Skip to main content

Management of Acute Respiratory Distress Syndrome

  • Reference work entry
  • First Online:
Airway Diseases

Abstract

Acute respiratory distress syndrome (ARDS) was first described in a case-based report in 1967 [1]. After this date, various definitions of ARDS were made, and the specific diagnostic criteria determined at the American-European consensus conference in 1994 were accepted for a long time [2]. According to these criteria, ARDS was defined as acute onset, and bilateral infiltrates on chest X-ray (CXR), absence of heart failure to explain this condition, and partial oxygen pressure/inspired oxygen fraction (PaO2/FiO2) ratio in arterial blood below 200 (Figs. 1 and 2). Patients with a PaO2/FiO2 ratio below 300 according to their oxygenation status were considered acute lung injury (ALI). In this definition, no positive end-expiratory pressure (PEEP) values and risk factors were specified, and an acute onset of which the exact duration was not specified was mentioned. Due to the limitations determined in these criteria over time, new diagnostic criteria were proposed by the European Intensive Care Association and published as a consensus report in 2012 [3]. According to this definition, which is called the Berlin definition, every patient with acute onset, characterized by bilateral lung infiltrates, whose clinical picture cannot be explained by heart failure, and hypoxemia with a PaO2/FiO2 < 300 below the minimum PEEP value is considered as ARDS (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet. 1967;2(7511):319–23.

    CAS  PubMed  Google Scholar 

  2. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24.

    CAS  PubMed  Google Scholar 

  3. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.

    PubMed  Google Scholar 

  4. Brun-Buisson C, Minelli C, Bertolini G, et al. Epidemiology and outcome of acute lung injury in European intensive care units: results from the ALIVE study. Intensive Care Med. 2004;30:51–61.

    PubMed  Google Scholar 

  5. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–93.

    CAS  PubMed  Google Scholar 

  6. Pham T, Rubenfeld GD. The epidemiology of acute respiratory distress syndrome. A 50th birthday review. Am J Respir Crit Care Med. 2017;195(7):860–70.

    PubMed  Google Scholar 

  7. Luhr OR, Antonsen K, Karlsson M, et al. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. Am J Respir Crit Care Med. 1999;159:1849–61.

    CAS  PubMed  Google Scholar 

  8. Bersten AD, Edibam C, Hunt T, et al. Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian states. Am J Respir Crit Care Med. 2002;165:443–8.

    PubMed  Google Scholar 

  9. Sakr Y, Vincent JL, Reinhart K, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128:3098–108.

    PubMed  Google Scholar 

  10. Irish Critical Care Trials Group. Acute lung injury and the acute respiratory distress syndrome in Ireland: a prospective audit of epidemiology and management. Crit Care. 2008;12:R30.

    Google Scholar 

  11. Villar J, Blanco J, Añón JM, et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 2011;37:1932–41.

    PubMed  Google Scholar 

  12. Herridge MS, Moss M, Hough CL, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42:725–38.

    PubMed  Google Scholar 

  13. Bein T, Weber-Carstens S, Apfelbacherc C. Long-term outcome after the acute respiratory distress syndrome: different from general critical illness? Curr Opin Crit Care. 2018;24(1):35–40.

    PubMed  PubMed Central  Google Scholar 

  14. Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.

    CAS  PubMed  Google Scholar 

  15. Bienvenu OJ, Colantuoni E, Mendez-Tellez PA, et al. Co-occurrence of and remission from general anxiety, depression, and post-traumatic stress disorder symptoms after acute lung injury: a 2-year longitudinal study. Crit Care Med. 2015;43(3):642–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan SS, Bakker J, Hoogendoorn ME, et al. Direct cost analysis of intensive care unit stay in four European countries: applying a standardized costing methodology. Value Health. 2012;15(1):81–6.

    PubMed  Google Scholar 

  17. Meyer NJ, Gattinoni L, Calfee CS, et al. Acute respiratory distress syndrome. Lancet. 2021;398(10300):622–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moss M, Parsons PE, Steinberg KP, et al. Chronic alcohol abuse is associated with an increased incidence of acute respiratory distress syndrome and severity of multiple organ dysfunction in patients with septic shock. Crit Care Med. 2003;31:869–77.

    PubMed  Google Scholar 

  19. Kaphalia L, Calhoun WJ. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol Lett. 2013;222:171–9.

    CAS  PubMed  Google Scholar 

  20. Hsieh SJ, Zhuo H, Benowitz NL, et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Prevalence and impact of active and passive cigarette smoking in acute respiratory distress syndrome. Crit Care Med. 2014;42:2058–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Calfee CS, Matthay MA, Kangelaris KN, et al. Cigarette smoke exposure and the acute respiratory distress syndrome. Crit Care Med. 2015;43:1790–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18.

    PubMed  PubMed Central  Google Scholar 

  23. Sweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet. 2016;388(10058):2416–30.

    PubMed  PubMed Central  Google Scholar 

  24. Acosta-Herrera M, Pino-Yanes M, Perez-Mendez L, et al. Assessing the quality of studies supporting genetic susceptibility and outcomes of ARDS. Front Genet. 2014;5:1–6.

    CAS  Google Scholar 

  25. Liu C, Jg L. Role of genetic factors in the development of acute respiratory distress syndrome. J Transl Intern Med. 2014;2:107.

    Google Scholar 

  26. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crandall ED, Matthay MA. Alveolar epithelial transport basic science to clinical medicine. Am J Respir Crit Care Med. 2001;163:1021–9.

    CAS  PubMed  Google Scholar 

  28. Boluktas RP, Kalaycıoglu G, Uceriz A. Acute respiratory distress syndrome in the light of current literature. Kocaeli Med J. 2021;10(Ek Sayı 2):148–59.

    Google Scholar 

  29. Swenson KE, Swenson ER. Acute respiratory distress syndrome and pathophysiology of COVID-19 lung injury. Crit Care Clinic. 2021;37(4):749–76.

    Google Scholar 

  30. Shaver CM, Bastarache JA. Clinical and biological heterogeneity in ARDS: direct versus indirect lung injury. Clin Chest Med. 2015;35(4):639–53.

    Google Scholar 

  31. Matthay MA, Zemans RL, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18.

    PubMed  PubMed Central  Google Scholar 

  32. Zimmerman GA, Albertine KH, Carveth HJ, et al. Endothelial activation in ARDS. Chest. 1999;116(ek):18–24S.

    Google Scholar 

  33. Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(6):1376–83.

    CAS  PubMed  Google Scholar 

  34. Pugin J, Verghese G, Widmer MC, et al. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med. 1999;27(2):304–12.

    CAS  PubMed  Google Scholar 

  35. Diamond M, Feliciano HLP, Sanghavi D, et al. Acute respiratory distress syndrome (ARDS). Florida: StatPearls Publishing; 2020.

    Google Scholar 

  36. Fan E, Needham DM, Stewart TE. Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA. 2005;294(22):2889–96.

    CAS  PubMed  Google Scholar 

  37. Pelosi P, Rocco PRM, Gama de Abreu M. Close down the lungs and keep them resting to minimize ventilator-induced lung injury. Crit Care. 2018;22(1):72.

    PubMed  PubMed Central  Google Scholar 

  38. Fan E, Del Sorbo L, Goligher EC, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63.

    PubMed  Google Scholar 

  39. Dreyfuss D, Basset G, Soler P, et al. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132:880–4.

    CAS  PubMed  Google Scholar 

  40. Yalcin A. Acute respiratory distress syndrome. Güncel Göğüs Hastalıkları Serisi. 2018;6(2):146–56.

    Google Scholar 

  41. Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1998;137:1159–64.

    Google Scholar 

  42. Slutsky AS. Consensus conference on mechanical ventilation-January 28–30, 1993 at Northbrook, Illinois, USA part I. European Society of Intensive Care Medicine, the ACCP and the SCCM. Intensive Care Med. 1993;20:64–79.

    Google Scholar 

  43. Network ARDS; The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as comparedwith traditional tidal volumes for acute lung injury and theacute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Google Scholar 

  44. Walkey AJ, Goligher EC, Del Sorbo L, et al. Low tidal volume versus non-volume-limited strategies for patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Suppl 4):271–9.

    Google Scholar 

  45. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(08):747–55.

    CAS  PubMed  Google Scholar 

  46. Bugedo G, Retamal J, Bruhn A. Driving pressure: a marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care. 2017;21:199.

    PubMed  PubMed Central  Google Scholar 

  47. Vargas M, Sutherasan Y, Gregoretti C, et al. PEEP role in ICU and operating room: from pathophysiology to clinical practice. Sci World J. 2014;2014:852356.

    CAS  Google Scholar 

  48. Fielding-Singh V, Matthay MA, Calfee CS. Beyond low tidal volume ventilation: therapeutic aids for severe respiratory failure in acute respiratory distress syndrome. Crit Care Med. 2018;46(11):1820–31.

    PubMed  PubMed Central  Google Scholar 

  49. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.

    PubMed  Google Scholar 

  50. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–45.

    CAS  PubMed  Google Scholar 

  51. Briel M, Meade M, Mercat A, et al. Higher versus lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73.

    CAS  PubMed  Google Scholar 

  52. Cruz RS, Rojas JI, Nervi R, et al. High versus low positive end-expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;2013(6):CD009098.

    Google Scholar 

  53. Claesson J, Freundlich M, Gunnarsson I, et al. Scandinavian clinical practice guideline on mechanical ventilation in adults with the acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2015;59(3):286–97.

    CAS  PubMed  Google Scholar 

  54. Temel Aksu N, Erdoğan A. Acute respiratory distress syndrome and mechanical ventilation strategies. Hum Sci. 2018;15(1):527–40.

    Google Scholar 

  55. Altınas ND, Topelli IA. Akut solunum sıkıntısı sendromutanısı ve tedavisinde güncel yaklaşımlar. Tüberküloz ve Toraks Dergisi. 2009;57(2):228–36.

    Google Scholar 

  56. Menk M, Estenssoro E, Sahetya SK, et al. Current and evolving standards of care for patients with ARDS. Intensive Care Med. 2020;46(12):2157–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sahetya SK, Hager DN, Stephens RS, et al. PEEP titration to minimize driving pressure in subjects with ards: a prospective physiological study. Respir Care. 2020;65:583–9.

    PubMed  Google Scholar 

  58. Chen L, Sorbo LD, Grieco DL, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. Am J Respir Crit Care. 2020;201(2):178–87.

    Google Scholar 

  59. Ferguson N, Stewart TE. New therapies for adultswith acute lung injury. High frequency oscillatoryventilation. Crit Care Clin. 2002;18:91–106.

    PubMed  Google Scholar 

  60. Gül Gürsel, Akut Solunum Sıkıntısı Sendromu (ARDS)’nda“Recruitment” Manevraları ve Optimum PEEP Ayarı. Yoğun Bakım Dergisi. 2003;3(1):22–32.

    Google Scholar 

  61. Martínez Ó, Nin N, Esteban A. Prone position for the treatment of acute respiratory distress syndrome: a review of current literature. Arch Bronconeumol. 2009;45:291–6.

    PubMed  Google Scholar 

  62. Vasilios K, Papathanakos G, Papathanasiou A, et al. Efficacy of prone position in patients with acute respiratory distress syndrome: a pathophysiology-based review. World J Crit Care Med. 2016;5(2):121–36.

    Google Scholar 

  63. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    PubMed  Google Scholar 

  64. Hess DR, Bigatello LM. Lung recruitment: the role of recruitment maneuvers. Respir Care. 2002;47(3):308–17.

    PubMed  Google Scholar 

  65. Sklar MC, Patel BK, Beitler JR, et al. Optimal ventilator strategies in acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40(1):81–93.

    PubMed  PubMed Central  Google Scholar 

  66. Borges JB, Okamoto VN, Matos GF, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. J Respir Crit Care Med. 2006;174(03):268–78.

    Google Scholar 

  67. Hodgson C, Keating JL, Holland AE, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation. Cochrane Veritabanı Syst Rev. 2009;2:CD006667.

    Google Scholar 

  68. Suzumura EA, Figueiró M, Normilio-Silva K, et al. Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Med. 2014;40:1227–40.

    PubMed  Google Scholar 

  69. Fan E, Wilcox ME, Brower RG, et al. Recruitment maneuvers for acute lung injury a systematic review. Am J Respir Crit Care Med. 2008;178:1156–63.

    PubMed  Google Scholar 

  70. Walkey AJ, Summer R, Ho V, et al. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol. 2012;4:159–70.

    PubMed  PubMed Central  Google Scholar 

  71. Ferguson N, Slutsky A. Last word on point: counterpoint: high-frequency ventilation is/is not the optimal physiological approach to ventilate ARDS patients. J Appl Physiol. 2008;104(04):1240.

    PubMed  Google Scholar 

  72. Young D, Lamb SE, Shah S, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13.

    CAS  PubMed  Google Scholar 

  73. Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805.

    CAS  PubMed  Google Scholar 

  74. Alessandri F, Pugliese F, Ranieri VM. The role of rescue therapies in the treatment of severe ARDS. Respir Care. 2018;63(1):92–101.

    PubMed  Google Scholar 

  75. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.

    PubMed  Google Scholar 

  76. Kumar A, Zarychanski R, Pinto R, et al. Critically ill patients with 2009 influenza a(H1N1) infection in Canada. JAMA. 2009;302(17):1872–9.

    CAS  PubMed  Google Scholar 

  77. Combes A, Schmidt M, Hodgson CL, et al. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med. 2020;46:2464–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Abrams D, Pham T, Burns KEA, et al. Practice patterns and ethical considerations in the management of venovenous extracorporeal membrane oxygenation patients: an international survey. Crit Care Med. 2019;47:1346–55.

    CAS  PubMed  Google Scholar 

  79. Akarsu Ayazoglu T, Onk D. Extracorporeal life support for patients with acute respiratory distress syndrome: review. J Turk Soc Intensive Care. 2015;13:95–106.

    Google Scholar 

  80. Combes A, Bacchetta M, Brodie D, et al. Extracorporeal membrane oxygenation for respiratory failure in adults. Curr Opin Crit Care. 2012;18:99–104.

    PubMed  Google Scholar 

  81. Martinez G, Vuylsteke A. Extracorporeal membrane oxygenation in adults. Cont Edu Anaesth Crit Care Pain. 2012;12:57–61.

    Google Scholar 

  82. Chanques G, Constantin JM, Devlin JW, et al. Analgesia and sedation in patients with ARDS. Intensive Care Med. 2020;46(12):2342–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hraiech S, Yoshida T, Annane D, et al. Myorelaxants in ARDS patients. Intensive Care Med. 2020;7:1–16.

    Google Scholar 

  84. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.

    CAS  PubMed  Google Scholar 

  85. The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997–2008.

    Google Scholar 

  86. Chang W, Sun Q, Peng F, et al. Validation of neuromuscular blocking agentuse in acute respiratory distress syndrome: a meta-analysis of randomized trials. Crit Care. 2020;24:54.

    PubMed  PubMed Central  Google Scholar 

  87. Hua Y, Ou X, Li Q, et al. Neuromuscular blockers in the acute respiratory distress syndrome: a meta-analysis. PLoS One. 2020;15(1):e0227664.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei XB, Wang ZH, Liao XL, et al. Role of neuromuscular blocking agents in acute respiratory distress syndrome: an updated meta-analysis of randomized controlled trial. Front Pharmacol. 2019;10:1637.

    CAS  PubMed  Google Scholar 

  89. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9:69.

    PubMed  PubMed Central  Google Scholar 

  90. Lewis SR, Pritchard MW, Thomas CM, et al. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Veritabanı Sistemi Rev. 2019;7(7):CD004477.

    Google Scholar 

  91. Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8:267–76.

    CAS  PubMed  Google Scholar 

  92. Ruan SY, Lin HH, Huang CT, et al. The heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care. 2014;18(2):R63.

    PubMed  PubMed Central  Google Scholar 

  93. Agarwal R, Nath A, Aggarwal AN, et al. Do glucocorticoids decrease mortality in acute respiratory distress syndrome? A meta-analysis. Respirology. 2007;12(4):585–90.

    PubMed  Google Scholar 

  94. Peter JV, John P, Graham PL, et al. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008;336:1006–9.

    PubMed  PubMed Central  Google Scholar 

  95. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384:693–704.

    CAS  PubMed  Google Scholar 

  96. Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324:1330–41.

    CAS  PubMed  Google Scholar 

  97. Matthay MA, Arabi YM, Siegel ER, et al. Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Med. 2020;46(12):2136–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gebistorf F, Karam O, Wetterslev J, et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Veritabanı Syst Rev. 2016;6:CD002787.

    Google Scholar 

  99. Cho YJ, Moon JY, Shin ES, et al. Acute respiratory distress syndrome clinical practice guidelines. Tuberc Respir Dis (Seoul). 2016;79(4):214–33.

    PubMed  Google Scholar 

  100. McAuley DF, Laffey JG, O’Kane CM, et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371(18):1695–703.

    PubMed  Google Scholar 

  101. The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med. 2014;370:2191–200.

    Google Scholar 

  102. Smith FG, Perkins GD, Gates S, et al. Effect of intravenous β2-agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet. 2012;379:229–35.

    CAS  PubMed Central  Google Scholar 

  103. The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Randomized, placebo-controlled clinical trial of an aerosolized Beta-2 agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011;184:561–8.

    Google Scholar 

  104. The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early high-dose vitamin D3 for critically ill, vitamin D-deficient patients. N Engl J Med. 2019;381:2529–40.

    Google Scholar 

  105. Fowler AA, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019;322(13):1261–70.

    PubMed  PubMed Central  Google Scholar 

  106. Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32.

    PubMed  Google Scholar 

  107. Gupta N, Su X, Popov B, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007;179:1855–63.

    CAS  PubMed  Google Scholar 

  108. Lee JW, Fang X, Gupta N, et al. Allogenic human mesenchymal stem cells for treatment of E.coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A. 2009;106:16357–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng G, Lanfang H, Tong H, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res. 2014;15:39.

    PubMed  PubMed Central  Google Scholar 

  110. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    Google Scholar 

  111. Vignon P, Evrard B, Asfar P, et al. Fluid administration and monitoring in ARDS: which management? Intensive Care Med. 2020;46(12):2252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Initial trophic and full enteral nutrition in patients with acute lung injury. JAMA. 2012;307(8):795–803.

    Google Scholar 

  113. Sinha P, Bos LD. Pathophysiology of acute respiratory distress syndrome. Crit Care Clinic. 2021;37(4):795–815.

    Google Scholar 

  114. Lynn H, Sun X, Casanova N, et al. Genomic and genetic approaches to deciphering acute respiratory distress syndrome risk and mortality. Antioxid Redox Signal. 2019;31(14):1027–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Calfee CS, Janz DR, Bernard GR, et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest. 2015;147(6):1539–48.

    PubMed  Google Scholar 

  116. Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2(8):611–20.

    PubMed  PubMed Central  Google Scholar 

  117. Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6(9):691–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. van der Zee P, Rietdijk W, Somhorst P, et al. A systematic review of multivariate associated biomarkers with acute respiratory distress syndrome development and mortality. Crit Care. 2020;24(1):243.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eroglu, S.A., Yildiz, T. (2023). Management of Acute Respiratory Distress Syndrome. In: Cingi, C., Yorgancıoğlu, A., Bayar Muluk, N., Cruz, A.A. (eds) Airway Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-22483-6_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22483-6_103-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22482-9

  • Online ISBN: 978-3-031-22483-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics