Skip to main content

What Augmentations are Sensitive to Hyper-Parameters and Why?

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 506))

Included in the following conference series:

  • 850 Accesses

Abstract

We apply augmentations to our dataset to enhance the quality of our predictions and make our final models more resilient to noisy data and domain drifts. Yet the question remains, how are these augmentations going to perform with different hyper-parameters? In this study we evaluate the sensitivity of augmentations with regards to the model’s hyper parameters along with their consistency and influence by performing a Local Surrogate (LIME) interpretation on the impact of hyper-parameters when different augmentations are applied to a machine learning model. The methodology consists of creating lime vectors, training machine learning models with different combinations of hyper-parameters and augmentation, training a linear regression model on the accuracy of the models, and utilizing the Linear regression coefficients for weighing each augmentation. Our research has proved that there are some augmentations which are highly sensitive to hyper-parameters and others which are more resilient and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khattak, A.M., Khan, A.M., Tufai, A.: Activity recognition on smartphones via sensor-fusion and KDA-based SVMs (2014)

    Google Scholar 

  2. Siddiqi, M.H., Khan, A.M.: Promoting a healthier life-style using activity-aware smart phones (2012)

    Google Scholar 

  3. Lee, S.-Y., Khan, A.M, Lee, Y.-K.: Accelerometer’s position free human activity recognition using a hierarchical recognition model (2010)

    Google Scholar 

  4. Lee, S.-Y., Khan, A.M., Lee, Y.-K.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis (2010)

    Google Scholar 

  5. Rivera, A.R., Khusainova, A., Khan, A.: SART - similarity, analogies, and relatedness for Tatar language: new benchmark datasets for word embeddings evaluation (2019)

    Google Scholar 

  6. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception and ResNet (2016)

    Google Scholar 

  7. Hussain, Z., Ratner, A.J., Ehrenberg, H.R.: Learning to compose domain-specific transformations for data augmentation (2017)

    Google Scholar 

  8. Lee, S., Khan, A.M., Khan, F.I.: Prospects identification scheme for supermarkets by classification of customer behavior using time based analysis of transactional data (2007)

    Google Scholar 

  9. Khan, A., Dobrenkii, A., Kuleev, R.: Large residual multiple view 3D CNN for false positive reduction in pulmonary nodule detection (2017)

    Google Scholar 

  10. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K.: Generative adversarial networks: an overview (2018)

    Google Scholar 

  11. Batanina, E., Bekkouch, I.E.I., Youssry, Y., Khan, A., Khattak, A.M., Bortnikov, M.: Domain adaptation for car accident detection in videos. In: 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2019)

    Google Scholar 

  12. Bekkouch, I.E.I., Aidinovich, T., Vrtovec, T., Kuleev, R., Ibragimov, B.: Multi-agent shape models for hip landmark detection in MR scans. In: Medical Imaging 2021: Image Processing, vol. 11596. SPIE, February 2021

    Google Scholar 

  13. Bekkouch, I.E.I., Constantin, N.D., Eyharabide, V., Billiet, F.: Adversarial domain adaptation for medieval instrument recognition. In: Arai, K. (ed.) IntelliSys 2021. LNNS, vol. 295, pp. 674–687. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82196-8_50

    Chapter  Google Scholar 

  14. Bekkouch, I.E.I., Nicolae, D.C., Khan, A., Kazmi, S.A., Khattak, A.M., Ibragimov, B.: Adversarial reconstruction loss for domain generalization. IEEE Access 9, 42424–42437 (2021)

    Article  Google Scholar 

  15. Ng, A.Y., Sapp, B., Saxena, A.: A fast data collection and augmentation procedure for object recognition (2008)

    Google Scholar 

  16. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  17. Bharath, A.A., Charalambous, C.C.: A data augmentation methodology for training machine/deep learning gait recognition algorithms (2016)

    Google Scholar 

  18. Cubuk, E.D., Zoph, B., Shlens, J., Randaugment, Q.L.: Practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020

    Google Scholar 

  19. Fergus, R., Eigen, D., Puhrsch, C.: Depth map prediction from a single image using a multi-scale deep network (2014)

    Google Scholar 

  20. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V.: AutoAugment: learning augmentation policies from data (2018)

    Google Scholar 

  21. Eyharabide, V., Bekkouch, I.E.I., Constantin, N.D.: Knowledge graph embedding-based domain adaptation for musical instrument recognition. Computers 10(8), 94 (2021)

    Article  Google Scholar 

  22. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database (2009)

    Google Scholar 

  23. Gong, C., Wang, D., Li, M., Chandra, V., Liu, Q.: Keepaugment: a simple information-preserving data augmentation approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1055–1064, June 2021

    Google Scholar 

  24. Vollgraf, R., Xiao, H., Rasul, K.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  25. Hauberg, S.: Dreaming more data: class-dependent distributions over diffeomorphisms for learned data augmentation (2016)

    Google Scholar 

  26. Lodha, V., Kekre, H.B., Thepade, S.D.: Augmentation of block truncation coding based image retrieval by using even and odd images with sundry colour spaces (2010)

    Google Scholar 

  27. Ibrahim, B.I., Nicolae, D.C., Khan, A., Ali, S.I., Khattak, A.: VAE-GAN based zero-shot outlier detection. In: Proceedings of the 2020 4th International Symposium on Computer Science and Intelligent Control, ISCSIC 2020. Association for Computing Machinery (2020)

    Google Scholar 

  28. Martin, J.M., El Naqa, I.: What Is Machine Learning? (2015)

    Google Scholar 

  29. Khan, A., Panchenko, I.: On expert-defined versus learned hierarchies for image classification (2019)

    Google Scholar 

  30. Gould, S., Guo, J.: Deep CNN ensemble with data augmentation for object detection (2015)

    Google Scholar 

  31. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning (2017)

    Google Scholar 

  32. Corcoran, P., Lemley, J., Bazrafkan, S.: Smart augmentation learning an optimal data augmentation strategy (2017)

    Google Scholar 

  33. Laine, T., Seo, J., Chiang, Y.: Step counting on smartphones using advanced zero-crossing and linear regression (2015)

    Google Scholar 

  34. Ren, S., He, K., Zhang, X., Sun, J.: Deep residual learning for image recognition (2016)

    Google Scholar 

  35. Yakovlev, K., Bekkouch, I.E.I., Khan, A.M., Khattak, A.M.: Abstraction-based outlier detection for image data. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1250, pp. 540–552. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55180-3_40

    Chapter  Google Scholar 

  36. Khan, A.M., Sozykin, K., Protasov, S.: Multi-label class-imbalanced action recognition in hockey videos via 3D convolutional neural networks (2018)

    Google Scholar 

  37. Shao, L., Zhu, F., Li, X.: Transfer learning for visual categorization: a survey (2015)

    Google Scholar 

  38. Guestrin, C., Ribeiro, M.T., Singh, S.: “Why should i trust you?”: explaining the predictions of any classifier (2016)

    Google Scholar 

  39. Khan, A., Gusarev, M., Kuleev, R.: Deep learning models for bone suppression in chest radiographs (2017)

    Google Scholar 

  40. Bortnikov, M., Khan, A., Khattak, A.M., Ahmad, M.: Accident recognition via 3D CNNs for automated traffic monitoring in smart cities. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 944, pp. 256–264. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17798-0_22

    Chapter  Google Scholar 

  41. Mazzara, M., Ahmad, M., Khan, A.M.: Multi-layer extreme learning machine-based autoencoder for hyperspectral image classification (2019)

    Google Scholar 

  42. Siddiqi, M.H., Ali, R., Khan, A.M., Kim, E.S., Kim, G.J., Lee, S.: Facial expression recognition using active contour-based face detection, facial movement-based feature extraction, and non-linear feature selection. Multimed. Syst. 21(6), 541–555 (2014). https://doi.org/10.1007/s00530-014-0400-2

    Article  Google Scholar 

  43. Khan, A.M., Siddiqi, M.H., Ali, R.: Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields (2015)

    Google Scholar 

  44. Hong, C.S., Siddiqi, M.H., Alam, M.G.R.: A novel maximum entropy Markov model for human facial expression recognition (2016)

    Google Scholar 

  45. Chung, T.C., Siddiqi, M.H., Khan, A.M.: A precise recognition model for human facial expressions recognition systems (2013)

    Google Scholar 

  46. Lee, Y.-K., Siddiqi, M.H., Lee, S.: Hierarchical recognition scheme for human facial expression recognition systems (2013)

    Google Scholar 

  47. Molchanov, P., Gupta, S., Kim, K., Kautz, J.: Hand gesture recognition with 3D convolutional neural networks (2015)

    Google Scholar 

  48. Probst, P., Bischl, B., Boulesteix, A.-L.: Tunability: importance of hyperparameters of machine learning algorithms (2018)

    Google Scholar 

  49. Liu, X., Chi, M., Zhang, Y., Qin, Y.: Classifying high resolution remote sensing images by fine-tuned VGG deep networks (2018)

    Google Scholar 

  50. Tran, T., Pham, T., Carneiro, G., Palmer, L., Reid, I.: A Bayesian data augmentation approach for learning deep models (2017)

    Google Scholar 

  51. Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image recognition (2015)

    Google Scholar 

  52. Rivera, A.R., Khan, A., Bekkouch, I.E.I., Sheikh, T.S.: Anomaly detection based on zero-shot outlier synthesis and hierarchical feature distillation. IEEE Trans. Neural Netw. Learn. Syst. 1–11 (2020)

    Google Scholar 

  53. Han, D., Liu, Q., Fan, W.: A new image classification method using CNN transfer learning and web data augmentation (2018)

    Google Scholar 

  54. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. CoRR, abs/2007.15745 (2020)

    Google Scholar 

  55. Bengio, Y., LeCun, Y., Hinton, G.: Deep learning (2015)

    Google Scholar 

  56. Zagoruyko, S., Komodakis, N.: Wide residual networks (2017)

    Google Scholar 

  57. Li, Y., Allen-Zhu, Z.: What can ResNet learn efficiently, going beyond kernels? (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch Muhammad Awais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Awais, C.M., Bekkouch, I.E.I., Khan, A.M. (2022). What Augmentations are Sensitive to Hyper-Parameters and Why?. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-031-10461-9_31

Download citation

Publish with us

Policies and ethics