Skip to main content

An Efficient and Delay-Aware Path Construction Approach Using Mobile Sink in Wireless Sensor Network

  • Conference paper
  • First Online:
Meta Heuristic Techniques in Software Engineering and Its Applications (METASOFT 2022)

Abstract

Using Mobile sinks (MSs) for data collection in wireless sensor networks (WSNs) is a prevalent method for diminishing the hotspot problem. There have been numerous proposed algorithms for data collection in WSN using MS and rendezvous points (RPs). However, the positions of the RPs affect the connectivity, network lifetime, delay, and other factors that substantially impact the performance of WSN concerning the critical applications. In this view, we propose an algorithm to solve the NP-hard problem of finding an optimal path while balancing energy consumption in a delay-bound application such as fire detection. The proposed algorithm uses a virtual polygon path and minimum spanning tree to divide the network and select optimal rendezvous points for the mobile sink. A convex hull-based algorithm generates the mobile sink's optimal path through RPs. We have performed extensive simulations and have compared our algorithm with an existing algorithm to demonstrate the efficiency. The results show that the proposed algorithm outperforms the compared algorithm in terms of hop counts by 15% and results in improved network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nitesh, K., Azharuddin, M., Jana, P.: Minimum spanning tree-based delay-aware mobile sink traversal in wireless sensor networks: Delay-aware mobile sink traversal in WSN. Int. J. Commun. Syst. 30, e3270 (2017)

    Article  Google Scholar 

  2. Salarian, H., Chin, K.-W., Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63, 2407–2419 (2014)

    Article  Google Scholar 

  3. Anwit, R., Jana, P.K., Tomar, A.: Sustainable and optimized data collection via mobile edge computing for disjoint wireless sensor networks. IEEE Trans. Sustain. Comput., 1 (2021)

    Google Scholar 

  4. Wen, W., Zhao, S., Shang, C., Chang, C.-Y.: EAPC: Energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sens. J. 18, 890–901 (2018)

    Article  Google Scholar 

  5. Wen, W., Dong, Z., Chen, G., Zhao, S., Chang, C.Y.: Energy efficient data collection scheme in mobile wireless sensor networks. In: Proceedings of the 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 226–230. IEEE (2017)

    Google Scholar 

  6. Temene, N., Sergiou, C., Georgiou, C., Vassiliou, V.: A survey on mobility in wireless sensor networks. Ad Hoc Netw. 125, 102726 (2022)

    Article  Google Scholar 

  7. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1, 660–670 (2002)

    Article  Google Scholar 

  8. Anwit, R., Tomar, A., Jana, P.K.: Tour planning for multiple mobile sinks in wireless sensor networks: A shark smell optimization approach. Appl. Soft Comput. 97, 106802 (2020)

    Article  Google Scholar 

  9. Anwit, R., Tomar, A., Jana, P.K.: Scheme for tour planning of mobile sink in wireless sensor networks. IET Commun. 14, 430–439 (2020)

    Article  Google Scholar 

  10. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. IEEE Computer Society (2005)

    Google Scholar 

  11. Aydin, M.A., Karabekir, B., Zaim, A.H.: Energy efficient clustering-based mobile routing algorithm on WSNs. IEEE Access. 9, 89593–89601 (2021)

    Article  Google Scholar 

  12. Punriboon, C., So-In, C., Aimtongkham, P., Leelathakul, N.: Fuzzy logic-based path planning for data gathering mobile sinks in WSNs. IEEE Access. 9, 96002–96020 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Tomar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raut, P.N., Tomar, A. (2022). An Efficient and Delay-Aware Path Construction Approach Using Mobile Sink in Wireless Sensor Network. In: Mohanty, M.N., Das, S., Ray, M., Patra, B. (eds) Meta Heuristic Techniques in Software Engineering and Its Applications. METASOFT 2022. Artificial Intelligence-Enhanced Software and Systems Engineering, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-11713-8_30

Download citation

Publish with us

Policies and ethics