Skip to main content

Assessing the Thermal Performance of a Conventional Architecture in Dry Warm Climate

  • Conference paper
  • First Online:
Recent Advances in Electrical Engineering, Electronics and Energy (CIT 2021)

Abstract

Selecting the thermal comfort model to determine the best hygrothermal conditions inside the house during the hot period has a great impact on the energy consumption of buildings in warm climates [1]. Therefore, this article presents the results of the evaluation of the thermal performance of a conventional home in dry warm climate, with case study in Bucaramanga, Colombia. This simulation, evaluation and analysis is necessary since currently in the case study area there is no thermal evaluation of the houses, which are old houses built with resistive and mechanical analysis, but without taking into account the thermal behavior or thermal comfort of housing. This evaluation is performed by means of simulation in software. Thus, for a valid simulation, the meteorological data present in the dry warm climate zone are identified, and the geographical location and behavior in the solar diagram are determined. Likewise, the thermal characterization of the soil and the constructive materials of support and envelopes of the architecture is carried out, to establish its thermal transmittance, thermal resistance and thermal capacity. As a result of the research, the thermal behavior of the house is presented through the calculations made that determine the thermal behavior of the envelopes, the balance of energy loads and the thermal housing comfort based on the ASHRAE 55 standard by the Fanger method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parkinson, T., de Dear, R., Brager, G.: Nudging the adaptive thermal comfort model. Energy Build. 206, 109559 (2020). https://doi.org/10.1016/j.enbuild.2019.109559

    Article  Google Scholar 

  2. Mustafaraj, G., Marini, D., Costa, A., Keane, M.: Model calibration for building energy efficiency simulation. Appl. Energy 130, 72–85 (2018). https://doi.org/10.1016/j.apenergy.2014.05.019

    Article  Google Scholar 

  3. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2019). https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  4. UPME: Plan Energético Nacional 2020–2050, Bogotá D.C. (2019)

    Google Scholar 

  5. Berardi, U.: Sustainability assessment in the construction sector: rating systems and rated buildings. Sustain. Dev. 20(6), 411–424 (2018). https://doi.org/10.1002/sd.532

    Article  Google Scholar 

  6. Mahmoud, S., Zayed, T., Fahmy, M.: Development of sustainability assessment tool for existing buildings. Sustain. Cities Soc. 44, 99–119 (2019). https://doi.org/10.1016/j.scs.2018.09.024

    Article  Google Scholar 

  7. Dili, A.S., Naseer, M.A., Zacharia Varghese, T.: Passive control methods of Kerala traditional architecture for a comfortable indoor environment: comparative investigation during various periods of rainy season. Build. Environ. 45(10), 2218–2230 (2018). https://doi.org/10.1016/j.buildenv.2010.04.002

    Article  Google Scholar 

  8. Fahmy, M., Mahdy, M.M., Nikolopoulou, M.: Prediction of future energy consumption reduction using GRC envelope optimization for residential buildings in Egypt. Energy Build. 70, 186–193 (2019). https://doi.org/10.1016/j.enbuild.2013.11.057

    Article  Google Scholar 

  9. Yau, Y.H., Hasbi, S.: A review of climate change impacts on commercial buildings and their technical services in the tropics. Renew. Sustain. Energy Rev. 18, 430–441 (2018). https://doi.org/10.1016/j.rser.2012.10.035

    Article  Google Scholar 

  10. de Wilde, P., Coley, D.: The implications of a changing climate for buildings. Build. Environ. 55, 1–7 (2012). https://doi.org/10.1016/j.buildenv.2012.03.014

    Article  Google Scholar 

  11. Evangelisti, L., Guattari, C., Asdrubali, F., de Lieto Vollaro, R.: In situ thermal characterization of existing buildings aiming at NZEB standard: a methodological approach. Dev. Built Environ. 2, 100008 (2020). https://doi.org/10.1016/j.dibe.2020.100008

    Article  Google Scholar 

  12. Picott Basto, J.A.: Metodología para el análisis termo-energético de edificios familiares en Colombia con base en las normativa. Tesis de maestría (2018)

    Google Scholar 

  13. Re, P.M.G., Lucas, I.B.: Monitoreo higrotérmico-energético-lumínico de invierno en departamentos ubicados en las ciudades de San Juan y La Plata (2017)

    Google Scholar 

  14. Fonseca Granados, L.E.: Análisis del comportamiento térmico de las envolventes de las viviendas VIS en la ciudad de Tunja desde el enfoque de las tecnologías limpias. Build. Environ. (2019). https://doi.org/10.1016/j.buildenv.2017.05.019

  15. Andrey, J., Cañas, C.: Evaluación del confort térmico en la vivienda rural existente en colombia,” Universidad La Gran Colombia (2020)

    Google Scholar 

  16. Soto-Estrada, E., Alvarez-Carrascal, M.F., Gomez-Lizarazo, J., Valencia-Montoya, D.: Confort térmico en viviendas de Medellín. Rev. Ing. Univ. Medellín 18(35), 51–68 (2016). https://doi.org/10.22395/rium.v18n35a4

    Article  Google Scholar 

  17. Marcela, L., Garcia, G., Osorio Saraz, A., Osorio Hernandez, R., Carlo, J.: Simulación termo energética de vivienda rural con 4 tipos de placas prefabricadas en ferrocemento (2016)

    Google Scholar 

  18. Cacabelos, A., Eguía, P., Febrero, L., Granada, E.: Development of a new multi-stage building energy model calibration methodology and validation in a public library. Energy Build. 146, 182–199 (2017). https://doi.org/10.1016/j.enbuild.2017.04.071

    Article  Google Scholar 

  19. Bruno, R., Arcuri, N., Carpino, C.: Study of innovative solutions of the building envelope for passive houses in Mediterranean areas. Energy Procedia 140, 80–92 (2017). https://doi.org/10.1016/j.egypro.2017.11.125

    Article  Google Scholar 

  20. Magrini, A., Lentini, G.: NZEB analyses by means of dynamic simulation and experimental monitoring in mediterranean climate. Energies 13(18) (2020). https://doi.org/10.3390/en13184784

  21. Hagenau, M., Jradi, M.: Dynamic modeling and performance evaluation of building envelope enhanced with phase change material under Danish conditions. J. Energy Storage 30, 101536 (2020). https://doi.org/10.1016/j.est.2020.101536

    Article  Google Scholar 

  22. Ashrae (2020). https://spain-ashrae.org/ashrae/. Accessed 06 Apr 2021

  23. de Valencia, U.P.: vpCLIMA (2020). http://vpclima2.ter.upv.es/?lang=es. Accessed 11 Apr 2021

  24. Lozano Martín, Z., Afranio, C., Salgado, V.: Diseño de un sistema de climatización y ACS basado en fuentes renovables para 2 000 m2 de aulas ubicadas en 6 unidades de un instituto de educación secundaria en Vinaròs (Castellón), Universitat Politècnica de València, July 2020. https://riunet.upv.es/handle/10251/148617. Accessed 11 Apr 2021

  25. Openstudio: OpenStudio | OpenStudio (2021). https://www.openstudio.net/. Accessed 11 Apr 2021

  26. Ecotect: Ecotect: Software de Diseño de Construcción Sustentable | ArchDaily Colombia (2021). https://www.archdaily.co/co/02-62481/ecotect-software-de-diseno-de-construccion-sustentable. Accessed 11 Apr 2021

  27. EnergyPlus: EnergyPlus (2021). https://energyplus.net/. Accessed 11 Apr 2021

  28. Designbuilder: DesignBuilder Software Ltd - For Architects (2021). https://designbuilder.co.uk/software/for-architects. Accessed 11 Apr 2021

  29. Meteotest: Meteonorm Versión 8 - Meteonorm (en) (2021)

    Google Scholar 

  30. Diego-Mas, J.A.: Evaluación Del Confort Térmico Con El Método De Fanger, Universidad Politécnica de Valencia (2015). https://www.ergonautas.upv.es/metodos/fanger/fanger-ayuda.php. Accessed 14 Apr 2021

  31. UNE-EN ISO 7730:2006 Ergonomía del ambiente térmico. Determina... https://www.aenor.com/normas-y-libros/buscador-de-normas/une/?c=N0037517. Accessed 14 Apr 2021

  32. ISO: ISO 7730:2005 - Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (2005)

    Google Scholar 

  33. ANSI/ASHRAE: Standard 55 – thermal environmental conditions for human occupancy (2020)

    Google Scholar 

  34. ASHRAE: Estándar ASHRAE 55 (2021). https://www.seiscubos.com/conocimiento/estandar-ashrae-55. Accessed 06 Apr 2021

  35. Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga - CDMB y la Universidad de Santander – UDES: ¿Por qué tiembla con tanta frecuencia en Santander? - UDES Bucaramanga (2020)

    Google Scholar 

  36. CMGRD Alcaldía de Bucaramanga: Municipio de Bucaramanga (Santander) Plan Municipal de Gestión del Riesgo de Desastre CMGRD de Bu (2013)

    Google Scholar 

  37. IDEAM: Carácterísticas climatológicas de ciudades principales y municipios turísticos (2018). http://www.ideam.gov.co/documents/21021/418894/Características+de+Ciudades+Principales+y+Municipios+Turísticos.pdf/c3ca90c8-1072-434a-a235-91baee8c73fc. Accessed 06 Apr 2021

  38. Herrera, F.: Correlación de eventos sísmicos con la temperatura ambiental, en el área metropolitana de bucaramanga, Bucaramanga (2013)

    Google Scholar 

  39. Diego-Mas, J.A.: Método Fanger - Evaluación de la sensación térmica. https://www.ergonautas.upv.es/metodos/fanger/fanger-ayuda.php. Accessed 20 July 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Ascanio-Villabona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ascanio-Villabona, J.G., Terés-Zubiaga, J., Muñoz-Maldonado, Y.A., Lengerke-Pérez, O., Del Portillo-Valdés, L.A. (2022). Assessing the Thermal Performance of a Conventional Architecture in Dry Warm Climate. In: Botto-Tobar, M., Cruz, H., Diaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2021. Lecture Notes in Electrical Engineering, vol 932. Springer, Cham. https://doi.org/10.1007/978-3-031-08288-7_4

Download citation

Publish with us

Policies and ethics