Skip to main content

Biodegradation for Metal Extraction

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials
  • 1920 Accesses

Abstract

Heavy metals are nonbiodegradable and accumulate in the environment. Persistent pollutants such as heavy metals can enter the food chain via marine life, affecting predators such as larger fish, birds, and mammals, including humans, who transmit the pollutants to various environments. Much investigation has been carried out to mitigate the heavy metal pollution in the environment. Until now, heavy metal decontamination has relied on ethylenediaminetetraacetic acid (EDTA), a highly effective chelating agent. Although EDTA is particularly effective at mobilizing metals, its limited biodegradability means it can persist in the environment for a long time. As a result, biodegradable chelating agents were introduced to replace nonbiodegradable chelating agents due to their environmental friendliness. The chemical and physical properties of biodegradable aminopolycarboxylates such as iminodisuccinic acid, methylglycinediacetic acid, ethylenediamine-N, Nā€²-disuccinic acid, nitrilotriacetic acid, and tetrasodium glutamate diacetate, as well as organic acids such as citric acid, will be studied and evaluated to see if they can perform similarly to standard chelant EDTA in terms of heavy metal pollution mitigation. Even though the chelating agents used are biodegradable, there is no guarantee that metal extraction effectiveness will be improved over traditional chelating agents, and it also depends on the type of heavy metal to be chelated. In short, many factors that contribute to metal extraction efficiencies, such as pH and chelating agent concentration, should be investigated in this chapter. Most importantly, although biodegradable chelants will decay in the environment, heavy metals will be left behind and will last longer in the ecosystem. In a nutshell, it is worth checking whether heavy metal pollution still exists after using a biodegradable chelant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Abbreviation:

Explanation

DTPA:

Diethylenetriaminepentaacetic acid

EDDS:

Ethylenediamine-n, nā€™-disuccinic acid

EDTA:

Ethylenediaminetetraacetic acid

GLDA:

Tetrasodium glutamate diacetate

IDS:

Iminodisuccinic acid

MGDA:

Methylglycinediacetic acid

NTA:

Nitrilotriacetic acid

References

  1. Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, and O'Connor D (2020) Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environ Int 134:105281

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, and Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345ā€“353

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. El-Maghrabi HH, Nada AA, Soliman FS, Raynaud P, Moustafa YM, Ali GAM, and Bekheet MF, Recovery of metal oxide nanomaterials from electronic waste materials, in Waste recycling technologies for nanomaterials manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer: Cham. p. 203ā€“227.

    ChapterĀ  Google ScholarĀ 

  4. Shayegan H, Ali GAM, and Safarifard V (2020) Recent progress in the removal of heavy metal ions from water using metal-organic frameworks. Chem Sel 5(1):124ā€“146

    CASĀ  Google ScholarĀ 

  5. Shayegan H, Ali GAM, and Safarifard V (2020) Amide-functionalized metalā€“organic framework for high efficiency and fast removal of Pb(II) from aqueous solution. J Inorg Organomet Polym Mater

    Google ScholarĀ 

  6. Salehi Rozveh Z, Kazemi S, Karimi M, Ali GAM, and Safarifard V (2020) Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron

    Google ScholarĀ 

  7. Briffa J, Sinagra E, and Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Maurya PK, Malik DS, Yadav KK, Kumar A, Kumar S, and Kamyab H (2019) Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicol Rep 6:472ā€“481

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Yang Z, Wang D, Wang G, Zhang S, Cheng Z, Xian J, Pu Y, Li T, Jia Y, Li Y, Zhou W, and Xu X (2021) Removal of Pb, Zn, Ni and Cr from industrial sludge by biodegradable washing agents: Caboxyethylthiosuccinic acid and itaconic-acrylic acid. J Environ Chem Eng 9(5):105846

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Mohamed B, Mounia K, Aziz A, Ahmed H, Rachid B, and Lotfi A (2018) Sewage sludge used as organic manure in Moroccan sunflower culture: Effects on certain soil properties, growth and yield components. Sci Total Environ 627:681ā€“688

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Naghipour D, Gharibi H, Taghavi K, and Jaafari J (2016) Influence of EDTA and NTA on heavy metal extraction from sandy-loam contaminated soils. J Environ Chem Eng 4(3):3512ā€“3518

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Hooda PS and Alloway BJ (1994) The plant availability and DTPA extractability of trace metals in sludge-amended soils. Sci Total Environ 149(1):39ā€“51

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Peters RW and Shem L (1992) Adsorption/desorption characteristics of lead on various types of soil. Environ Prog 11(3):234ā€“240

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, and Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38(3):937ā€“944

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Zhang L, Zhu Z, Zhang R, Zheng C, Zhang H, Qiu Y, and Zhao J (2008) Extraction of copper from sewage sludge using biodegradable chelant EDDS. J Environ Sci 20(8):970ā€“974

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Nowack B (2002) Environmental chemistry of aminopolycarboxylate chelating agents. Environ Sci Technol 36(19):4009ā€“4016

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Kurade MB, Ha Y-H, Xiong J-Q, Govindwar SP, Jang M, and Jeon B-H (2021) Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chem Eng J 415:129040

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Pinto ISS, Neto IFF, and Soares HMVM (2014) Biodegradable chelating agents for industrial, domestic, and agricultural applicationsā€”a review. Environ Sci Pollut Res 21(20):11893ā€“11906

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Bucheli-Witschel M and Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25(1):69ā€“106

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Dermont G, Bergeron M, Mercier G, and Richer-LaflĆØche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1-31

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Wood P, Remediation methods for contaminated sites, in Assessment and reclamation of contaminated land, RE Hester, RM Harrison, Editors. 2001, The Royal Society of Chemistry. p. 115ā€“140.

    ChapterĀ  Google ScholarĀ 

  22. Nwuche CO and Ugoji EO (2008) Effects of heavy metal pollution on the soil microbial activity. Int J Environ Sci Technol 5(3):409ā€“414

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66(1-2):151ā€“210

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Gluhar S, Kaurin A, and Lestan D (2020) Soil washing with biodegradable chelating agents and EDTA: Technological feasibility, remediation efficiency and environmental sustainability. Chemosphere 257:127226

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Begum ZA, Rahman IMM, Tate Y, Sawai H, Maki T, and Hasegawa H (2012) Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 87(10):1161ā€“1170

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Vandevivere PC, Saveyn H, Verstraete W, Feijtel TCJ, and Schowanek DR (2001) Biodegradation of Metalāˆ’[S,S]-EDDS Complexes. Environ Sci Technol 35(9):1765ā€“1770

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Nowack B and VanBriesen JM, Chelating agents in the environment, in Biogeochemistry of chelating agents. 2005, American Chemical Society. p. 1ā€“18.

    ChapterĀ  Google ScholarĀ 

  28. SillanpƤƤ M and Oikari AOJ (1996) Assessing the impact of complexation by EDTA and DTPA on heavy metal toxicity using microtox bioassay. Chemosphere 32:1485ā€“1497

    ArticleĀ  Google ScholarĀ 

  29. Oviedo C and RodrĆ­guez J (2003) EDTA: The chelating agent under environmental scrutiny. QuĆ­mica Nova 26:901ā€“905

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Nƶrtemann B, Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS, in Biogeochemistry of chelating agents. 2005, American Chemical Society. p. 150ā€“170.

    ChapterĀ  Google ScholarĀ 

  31. Wu Q, Duan G, Cui Y, and Sun J (2015) Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand. Environ Sci Pollut Res Int 22(2):1144ā€“50

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Hyvƶnen H, Orama M, Saarinen H, and Aksela R (2003) Studies on biodegradable chelating ligands: complexation of iminodisuccinic acid (ISA) with Cu(ii), Zn(ii), Mn(ii) and Fe(iii) ions in aqueous solution. Green Chem 5(4):410ā€“414

    ArticleĀ  Google ScholarĀ 

  33. Kołodyńska D (2009) Iminodisuccinic acid as a new complexing agent for removal of heavy metal ions from industrial effluents. Chem Eng J 152(1):277ā€“288

    ArticleĀ  Google ScholarĀ 

  34. Jachuła J, Kołodyńska D, and Hubicki Z (2012) Methylglycinediacetic acid as a new complexing agent for removal of heavy metal ions from industrial wastewater. Solv Extract Ion Exch 30(2):181ā€“196

    ArticleĀ  Google ScholarĀ 

  35. Bretti C, Cigala RM, De Stefano C, Lando G, and Sammartano S (2017) Thermodynamic solution properties of a biodegradable chelant (MGDA) and its interaction with the major constituents of natural fluids. Fluid Phase Equilib 434:63ā€“73

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Ferraro A, van Hullebusch ED, Huguenot D, Fabbricino M, and Esposito G (2015) Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil. J Environ Manag 163:62-69

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Race M (2017) Applicability of alkaline precipitation for the recovery of EDDS spent solution. J Environ Manag 203:358ā€“363

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Sidhu GPS, Bali AS, Singh HP, Batish DR, and Kohli RK (2018) Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.). Sm Chemosphere 205:234ā€“243

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Bretti C, Cigala RM, De Stefano C, Lando G, and Sammartano S (2016) Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S,S-EDDS in biological fluids and natural waters. Chemosphere 150:341ā€“356

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Takahashi R, Fujimoto N, Suzuki M, and Endo T (1997) Biodegradabilities of ethylenediamine-N,Nā€²-disuccinic acid (EDDS) and other chelating agents. Biosci Biotechnol Biochem 61(11):1957ā€“1959

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Whitburn JS, Wilkinson SD, and Williams DR (1999) Chemical speciation of ethylenediamine-N,Nā€²- disuccinic acid (EDDS) and its metal complexes in solution. Chem Speciat Bioavailab 11(3):85ā€“93

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, and Larson RJ (1997) Biodegradation of [S,S], [R,R] and mixed stereoisomers of Ethylene Diamine Disuccinic Acid (EDDS), a transition metal chelator. Chemosphere 34(11):2375ā€“2391

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Chauhan G, Pant KK, and Nigam KDP (2012) Extraction of nickel from spent catalyst using biodegradable chelating agent EDDS. Ind Eng Chem Res 51(31):10354ā€“10363

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Chen L, Liu T, and Ma Ca (2010) Metal complexation and biodegradation of EDTA and S,S-EDDS: a density functional theory study. J Phys Chem A 114(1):443ā€“454

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Yang Z, Wang Y, Lu Y, Tao Y, and Jiang J (2020) Bioproduction of ethylenediamine-N,Nā€™-disuccinic acid using immobilized fumarase-free EDDS lyase. Process Biochem 97:96ā€“103

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Takahashi R, Yamayoshi K, Fujimoto N, and Suzuki M (1999) Production of (S,S)-ethylenediamine-N,Nā€™-disuccinic acid from ethylenediamine and fumaric acid by bacteria. Biosci Biotechnol Biochem 63(7):1269ā€“73

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Egli T (2001) Biodegradation of metal-complexing aminopolycarboxylic acids. J Biosci Bioeng 92(2):89ā€“97

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Mottola HA (1974) Nltrilotriacetic acid as a chelating agent: Applications, toxicology, and bio-environmental impact. Toxicolog Environ Chem Rev 2(2):99ā€“161

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Thompson JE and Duthie JR (1968) The biodegradability and treatability of NTA. J Water Pollut Control Fed 40(2):306ā€“19

    CASĀ  Google ScholarĀ 

  50. Xu H, Guo L, Zhao Y, Gao M, Jin C, Ji J, and She Z (2021) Accelerating phosphorus release from waste activated sludge by nitrilotriacetic acid addition during anaerobic fermentation process and struvite recovery. Process Saf Environ Prot 147:1066ā€“1076

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Ping Q, Lu X, Li Y, and Mannina G (2020) Effect of complexing agents on phosphorus release from chemical-enhanced phosphorus removal sludge during anaerobic fermentation. Bioresour Technol 301:122745

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Nancharaiah YV, Schwarzenbeck N, Mohan TVK, Narasimhan SV, Wilderer PA, and Venugopalan VP (2006) Biodegradation of nitrilotriacetic acid (NTA) and ferricā€“NTA complex by aerobic microbial granules. Water Res 40(8):1539ā€“1546

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Anderson RL, Bishop WE, and Campbell RL (1985) A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Crit Rev Toxicol 15(1):1ā€“102

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Wu Q, Cui Y, Li Q, and Sun J (2015) Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J Hazard Mater 283:748ā€“754

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Kołodyńska D (2013) Application of a new generation of complexing agents in removal of heavy metal ions from different wastes. Environ Sci Pollut Res 20(9):5939ā€“5949

    ArticleĀ  Google ScholarĀ 

  56. Kołodyńska D (2011) Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination 267:175ā€“183

    ArticleĀ  Google ScholarĀ 

  57. Tandy S, Ammann A, Schulin R, and Nowack B (2006) Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environ Pollut 142(2):191ā€“199

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Wang X, Chen J, Yan X, Wang X, Zhang J, Huang J, and Zhao J (2015) Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid. J Ind Eng Chem 27:368ā€“372

    ArticleĀ  Google ScholarĀ 

  59. Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, and Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200ā€“12206

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Ali GAM, Yusoff MM, Shaaban ER, and Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440ā€“8448

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Eyal A and Baniel A (1982) Extraction of strong mineral acids by organic acid-base couples. Indust Eng Chem Pro Design Develop 21(2):334ā€“337

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Kesieme U, Chrysanthou A, Catulli M, and Cheng CY (2018) A review of acid recovery from acidic mining waste solutions using solvent extraction. J Chem Technol Biotechnol 93(12):3374ā€“3385

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Kholkin AI, Belova VV, Zakhodyaeva YA, and Voshkin AA (2013) Solvent extraction of weak acids in binary extractant systems. Sep Sci Technol 48(9):1417ā€“1425

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. del Dacera DM and Babel S (2006) Use of citric acid for heavy metals extraction from contaminated sewage sludge for land application. Water Sci Technol 54(9):129ā€“35

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Veeken AHM and Hamelers HVM (1999) Removal of heavy metals from sewage sludge by extraction with organic acids. Water Sci Technol 40(1):129ā€“136

    ArticleĀ  Google ScholarĀ 

  66. Suanon F, Sun Q, Dimon B, Mama D, and Yu C-P (2016) Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis(carboxymethyl) glutamic acid and citric acid. J Environ Manag 166:341ā€“347

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Chlopicka J, Dobrowolska-Iwanek J, Wozniakiewicz M, and Zagrodzki P (2014) Optimization of conditions for organic acid extraction from edible plant material as applied to radish sprouts. Food Anal Methods 7(6):1323ā€“1327

    ArticleĀ  Google ScholarĀ 

  68. Hosseini S, Gharachorloo M, Ghiassi-Tarzi B, and Ghavami M (2016) Evaluation of the organic acids ability for extraction of anthocyanins and phenolic compounds from different sources and their degradation kinetics during cold storage. Polish J Food Nutrit Sci 66(2):261ā€“269

    ArticleĀ  CASĀ  Google ScholarĀ 

  69. Gauche C, Malagoli EdS, and Bordignon Luiz MT (2010) Effect of pH on the copigmentation of anthocyanins from Cabernet Sauvignon grape extracts with organic acids. Sci Agric 67:41ā€“46

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Wuana RA, Okieimen FE, and Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Technol 7(3):485ā€“496

    ArticleĀ  CASĀ  Google ScholarĀ 

  71. Ding YZ, Song ZG, Feng RW, and Guo JK (2014) Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils. Int J Environ Sci Technol 11(1):33ā€“42

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Naidu R and Harter RD (1998) Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Sci Soc Am J 62(3):644-650

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Bassi R, Prasher SO, and Simpson BK (2000) Extraction of metals from a contaminated sandy soil using citric acid. Environ Prog 19(4):275ā€“282

    ArticleĀ  CASĀ  Google ScholarĀ 

  74. Gerba CP and Pepper IL, Chapter 24 - wastewater treatment and biosolids reuse, in Environmental microbiology 2nd, RM Maier, IL Pepper, CP Gerba,. 2009, Academic Press: San Diego. p. 503ā€“530.

    ChapterĀ  Google ScholarĀ 

  75. Polettini A, Pomi R, and Rolle E (2007) The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere 66(5):866ā€“77

    ArticleĀ  CASĀ  Google ScholarĀ 

  76. Lim T-T, Tay J-H, and Wang J-Y (2004) Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. J Environ Eng 130(1):59ā€“66

    ArticleĀ  CASĀ  Google ScholarĀ 

  77. Harter RD and Naidu R (2001) An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci Soc Am J 65(3):597ā€“612

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. Appel C and Ma L (2002) Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. J Environ Qual 31(2):581ā€“9

    ArticleĀ  CASĀ  Google ScholarĀ 

  79. Vandevivere P, Hammes F, Verstraete W, Feijtel T, and Schowanek D (2001) Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S,S]-EDDS. J Environ Eng 127(9):802ā€“811

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Naoum C, Fatta D, Haralambous KJ, and Loizidou M (2001) Removal of heavy metals from sewage sludge by acid treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng 36(5):873ā€“81

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Irving H (1978) Principles and applications of metal chelation: By Colin F. Bell. Oxford Chemical Series. Clarendon Press, Oxford. University Press, 1977. Pp 150. Ā£4.95. Biochem Educ 6(1):21ā€“21

    ArticleĀ  Google ScholarĀ 

  82. Ali H, Khan E, and Sajad MA (2013) Phytoremediation of heavy metalsā€”Concepts and applications. Chemosphere 91(7):869ā€“881

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. Ayangbenro AS and Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1)

    Google ScholarĀ 

  84. Mehta J, Choudhury M, Chakravorty A, Rayan RA, Lala NL, and Nirmala AG, Recycle strategies to deal with metal nanomaterials by using aquatic plants through phytoremediation technique, in Waste recycling technologies for nanomaterials manufacturing, ASH Makhlouf, GAM Ali. 2021, Springer: Cham. p. 589ā€“616.

    ChapterĀ  Google ScholarĀ 

  85. Oladoye PO, Olowe OM, and Asemoloye MD (2021) Phytoremediation technology and food security impacts of heavy metal contaminated soils: a review of literature. Chemosphere:132555

    Google ScholarĀ 

  86. Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, and Naz I (2021) A critical review on the phytoremediation of heavy metals from environment: performance and challenges. Chemosphere:132979

    Google ScholarĀ 

  87. Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, and Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309ā€“326

    ArticleĀ  Google ScholarĀ 

  88. Wang J and Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195ā€“226

    ArticleĀ  Google ScholarĀ 

  89. Fomina M and Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3ā€“14

    ArticleĀ  CASĀ  Google ScholarĀ 

  90. Swoboda JG, Campbell J, Meredith TC, and Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem Euro J Chem Biol 11(1):35ā€“45

    ArticleĀ  CASĀ  Google ScholarĀ 

  91. Qin H, Hu T, Zhai Y, Lu N, and Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: A review. Environ Pollut 258:113777

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Gavrilescu M (2022) Enhancing phytoremediation of soils polluted with heavy metals. Curr Opin Biotechnol 74:21ā€“31

    ArticleĀ  CASĀ  Google ScholarĀ 

  93. Vijayaraghavan K and Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266ā€“91

    ArticleĀ  CASĀ  Google ScholarĀ 

  94. Saeed MU, Hussain N, Sumrin A, Shahbaz A, Noor S, Bilal M, Aleya L, and Iqbal HMN (2021) Microbial bioremediation strategies with wastewater treatment potentialities ā€“ A reviewSci Total Environ:151754

    Google ScholarĀ 

  95. Aboelazm EAA, Mohamed N, Ali GAM, Makhlouf ASH, and Chong KF, Recycling of cobalt oxides electrodes from spent lithium-ion batteries by electrochemical method, in Waste recycling technologies for nanomaterials manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer: Cham. p. 91ā€“123.

    ChapterĀ  Google ScholarĀ 

  96. Ali GAM (2020) Recycled MnO2 Nanoflowers and Graphene Nanosheets for Low-Cost and High Performance Asymmetric Supercapacitor. J Electron Mater 49:5411ā€“5421

    ArticleĀ  CASĀ  Google ScholarĀ 

  97. Aboelazm EAA, Ali GAM, and Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Advanc Mater 3:67ā€“74

    Google ScholarĀ 

  98. An L, Pan Y, Wang Z, and Zhu C (2011) Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil 345(1):237ā€“245

    ArticleĀ  CASĀ  Google ScholarĀ 

  99. Li NY, Li ZA, Zhuang P, Zou B, and McBride M (2009) Cadmium uptake from soil by maize with intercrops. Water Air Soil Pollut 199(1):45ā€“56

    ArticleĀ  CASĀ  Google ScholarĀ 

  100. Tsezos M, Biosorption of metals. The experience accumulated and the outlook for technology development, in Process metallurgy, R Amils, A Ballester. 1999, Elsevier. p. 171ā€“173.

    Google ScholarĀ 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Grant Scheme (FRGS) from the Ministry of Higher Education of Malaysia (MOHE) (FRGS/1/2019/STG01/UM/02/6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sook Mei Khor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, B.H., Khor, S.M. (2023). Biodegradation for Metal Extraction. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_71

Download citation

Publish with us

Policies and ethics