Skip to main content

A Gaussian Mixture Clustering Approach Based on Extremal Optimization

  • Conference paper
  • First Online:
Hybrid Intelligent Systems (HIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 647))

Included in the following conference series:

  • 623 Accesses

Abstract

Many machine-learning approaches rely on maximizing the log-likelihood for parameter estimation. While for large sets of data this usually yields reasonable results, for smaller ones, this approach raises challenges related to the existence or number of optima, as well as to the appropriateness of the chosen model. In this paper, an Extremal optimization approach is proposed as an alternative to expectation maximization for the Gaussian Mixture Model, in an attempt to find parameters that better model the data than those provided by the direct maximization of the log-likelihood function. The behavior of the approach is illustrated by using numerical experiments on a set of synthetic and real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addagarla, S., Amalanathan, A.: Probabilistic unsupervised machine learning approach for a similar image recommender system for E-commerce. Symmetry 12(11), 1–17 (2020)

    Article  Google Scholar 

  2. Ansari, S., Du, H., Naghdy, F., Stirling, D.: Automatic driver cognitive fatigue detection based on upper body posture variations. Expert Syst. Appl. 203 (2022). https://doi.org/10.1016/j.eswa.2022.117568

  3. Bala Suresh, P., Nalinadevi, K.: Abnormal behaviour detection in smart home environments. In: Lecture Notes on Data Engineering and Communications Technologies, vol. 96, p. 300 (2022). https://doi.org/10.1007/978-981-16-7167-8_22

  4. Bang, J., Kim, C., Wu, K., Sim, A., Byna, S., Kim, S., Eom, H.: HPC workload characterization using feature selection and clustering, pp. 33–40 (2020). https://doi.org/10.1145/3391812.3396270

  5. Boettcher, S., Percus, A.G.: Optimization with extremal dynamics. Phys. Rev. Lett. 86, 5211–5214 (2001)

    Article  MATH  Google Scholar 

  6. Davagdorj, K., Wang, L., Li, M., Pham, V.H., Ryu, K., Theera-Umpon, N.: Discovering thematically coherent biomedical documents using contextualized bidirectional encoder representations from transformers-based clustering. Int. J. Environ. Res. Publ. Health 19(10) (2022). https://doi.org/10.3390/ijerph19105893

  7. De Salvio, D., D’Orazio, D., Garai, M.: Unsupervised analysis of background noise sources in active offices. J. Acoust. Soc. Am. 149(6), 4049–4060 (2021)

    Article  Google Scholar 

  8. Dousty, M., Zariffa, J.: Towards clustering hand grasps of individuals with spinal cord injury in egocentric video, pp. 2151–2154 (2020). https://doi.org/10.1109/EMBC44109.2020.9175918

  9. Dua, D., Graff, C.: UCI machine learning repository (2017). https://www.archive.ics.uci.edu/ml

  10. Greenwood, D., Taverner, T., Adderley, N., Price, M., Gokhale, K., Sainsbury, C., Gallier, S., Welch, C., Sapey, E., Murray, D., Fanning, H., Ball, S., Nirantharakumar, K., Croft, W., Moss, P.: Machine learning of COVID-19 clinical data identifies population structures with therapeutic potential. iScience 25(7) (2022). https://doi.org/10.1016/j.isci.2022.104480

  11. Guo, J., Chen, H., Shen, Z., Wang, Z.: Image denoising based on global image similar patches searching and HOSVD to patches tensor. EURASIP J. Adv. Signal Process. 2022(1) (2022). https://doi.org/10.1186/s13634-021-00798-4

  12. He, M., Guo, W.: An integrated approach for bearing health indicator and stage division using improved gaussian mixture model and confidence value. IEEE Trans. Ind. Inform. 18(8), 5219–5230 (2022). https://doi.org/10.1109/TII.2021.3123060

    Article  Google Scholar 

  13. Kamsing, P., Torteeka, P., Yooyen, S., Yenpiem, S., Delahaye, D., Notry, P., Phisannupawong, T., Channumsin, S.: Aircraft trajectory recognition via statistical analysis clustering for Suvarnabhumi International Airport, pp. 290–297 (2020). https://doi.org/10.23919/ICACT48636.2020.9061368

  14. Kwon, S., Seo, I., Noh, H., Kim, B.: Hyperspectral retrievals of suspended sediment using cluster-based machine learning regression in shallow waters. Sci. Total Environ. 833 (2022). https://doi.org/10.1016/j.scitotenv.2022.155168

  15. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: 2010 IEEE International Conference on Data Mining, pp. 911–916 (2010). https://doi.org/10.1109/ICDM.2010.35

  16. Lu, Y., Chen, Y., Chen, M., Chen, P., Zeng, G.: Extremal Optimization: fundamentals, Algorithms, and Applications. CRC Press (2018). https://www.books.google.ro/books?id=3jH3DwAAQBAJ

  17. Malinowski, M., Povinelli, R.: Using smart meters to learn water customer behavior. IEEE Trans. Eng. Manag. 69(3), 729–741 (2022). https://doi.org/10.1109/TEM.2020.2995529

    Article  Google Scholar 

  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Not. Am. Math. Soc. 50, 2003 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Computat. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7. https://www.sciencedirect.com/science/article/pii/0377042787901257

  21. Saranya, S., Poonguzhali, S., Karunakaran, S.: Gaussian mixture model based clustering of Manual muscle testing grades using surface Electromyogram signals. Physical and Engineering Sciences in Medicine 43(3), 837–847 (2020). https://doi.org/10.1007/s13246-020-00880-5

    Article  Google Scholar 

  22. Vakeel, A., Vantari, N., Reddy, S., Muthyapu, R., Chavan, A.: Machine learning models for predicting and clustering customer churn based on boosting algorithms and gaussian mixture model (2022). https://doi.org/10.1109/ICONAT53423.2022.9725957

    Article  Google Scholar 

  23. Wisesty, U., Mengko, T.: Comparison of dimensionality reduction and clustering methods for SARS-CoV-2 genome. Bull. Electr. Eng. Inform. 10(4), 2170–2180 (2021). https://doi.org/10.11591/EEI.V10I4.2803

  24. Zaki, M.J., Meira Jr., W.: Data Mining and Machine Learning: fundamental Concepts and Algorithms, 2 edn. Cambridge University Press (2020). https://doi.org/10.1017/9781108564175

  25. Zhang, B., Yan, X., Liu, G., Fan, K.: Multi-source fault diagnosis of chiller plant sensors based on an improved ensemble empirical mode decomposition gaussian mixture model. Energy Rep. 8, 2831–2842 (2022). https://doi.org/10.1016/j.egyr.2022.01.179

    Article  Google Scholar 

  26. Zhang, J., Lu, H., Sun, J.: Improved driver clustering framework by considering the variability of driving behaviors across traffic operation conditions. J. Transp. Eng. Part A: Syst. 148(7) (2022). https://doi.org/10.1061/JTEPBS.0000686

  27. Zhao, X.W., Ji, J.Z., Yao, Y.: Insula functional parcellation by searching Gaussian mixture model (GMM) using immune clonal selection (ICS) algorithm. Zhejiang Daxue Xuebao (Gongxue Ban)/J. Zhejiang Univ. (Eng Sci) 51(12), 2320–2331 (2017). https://doi.org/10.3785/j.issn.1008-973X.2017.12.003

Download references

This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2020-2360, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Ioana Lung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lung, R.I. (2023). A Gaussian Mixture Clustering Approach Based on Extremal Optimization. In: Abraham, A., Hong, TP., Kotecha, K., Ma, K., Manghirmalani Mishra, P., Gandhi, N. (eds) Hybrid Intelligent Systems. HIS 2022. Lecture Notes in Networks and Systems, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-031-27409-1_71

Download citation

Publish with us

Policies and ethics