Skip to main content

Fitting Curves of Ruminal Degradation Using a Metaheuristic Approach

  • Chapter
  • First Online:
Engineering Applications of Modern Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1069))

  • 216 Accesses

Abstract

The use of the modeling process in animal nutrition has found many applications. Therefore, using artificial intelligence and optimization techniques is inevitable to pay attention to all the needs and nutrient degradability and degradation fraction. This study aimed to investigate the use of particle swarm optimization (PSO) to describe the disappearance curves of oats, and beans cuts. This paper uses the first-order kinetic model to describe the disappearance of rumen dry matter (DM) and crude protein (CP) for oats and bean cuts. The results showed that the model fitted the disappearance data well (R2 > 0.98), with minor differences in statistical evaluation. Also, reducing the number of iterations increased the merit of this method. To conclude, the utilization of PSO for degradability curve fitting is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giersch, C.: Mathematical modelling of metabolism. Curr. Opin. Plant Biol. 3(3), 249–253 (2000)

    Article  Google Scholar 

  2. Do, D.T., Le, T.Q.T., Le, N.Q.K.: Using deep neural networks and biological subwords to detect protein S-sulfenylation sites. Brief. Bioinf. 22(3), bbaa128 (2021). https://doi.org/10.1093/bib/bbaa128

  3. Turan, S., Milani, B., Temurtaş, F.: Different application areas of object detection with deep learning. Akıllı Ulaşım Sist. Uygulamaları Derg. 4(2), 148–164 (2021). https://doi.org/10.51513/jitsa.957371

    Article  Google Scholar 

  4. Beni, M.H., Bazofti, M.M., Golkar, B., Saboohi, Y., Mokhtari, H., Milani, B.: Optimized design of water-saving system in-slab cooling plant of Mobarakeh steel complex. J. Clean. Prod. 335, 130212 (2022). https://doi.org/10.1016/j.jclepro.2021.130212

    Article  Google Scholar 

  5. Breen, M., Upton, J., Murphy, M.D.: Development of a discrete infrastructure optimization model for economic assessment on dairy farms (DIOMOND). Comput. Electron. Agric. 156, 508–522 (2019). https://doi.org/10.1016/j.compag.2018.11.018

    Article  Google Scholar 

  6. Kiat, P.E., Malek, M.A., Shamsuddin, S.M.: Artificial intelligence projection model for methane emission from livestock in Sarawak. Sains Malays. 48(7), 1325–1332 (2019). https://doi.org/10.17576/jsm-2019-4807-02

    Article  Google Scholar 

  7. Tole, K., Milani, M., Mwakondo, F.: Particle swarm algorithm for improved handling of the mirrored traveling tournament problem. Teh. Vjesn. 28(5), 1647–1653 (2021). https://doi.org/10.17559/TV-20200618162959

    Article  Google Scholar 

  8. Contreras-Paco, J.L., Condori-Yauri, C.J., Poma-Yaranga, J., Cordero-Fernández, A.G., la Cruz-Rojas, D., Carlos, Y.: Kinetic parameters of in situ degradability of crop residues in alpacas (Vicugna pacos). J. Selva Andin. Anim. Sci. 8(1), 30–43 (2021)

    Google Scholar 

  9. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, California, United States (1987)

    Google Scholar 

  10. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science (MHS’95), Nagoya, Japan (1995)

    Google Scholar 

  11. Coello, C.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA (2002)

    Google Scholar 

  12. Zhang, W.J., Xie, X.F.: DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, USA

    Google Scholar 

  13. Fallah-Mehdipour, E., Haddad, O.B., Mariño, M.A.: MOPSO algorithm and its application in multipurpose multireservoir operations. J. Hydroinf. 13(4), 794–811 (2011). https://doi.org/10.2166/hydro.2010.105

    Article  Google Scholar 

  14. Cavalca, D.L., Fernandes, R.A.: Gradient-based mechanism for PSO algorithm: a comparative study on numerical benchmarks. In: Proceeding of the IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil (2018)

    Google Scholar 

  15. Choubey, D.K., Tripathi, S., Kumar, P., Shukla, V., Dhandhania, V.K.: Classification of diabetes by kernel based SVM with PSO. Recent Adv. Comput. Sci. Commun. (Formerly: Recent Pat. Comput. Sci.) 14(4), 1242–1255 (2021). https://doi.org/10.2174/2213275912666190716094836

  16. Nasrollahzadeh, S., Maadani, M., Pourmina, M.A.: Optimal motion sensor placement in smart homes and intelligent environments using a hybrid WOA-PSO algorithm. J. Reliab. Intell. Environ. 1, 1–13 (2021). https://doi.org/10.1007/s40860-021-00157-y

    Article  Google Scholar 

  17. Song, B., Wang, Z., Zou, L.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 100, 106960 (2021). https://doi.org/10.1016/j.asoc.2020.106960

    Article  Google Scholar 

  18. Milani, M.M.R.A., Çavdar, T., Aghjehkand, V.F.: Particle swarm optimization—based determination of Ziegler-Nichols parameters for PID controller of brushless DC motors. In: Proceeding of the International Symposium on Innovations in Intelligent Systems and Applications, Trabzon, Turkey (2012)

    Google Scholar 

  19. Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the Congress on Evolutionary Computation, Seoul, Korea (2001)

    Google Scholar 

  20. Ørskov, E.R., McDonald, Y.: The estimation of protein degradability in the rumen from determining the digestibility of feeds in the rumen. J. Agric. Sci. 92, 499–503 (1979)

    Article  Google Scholar 

  21. France, J., Thornley, J.H.M., Lopez, S., Siddons, R.C., Dhanoa, M.S., Van Soest, P.J., Gill, M.: On the twocompartment model for estimating extent of feed degradation in the rumen. J. Theor. Biol. 146, 269–287 (1990). https://doi.org/10.1016/S0022-5193(05)80139-0

    Article  Google Scholar 

  22. Dhanoa, M.S., France, J., Siddons, R.C., Lopez, S., Buchanan-Smith, J.G.: A non-linear compartmental model to describe forage degradation kinetics during incubation in polyester bads in the rumen. Br. J. Nutr. 73(1), 3–15 (1995)

    Article  Google Scholar 

  23. Sebaaly, H., Varma, S., Maina, J.W.: Optimizing asphalt mix design process using artificial neural network and genetic algorithm. Constr. Build. Mater. 168, 660–670 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.118

    Article  Google Scholar 

  24. Woodhouse, E.J., Collingridge, D.: Incrementalism, intelligent trial-and-error, and the future of political decision theory. In: Redner, H. (ed.) An heretical heir of the enlightenment, pp. 131–154. Routledge, New York (2019)

    Chapter  Google Scholar 

  25. Lookman, T., Balachandran, P.V., Xue, D., Yuan, R.: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput. Mater. 5(1), 1–17 (2019). https://doi.org/10.1038/s41524-019-0153-8

  26. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. (TOMACS) 28(1), 1–39 (2018). https://doi.org/10.1145/3158668

    Article  MathSciNet  Google Scholar 

  27. Shen, J., Li, B.: Mathematical analysis of a continuous version of statistical model for criminal behavior. Math. Methods Appl. Sci. 43(1), 409–426 (2020). https://doi.org/10.1002/mma.5898

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The experiment was supported by TÜBİTAK-ARDEB under project number of 121E098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Milani .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milani, M. (2023). Fitting Curves of Ruminal Degradation Using a Metaheuristic Approach. In: Akan, T., Anter, A.M., Etaner-Uyar, A.Ş., Oliva, D. (eds) Engineering Applications of Modern Metaheuristics. Studies in Computational Intelligence, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-031-16832-1_9

Download citation

Publish with us

Policies and ethics