Skip to main content

Control of Zoonotic TB: The Need for Multidisciplinary One Health Framework

  • Reference work entry
  • First Online:
Zoonoses: Infections Affecting Humans and Animals

Abstract

The increasing incidence of human tuberculosis (TB) caused by new mycobacterial strains such as Mycobacterium orygis and the syndemic relationship between TB and other endemic diseases have renewed interest in zoonotic TB (zTB) especially in Africa where control strategies and data are very limited. Furthermore, the animal-adapted mycobacterial species are intrinsically resistant to some of the first-line anti-TB medications. The main TB control tool using meat inspection and condemnation of suspected infected meat has not yielded the needed impact to reduce animal-to-human transmissions. There is therefore the need for a renewed energy involving the use of transdisciplinary measures to reduce the risk of the disease in both humans and animals. Such a measure requires scientific, sociocultural, and economic efforts to implement and sustain effective strategies for prevention and control of zoonotic TB transmission. In this chapter, we have elaborated on the importance of using the “One Health” concept in the control of zTB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afolayan AJ, Yakubu MT (2009) Erectile dysfunction management options in Nigeria. J Sex Med 6(4):1090–1102. [PubMed]

    Article  PubMed  Google Scholar 

  • Asante-Poku A, Aning KG, Boi-Kikimoto B, Yeboah-Manu D (2014) Prevalence of bovine tuberculosis in a dairy cattle farm and a research farm in Ghana. Onderstepoort j vet res [Internet] [cited 2022 Aug 27] 81(2):1–6. Available from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0030-24652014000200009&lng=en

  • Asseged B, Woldesenbet Z, Yimer E, Lemma E (2004) Evaluation of abattoir inspection for the diagnosis of Mycobacterium bovis infection in cattle at Addis Ababa abattoir. Trop Anim Health Prod 36(6):537–546

    Article  CAS  PubMed  Google Scholar 

  • Ayele WY, Neill SD, Zinsstag J, Weiss MG, Pavlik I (2004) Bovine tuberculosis: an old disease but a new threat to Africa. Int J Tuberc Lung Dis 8(8):924–937

    CAS  PubMed  Google Scholar 

  • Bayissa B, Sirak A, Worku A, Zewude A, Zeleke Y, Chanyalew M, Gumi B, Berg S, Conlan A, Hewinson RG, Wood JLN, Vordermeier HM, Ameni G (2021) Evaluation of the efficacy of BCG in protecting against contact challenge with bovine tuberculosis in Holstein-Friesian and Zebu Crossbred Calves in Ethiopia. Front Vet Sci 8(July):1–14. https://doi.org/10.3389/fvets.2021.702402

    Article  Google Scholar 

  • Bonnet I, Enouf V, Morel F, Ok V, Jaffré J, Jarlier V et al (2021) A comprehensive evaluation of GeneLEAD VIII DNA platform combined to Deeplex Myc-TB® assay to detect in 8 days drug resistance to 13 antituberculous drugs and transmission of mycobacterium tuberculosis complex directly from clinical samples. Front Cell Infect Microbiol 11. https://doi.org/10.3389/fcimb.2021.707244

  • Bonsu OA, Laing E, Akanmori BD (2000) Prevalence of tuberculosis in cattle in the Dangme-West district of Ghana, public health implications. Acta Trop 76(1):9–14. https://doi.org/10.1016/s0001-706x(00)00082-6. PMID: 10913759

    Article  CAS  PubMed  Google Scholar 

  • Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB, Warren R et al (2018) A new phylogenetic framework for the animal-adapted mycobacterium tuberculosis complex. Front Microbiol 9(November):2820

    Article  PubMed  PubMed Central  Google Scholar 

  • Buddle BM, Wedlock DN, Denis M (2006) Progress in the development of tuberculosis vaccines for cattle and wildlife. Vet Microbiol 112(2–4 SPEC. ISS):191–200. https://doi.org/10.1016/j.vetmic.2005.11.027

    Article  CAS  PubMed  Google Scholar 

  • Buddle BM, Parlane NA, Wedlock DN, Heiser A (2013) Overview of vaccination trials for control of tuberculosis in cattle, wildlife and humans. Transbound Emerg Dis 60(SUPPL1):136–146. https://doi.org/10.1111/tbed.12092

    Article  PubMed  Google Scholar 

  • Canto Alarcon GJ, Rubio Venegas Y, Bojorquez Narvaez L, Pizano Martínez OE, García Casanova L, Sosa Gallegos S, Nava Vargas A, Olvera Ramírez AM, Milian Suazo F (2013) Efficacy of a vaccine formula against tuberculosis in cattle. PLoS One 8(10):1–7. https://doi.org/10.1371/journal.pone.0076418

    Article  CAS  Google Scholar 

  • Carruth L, Roess AA, Mekonnen YT, Melaku SK, Nichter M, Salman M (2016) Zoonotic tuberculosis in Africa: challenges and ways forward. Lancet 388(10059):2460–2461. https://doi.org/10.1016/S0140-6736(16)32186-9. PMID: 27871735; PMCID: PMC7135042

    Article  PubMed  PubMed Central  Google Scholar 

  • Contreras-Magallanes YG, Durán-Aguilar M, Sosa-Gallegos SL, Álvarez ÁH, Andrade-Santillán FA, Bárcenas-Reyes I, González-Ruíz S, Rodríguez-Hernández E, Cantó-Alarcón GJ, Milián-Suazo F (2021) Prime vaccination with chitosan-coated phipps bcg and boosting with cfp-plga against tuberculosis in a goat model. Animals 11(4):1–16. https://doi.org/10.3390/ani11041046

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78(2):103–116. [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • De la Rua-Domenech R, Goodchild A, Vordermeier H, Hewinson R, Christiansen K, Clifton-Hadley RS (2006) Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res Vet Sci 81(2):190–210

    Article  PubMed  Google Scholar 

  • de Macedo CR, Santana GO, Ranzani OT, Waldman EA (2022) One Health and surveillance of zoonotic tuberculosis in selected low-income, middle-income and high-income countries: a systematic review. PLoS Negl Trop Dis 16(6):e0010428. https://doi.org/10.1371/journal.pntd.0010428. PMID: 35666731; PMCID: PMC9203019

    Article  Google Scholar 

  • de Merode E, Cowlishaw G (2006) Species protection, the changing informal economy, and the politics of access to the bushmeat trade in the Democratic Republic of Congo. Conserv Biol 20(4):1262–1271. [PubMed]

    Article  PubMed  Google Scholar 

  • Duffy SC, Srinivasan S, Schilling MA, Stuber T, Danchuk SN, Michael JS et al (2020) Reconsidering Mycobacterium bovis as a proxy for zoonotic tuberculosis: a molecular epidemiological surveillance study. Lancet Microbe 1(2):e66–e73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Achkar S, Demanche C, Osman M, Rafei R, Ismail MB, Gaudin C et al (2020) Zoonotic tuberculosis in humans assessed by next-generation sequencing: an 18-month nationwide study in Lebanon. Eur Respir J 55(1):1900513. https://doi.org/10.1183/13993003.00513-2019

    Article  PubMed  Google Scholar 

  • Etter E, Donado P, Jori F, Caron A, Goutard F, Roger F (2006) Risk analysis and bovine tuberculosis, a re-emerging zoonosis. Ann N Y Acad Sci 1081:61–73. https://doi.org/10.1196/annals.1373.006

    Article  PubMed  Google Scholar 

  • Grace D, Gilbert J, Randolph T, Kang’ethe E. (2012) The multiple burdens of zoonotic disease and an ecohealth approach to their assessment. Trop Anim Health Prod 44:67. https://doi.org/10.1007/s11250-012-0209-y

    Article  Google Scholar 

  • Hannan MM, Desmond EP, Morlock GP, Mazurek GH, Crawford JT (2001) Pyrazinamide-monoresistant Mycobacterium tuberculosis in the United States. J Clin Microbiol 39(2):647–650. https://doi.org/10.1128/JCM.39.2.647-650.2001. PMID: 11158123; PMCID: PMC87792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzman JD (2006) Food and memory. Annu Rev Anthropol 35(1):361–378

    Article  Google Scholar 

  • Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Żaczek A et al (2016) Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin Microbiol Rev 29(2):239–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouet A, Gaudin C, Badalato N, Allix-Béguec C, Duthoy S, Ferré A et al (2021) Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J 57(3):2002338. https://doi.org/10.1183/13993003.02338-2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakati LN, Ao B, Doulo V (2006) Indigenous knowledge of zootherapeutic use of vertebrate origin by the Ao tribe of Nagaland. J Hum Ecol 19(3):163–167

    Article  Google Scholar 

  • Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK (2021) Human tuberculosis and Mycobacterium tuberculosis complex: a review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res 246:126674. https://doi.org/10.1016/j.micres.2020.126674. Epub 2021 Jan 29 PMID: 33549960

    Article  CAS  PubMed  Google Scholar 

  • Kibuuka D, Mpofu C, Neave P, Manda S (2021) A spatial analysis of tuberculosis related mortality in South Africa. Int J Environ Res Public Health 18(22):11865. https://doi.org/10.3390/ijerph182211865. PMID: 34831621; PMCID: PMC8618270

    Article  PubMed  PubMed Central  Google Scholar 

  • Klepp LI, Eirin ME, Garbaccio S, Soria M, Bigi F, Blanco FC (2019) Identification of bovine tuberculosis biomarkers to detect tuberculin skin test and IFNγ release assay false negative cattle. Res Vet Sci 122:7–14. https://doi.org/10.1016/j.rvsc.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  • Kock R, Michel AL, Yeboah-Manu D, Azhar EI, Torrelles JB, Cadmus SI, Brunton L, Chakaya JM, Marais B, Mboera L, Rahim Z, Haider N, Zumla A (2021) Zoonotic tuberculosis - the changing landscape. Int J Infect Dis 113 Suppl 1(Suppl 1):S68–S72. https://doi.org/10.1016/j.ijid.2021.02.091. Epub 2021 Mar 10. PMID: 33713812; PMCID: PMC8672060

    Article  CAS  PubMed  Google Scholar 

  • Lamy E, van Harten S, Sales-Baptista E, Guerra MMM, Almeida AM (2012) Chapter 2: factors influencing livestock productivity. In: Seijan V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds) Environmental stress and amelioration in livestock production. Springer-Verlag, Berlin Heidelberg, pp 19–51. https://doi.org/10.1007/978-3-642-29205-7_2

    Chapter  Google Scholar 

  • Lange C, Aaby P, Behr MA, Donald PR, Kaufmann SHE, Netea MG, Mandalakas AM (2022) 100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infect Dis 22(1):e2–e12. https://doi.org/10.1016/S1473-3099(21)00403-5

    Article  CAS  PubMed  Google Scholar 

  • Lesellier S, Palmer S, Gowtage-Sequiera S, Ashford R, Dalley D, Davé D, Weyer U, Salguero FJ, Nunez A, Crawshaw T, Corner LAL, Hewinson RG, Chambers MA (2011) Protection of Eurasian badgers (Meles meles) from tuberculosis after intra-muscular vaccination with different doses of BCG. Vaccine 29(21):3782–3790. https://doi.org/10.1016/j.vaccine.2011.03.028

    Article  CAS  PubMed  Google Scholar 

  • Lopes PH, Akweongo P, Wurapa F, Afari E, Sackey S, Ocansey D, Nyarko KM (2016) Bovine tuberculosis surveillance system evaluation, Greater-Accra Region, Ghana, 2006-2011. Pan Afr Med J 25(Suppl 1):10. https://doi.org/10.11604/pamj.supp.2016.25.1.6181. PMID: 28149435; PMCID: PMC5257018

    Article  PubMed  PubMed Central  Google Scholar 

  • Luciano SA, Roess A (2020) Human zoonotic tuberculosis and livestock exposure in low- and middle-income countries: a systematic review identifying challenges in laboratory diagnosis. Zoonoses Public Health 67(2):97–111. https://doi.org/10.1111/zph.12684. Epub 2020 Jan 9. PMID: 31919980; PMCID: PMC7027859

    Article  PubMed  PubMed Central  Google Scholar 

  • Macpherson CNL (2005) Human behaviour and the epidemiology of parasitic zoonoses. Int J Parasitol 35(11–12):1319–1331. [PubMed]

    Article  PubMed  Google Scholar 

  • Mahawar MM, Jaroli DP (2008) Traditional zootherapeutic studies in India: a review. J Ethnobiol Ethnomed 4(1):17. [PMC free article] [PubMed]

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin M, Mathias E, McCorkle CM (2001) Ethnoveterinary medicine: an annotated bibliography of community animal healthcare. ITDG Publishing, London

    Book  Google Scholar 

  • Mathias E, McCorkle CM (2004) Traditional livestock healers. Rev Sci Tech 23(1):277–284. [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Meiring C, van Helden PD, Goosen WJ (2018) TB control in humans and animals in South Africa: a perspective on problems and successes. Front Vet Sci 27(5):298. https://doi.org/10.3389/fvets.2018.00298. PMID: 30542655; PMCID: PMC6277860

    Article  Google Scholar 

  • Mishra A, Singhal A, Chauhan DS, Katoch VM, Srivastava K, Thakral SS et al (2005) Direct detection and identification of Mycobacterium tuberculosis and Mycobacterium bovis in bovine samples by a novel nested PCR assay: correlation with conventional techniques. J Clin Microbiol 43(11):5670–5678. https://doi.org/10.1128/JCM.43.11.5670-5678.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nara PL, Nara D, Chaudhuri R, Lin G, Tobin G (2008) Perspectives on advancing preventative medicine through vaccinology at the comparative veterinary, human and conservation medicine interface: not missing the opportunities. Vaccine 26:6200–6211

    Article  PubMed  PubMed Central  Google Scholar 

  • Niemann S, Richter E, Rüsch-Gerdes S (2000) Differentiation among members of the Mycobacterium tuberculosis complex by molecular and biochemical features: evidence for two pyrazinamide-susceptible subtypes of M. bovis. J Clin Microbiol 38(1):152–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otte MJ, Chilonda P (2002) Cattle and small ruminant production Systems in sub-Saharan Africa. A systematic. Review 32:183

    Google Scholar 

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405. [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Portillo-Gómez L, Sosa-Iglesias EG (2011) Molecular identification of Mycobacterium bovis and the importance of zoonotic tuberculosis in Mexican patients. Int J Tubercul Lung Dis 15(10):1409–1414

    Article  Google Scholar 

  • Rahman MT, Sobur MA, Islam MS, Ievy S, Hossain MJ, El Zowalaty ME, Rahman AT, Ashour HM (2020) Zoonotic diseases: etiology, impact, and control. Microorganisms 8(9):1405. https://doi.org/10.3390/microorganisms8091405. PMID: 32932606; PMCID: PMC7563794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos D, Silva P, Dellagostin OA (2015) Diagnosis of bovine tuberculosis: review of main techniques. Braz J Biol 75:830–837

    Article  CAS  PubMed  Google Scholar 

  • Robinson RA, Mainzer H, Chomel B, Bender J (2003) Surveillance methodologies for zoonotic disease at community levels expert consultation on community based public health (VPH) systems. FAO, Rome, pp 27–28

    Google Scholar 

  • Sanou A, Dicko A, Sow KR, Djibougou A, Kabore A, Diarra B, Ouedraogo AK, Zingue D, Nouctara M, Tarnagda Z (2021) Epidemiology and microscopic diagnosis of tuberculosis in pigs and small ruminants slaughtered at Bobo-Dioulasso abattoir, Burkina Faso Onderstepoort. J Vet Res 88(1):e1–e6. https://doi.org/10.4102/ojvr.v88i1.1908. PMID: 34879685; PMCID: PMC8678950

    Article  Google Scholar 

  • Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2(6):662–667. https://doi.org/10.1038/nm0696-662

    Article  CAS  PubMed  Google Scholar 

  • Seung KJ, Keshavjee S, Rich ML (2015) Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 5(9):a017863. https://doi.org/10.1101/cshperspect.a017863. PMID: 25918181; PMCID: PMC4561400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanklin E (1985) Sustenance and symbol: anthropological studies of domesticated animals. Annu Rev Anthropol 14:375–403

    Article  Google Scholar 

  • Soewu DA (2008) Wild animals in ethnozoological practices among the Yorubas of Southwestern Nigeria and the implications for biodiversity conservation. Afr J Agric Res 3(6):421–427

    Google Scholar 

  • Sreevatsan S, Escalante P, Pan X, Gillies DA 2nd, Siddiqui S, Khalaf CN et al (1996) Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol 34(8):2007–2010. https://doi.org/10.1128/jcm.34.8.2007-2010.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whelan AO, Clifford D, Upadhyay B, Breadon EL, McNair J, Hewinson GR, Vordermeier MH (2010) Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J Clin Microbiol 48(9):3176–3181. https://doi.org/10.1128/JCM.00420-10

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO), Food and Agriculture Organization of the United Nations: Road Map for Zoonotic Tuberculosis (2017)

    Google Scholar 

  • Yeboah-Manu D, Asare P, Asante-Poku A, Otchere ID, Osei-Wusu S, Danso E et al (2016) Spatio-temporal distribution of Mycobacterium tuberculosis complex strains in Ghana. PLoS One 11(8):e0161892

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinsstag J, Schelling E, Roth F, Kazwala R (2008) Chapter 9. Economics of bovine tuberculosis. In: Thoen CO, Steele JH, Gilsdorf ML (eds) Mycobacterium bovis infection in animals and humans, 2nd edn. Blackwell Publishing, Ames

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isaac Darko Otchere , Prince Asare , Stephen Osei-Wusu , Eric Koka or Dorothy Yeboah-Manu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Asante-Poku, A., Otchere, I.D., Asare, P., Osei-Wusu, S., Koka, E., Yeboah-Manu, D. (2023). Control of Zoonotic TB: The Need for Multidisciplinary One Health Framework. In: Sing, A. (eds) Zoonoses: Infections Affecting Humans and Animals. Springer, Cham. https://doi.org/10.1007/978-3-031-27164-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27164-9_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27163-2

  • Online ISBN: 978-3-031-27164-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics