - \kappa_{2} + \frac{{\kappa_{1} }}{2}} \right)\left( {1 + \sin (\overline{\Omega }_{ex} \tau )} \right) \\ q_{r} \left( {\theta = \pi /2,3\pi /2,\tau } \right) = dv = \frac{{ - F_{0} }}{2}\frac{{R_{o,r}^{3} }}{{4.2 \cdot 10^{11} I_{r} }}\left( {\frac{\pi }{4}\kappa_{1} - \frac{{2\kappa_{2}^{2} }}{\pi }} \right)\left( {1 + \sin (\overline{\Omega }_{ex} \tau )} \right) \\ \end{gathered} $$
(27)

The corresponding derivatives with respect to the dimensionless time are given in Eq. (28).

$$ \begin{gathered} d\dot{h} = \frac{{F_{0} }}{2}\frac{{R_{o,r}^{3} }}{{4.2 \cdot 10^{11} I_{r} }}\left( {\frac{2}{\pi }\kappa_{2}^{2} - \kappa_{2} + \frac{{\kappa_{1} }}{2}} \right)\left( {\overline{\Omega }_{ex} \cos (\overline{\Omega }_{ex} \tau )} \right) \hfill \\ d\dot{v} = \frac{{ - F_{0} }}{2}\frac{{R_{o,r}^{3} }}{{4.2 \cdot 10^{11} I_{r} }}\left( {\frac{\pi }{4}\kappa_{1} - \frac{{2\kappa_{2}^{2} }}{\pi }} \right)\left( {\overline{\Omega }_{ex} \cos (\overline{\Omega }_{ex} \tau )} \right) \hfill \\ \end{gathered} $$
(28)

The deformation of the outer ring and its rate of change are then evaluated in circumferential direction in Eq. (29), and in dimensionless form in Eq. (30).

$$ \begin{gathered} q_{r} \left( {\theta ,\tau } \right) = q_{r} = \sqrt {\left[ {\left( {R_{i,r} + dh} \right)\cos \theta } \right]^{2} + \left[ {\left( {R_{i,r} + dv} \right)\sin \theta } \right]^{2} } - R_{i,r} \\ \dot{q}_{r} \left( {\theta ,\tau } \right) = \dot{q}_{r} = \frac{{\left[ {\left( {R_{i,r} + dh} \right)\cos \theta } \right]\left[ {d\dot{h}\cos \theta } \right] + \left[ {\left( {R_{i,r} + dv} \right)\sin \theta } \right]\left[ {d\dot{v}\sin \theta } \right]}}{{q_{r} + R_{i,r} }} \\ \end{gathered} $$
(29)
$$ \begin{array}{*{20}c} {\overline{q}_{r} = \frac{{q_{r} }}{{c_{r} }},} & {\dot{\overline{q}}_{r} = \frac{{\dot{q}_{r} }}{{c_{r} }}} \\ \end{array} $$
(30)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimou, E., Dohnal, F., Chasalevris, A. (2023). On the Stability Margins of Parametrically Excited Rotating Shafts on Gas Foil Bearings: Linear and Nonlinear Approach. In: Chasalevris, A., Proppe, C. (eds) Advances in Active Bearings in Rotating Machinery. ABROM 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-32394-2_12

Download citation

Publish with us

Policies and ethics