Skip to main content

Chemistry and Food Applications of Persian Gum

  • Reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 764 Accesses

Abstract

Persian gum (PG) is a plant exudate secreted by mountain almond tree, Amygdalus scoparia Spach, being mainly native to Iran. It is classified as an anionic highly branched polysaccharide consisting of galactose and arabinose as the main constituting monosaccharides with traces of rhamnose, mannose, and xylose. The backbone is primarily composed of (1 → 3)-linked β-D-galactopyranosyl residues with (1 → 6)-linked β-D- galactopyranosyl and (1→)- and/or (1 → 3)-linked α-L-arabinofuranosyl units in the side chains. Terminal sugars are reported to be α-L-arabinofuranosyl and α-L-rhamnopyranosyl residues. According to the FTIR analysis, there are numerous functional groups such as hydroxyl, methyl, carboxyl, carbonyl, amide, ketone, and aldehyde groups in PG structure making it highly interactive with other molecules. Owing to its unique chemical structure and conformation, PG has remarkable functional properties as a stabilizer, thickener, emulsifier, and film-forming agent which in some cases are comparable with those of commercial polysaccharides. A number of attempts have also been made to improve these features by structural modification of the biopolymer using chemical and physical methods including heating and shearing, sonication, ionizing radiation, conjugation, side-chain substitution, and cross-linking. The modified gum has been reported to show enhanced stabilizing, emulsifying, texturizing, encapsulating, coating, and film-forming effects. This chapter will first briefly review the chemistry and molecular characteristics of PG and its interaction with other molecules and then describe its possible applications in food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ara:

Arabinose

DLS:

Dynamic light scattering

FTIR:

Fourier transform infrared spectroscopy

Gal:

Galactose

GC-MS:

Gas chromatography-mass spectroscopy

GlcA:

Galacturonic acid

GPC:

Gel permeation chromatography

HPLC:

High-performance liquid chromatography

IFPG:

Insoluble fraction of Persian gum

MALLS:

Multi-angle laser light scattering

Man:

Mannose

Mn:

Number-average molecular weight

Mw:

Weight-average molecular weight

Mw/Mn:

Polydispersity index

NMR:

Nuclear magnetic resonance

OSA:

Octenyl succinic anhydride

PG:

Persian gum

Rha:

Rhamnose

SFPG:

Soluble fraction Persian gum

WPI:

Whey protein isolate

Xyl:

Xylose

References

  1. Mirhosseini H, Amid BT (2012) A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int 461:387–398

    Article  CAS  Google Scholar 

  2. Li JM, Nie SP (2016) The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll 53:46–61

    Article  CAS  Google Scholar 

  3. Zhang M, Cui S, Cheung P, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics, and antitumor activity. Trends Food Sci Technol 181:4–19

    Article  CAS  Google Scholar 

  4. Fadavi G, Mohammadifar MA, Zargarran A, Mortazavian AM, Komeili R (2014) Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia. Carbohydr Polym 101:1074–1080

    Article  CAS  PubMed  Google Scholar 

  5. Williams P (2000) Introduction to food hydrocolloids. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  6. Abbasi S (2017) Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Curr Opin Colloid Interface Sci 28:37–45

    Article  CAS  Google Scholar 

  7. Mahfoudhi N, Chouaibi M, Donsi F, Ferrari G, Hamdi S (2012) Chemical composition and functional properties of gum exudates from the trunk of the almond tree (Prunus dulcis). Food Sci Technol Int 183:241–250

    Article  Google Scholar 

  8. Samari-Khalaj M, Abbasi S (2017) Solubilisation of Persian gum: chemical modification using acrylamide. Int J Biol Macromol 101:187–195

    Article  CAS  PubMed  Google Scholar 

  9. Rahimi S, Abbasi S (2018) Fractionation and determination of some structural properties of Persian gum. J Food Biosci Technol 81:81–90

    Google Scholar 

  10. Hojjati M, Lipan L, Carbonell-Barrachina ÁA (2016) Effect of roasting on physicochemical properties of wild almonds (Amygdalus scoparia). J Am Oil Chem Soc 939:1211–1220

    Article  CAS  Google Scholar 

  11. Baharvand-Ahmadi B, Bahmani M, Tajeddini P, Naghdi N, Rafieian-Kopaei M (2016) An ethno-medicinal study of medicinal plants used for the treatment of diabetes. J Nephropathol 5:44–50

    Article  PubMed  Google Scholar 

  12. Parsaei P, Bahmani M, Naghdi N, Asadi-Samani M, Rafieian-Kopaei M, Tajeddini P, Sepehri-Boroujeni M (2016) Identification of medicinal plants effective on common cold: an ethnobotanical study of Shiraz, South Iran. Der Pharm Lett 82:90–97

    Google Scholar 

  13. Bashir M, Haripriya S (2016) Assessment of physical and structural characteristics of almond gum. Int J Biol Macromol 93:476–482

    Article  CAS  PubMed  Google Scholar 

  14. Rahimi S (2012) Determination of chemical, physical, physicochemical, structural, and rheological propetis of Persian gum. Dissertation, Tarbiat Modares University

    Google Scholar 

  15. Abbasi S (2019) Persian gum (Amygdalus scoparia Spach). In: Razavi SMA (ed) Emerging natural hydrocolloids: rheology and functions, 1st edn. Wiley, Newark

    Google Scholar 

  16. Dabestani M, Kadkhodaee R, Phillips GO, Abbasi S (2018) Persian gum: a comprehensive review on its physicochemical and functional properties. Food Hydrocoll 78:92–99

    Article  CAS  Google Scholar 

  17. Mhinzi GS, Mghweno LAR, Buchweishaija J (2008) Intra-species variation of the properties of gum exudates from two Acacia species of the series Gummiferae. Food Chem 1074:1407–1412

    Article  CAS  Google Scholar 

  18. Abbasi S, Rahimi S (2015) Persian gum. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis Group, Boca Raton

    Google Scholar 

  19. Golkar A, Nasirpour A, Keramat J (2015) β-lactoglobulin-Angum gum (Amygdalus scoparia Spach) complexes: preparation and emulsion stabilization. J Dispers Sci Technol 365:685–694

    Article  CAS  Google Scholar 

  20. Sadeghi F, Kadkhodaee R, Emadzadeh B, Phillips GO (2018) Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system. Carbohydr Polym 179:71–78

    Article  CAS  PubMed  Google Scholar 

  21. Rezaei A, Nasirpour A, Tavanai H (2016) Fractionation and some physicochemical properties of almond gum (Amygdalus communis L.) exudates. Food Hydrocoll 60:461–469

    Article  CAS  Google Scholar 

  22. Sahari MA, Mohammadi R, Hamidi Esfehani Z (2014) Rheological and quality characteristics of taftoon bread as affected by Salep and Persian gums. Int J Food Sci 2014:813286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghasemzadeh H, Modiri F (2020) Application of novel Persian gum hydrocolloid in soil stabilization. Carbohydr Polym 246:116639

    Article  CAS  PubMed  Google Scholar 

  24. Seyfi R, Kasaai MR, Chaichi MJ (2019) Isolation and structural characterization of a polysaccharide derived from a local gum: Zedo (Amygdalus scoparia Spach). Food Hydrocoll 87:915–924

    Article  CAS  Google Scholar 

  25. Beirami-Serizkani F, Hojjati M, Jooyandeh H (2021) The effect of microbial transglutaminase enzyme and Persian gum on the characteristics of traditional kefir drink. Int Dairy J 112:104843

    Article  CAS  Google Scholar 

  26. Molaei H, Jahanbin K (2018) Structural features of a new water-soluble polysaccharide from the gum exudates of Amygdalus scoparia Spach (Zedo gum). Carbohydr Polym 182:98–105

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Fan L, Ding S (2011) Isolation, purification and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv. Jinsixiaozao. Carbohydr Polym 832:477–482

    Article  CAS  Google Scholar 

  28. Fischer MH, Yu N, Gray GR, Ralph J, Anderson L, Marlett JA (2004) The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res 33911:2009–2017

    Article  CAS  Google Scholar 

  29. Yuan Y, Wang YB, Jiang Y, Prasad KN, Yang J, Qu H, Wang Y, Jia Y, Mo H, Yang B (2016) Structure identification of a polysaccharide purified from Lycium barbarium fruit. Int J Biol Macromol 82:696–701

    Article  CAS  PubMed  Google Scholar 

  30. Yin J, Lin H, Li J, Wang Y, Cui SW, Nie S, Xie M (2012) Structural characterization of a highly branched polysaccharide from the seeds of Plantago asiatica L. Carbohydr Polym 874:2416–2424

    Article  CAS  Google Scholar 

  31. Pereira-Netto AB, Pettolino F, Cruz-Silva CTA, Simas FF, Bacic A, dos Anjos Carneiro-Leao AM, Iacomini M, Maurer JBB (2007) Cashew-nut tree exudate gum: identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis. Plant Sci 1734:468–477

    Article  CAS  Google Scholar 

  32. Vinod V, Sashidhar R, Suresh K, Rao BR, Saradhi UV, Rao TP (2008) Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): a tree gum from India. Food Hydrocoll 225:899–915

    Article  CAS  Google Scholar 

  33. Amirsadeghi A, Jafari A, Hashemi SS, Kazemi A, Ghasemi Y, Derakhshanfar A, Shahbazi MA, Niknezhad SV (2021) Sprayable antibacterial Persian gum-silver nanoparticle dressing for wound healing acceleration. Mater Today Commun 27:102225

    Article  CAS  Google Scholar 

  34. Fadavi G, Ghiasi M, Zargarran A, Mohammadifar MA (2017) Some physicochemical and rheological properties of Zedo (Farsi) gum exudates from Amygdalus scoparia. Nutr Food Sci Res 41:33–40

    Google Scholar 

  35. Mohammadi S, Abbasi S, Scanlon M (2016) Development of emulsifying property in Persian gum using octenyl succinic anhydride (OSA). Int J Biol Macromol 89:396–405

    Article  CAS  PubMed  Google Scholar 

  36. Fan L, Cao M, Gao S, Wang W, Peng K, Tan C, Wen F, Tao S, Xie W (2012) Preparation and characterization of a quaternary ammonium derivative of pectin. Carbohydr Polym 882:707–712

    Article  CAS  Google Scholar 

  37. Alijani S, Balaghi S, Mohammadifar MA (2011) Effect of gamma irradiation on rheological properties of polysaccharides exuded by A. fluccosus and A. gossypinus. Int J Biol Macromol 494:471–479

    Article  CAS  Google Scholar 

  38. Joukar F, Hosseini SMH, Moosavi-Nasab M, Mesbahi GR, Behzadnia A (2017) Effect of Farsi gum-based antimicrobial adhesive coatings on the refrigeration shelf life of rainbow trout fillets. LWT Food Sci Technol 80:1–9

    Article  CAS  Google Scholar 

  39. Dickinson E (2009) Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll 236:1473–1482

    Article  CAS  Google Scholar 

  40. Ghasempour Z, Alizadeh M, Bari MR (2012) Optimisation of probiotic yoghurt production containing Zedo gum. Int J Dairy Technol 651:118–125

    Article  CAS  Google Scholar 

  41. Teimouri S, Abbasi S, Sheikh N (2016) Effects of gamma irradiation on some physicochemical and rheological properties of Persian gum and gum tragacanth. Food Hydrocoll 59:9–16

    Article  CAS  Google Scholar 

  42. Raoufi N, Fang Y, Kadkhodaee R, Phillips GO, Najafi MN (2017) Changes in turbidity, zeta potential and precipitation yield induced by Persian gum-whey protein isolate interactions during acidification. J Food Process Preserv 413:e12975

    Article  CAS  Google Scholar 

  43. Simas FF, Gorin PA, Wagner R, Sassaki GL, Bonkerner A, Iacomini M (2008) Comparison of structure of gum exudate polysaccharides from the trunk and fruit of the peach tree (Prunus persica). Carbohydr Polym 712:218–228

    Article  CAS  Google Scholar 

  44. Garti N, Leser ME (2001) Emulsification properties of hydrocolloids. Polym Adv Technol 12(1–2):123–135

    Article  CAS  Google Scholar 

  45. Jafari SM, Beheshti P, Assadpour E (2013) Emulsification properties of a novel hydrocolloid (Angum gum) for d-limonene droplets compared with Arabic gum. Int J Biol Macromol 61:182–188

    Article  CAS  PubMed  Google Scholar 

  46. Hadian M, Hosseini SMH, Farahnaky A, Mesbahi GR, Yousefi GH, Saboury AA (2016) Isothermal titration calorimetric and spectroscopic studies of β-lactoglobulin-water-soluble fraction of Persian gum interaction in aqueous solution. Food Hydrocoll 55:108–118

    Article  CAS  Google Scholar 

  47. Khalesi H, Alizadeh M, Bari MR (2012) Physicochemical and functional properties of Zedo gum exudating from Amygdalus scoparia spach trees in the Miyan Jangal area of the Fars Province. Iran Food Sci Technol Res J 8:317–326

    Google Scholar 

  48. Yousefi F, Abbasi S, Ezzatpanah H (2012) Effect of Persian gum concentration, oil content, whey protein concentrate, and pH on the stability of emulsions prepared by ultrasonic homogenizer. J Res Innovation Food Sci Technol 13:199–218

    Google Scholar 

  49. Jafari SM, Beheshti P, Assadpoor E (2012) Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. J Food Eng 1091:1–8

    Article  CAS  Google Scholar 

  50. Rastabi J, Nasirpour A (2017) Comparison of some physicochemical and functional properties of Farsi gum and other Rosaceae plant gum exudates. J Sci Eng Elites 2:110–118

    Google Scholar 

  51. Dickinson E (2008) Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter 45:932–942

    Article  CAS  Google Scholar 

  52. Dickinson E (1998) Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends Food Sci Technol 910:347–354

    Article  Google Scholar 

  53. Shu YW, Sahara S, Nakamura S, Kato A (1996) Effects of the length of polysaccharide chains on the functional properties of the Maillard-type lysozyme−polysaccharide conjugate. J Agric Food Chem 449:2544–2548

    Article  Google Scholar 

  54. Khalesi H, Emadzadeh B, Kadkhodaee R, Fang Y (2017) Effects of biopolymer ratio and heat treatment on the complex formation between whey protein isolate and soluble fraction of Persian gum. J Dispers Sci Technol 389:1234–1241

    Article  CAS  Google Scholar 

  55. Azarikia F, Abbasi S (2016) Mechanism of soluble complex formation of milk proteins with native gums (tragacanth and Persian gum). Food Hydrocoll 59:35–44

    Article  CAS  Google Scholar 

  56. Khalesi H, Emadzadeh B, Kadkhodaee R, Fang Y (2016) Whey protein isolate-Persian gum interaction at neutral pH. Food Hydrocoll 59:45–49

    Article  CAS  Google Scholar 

  57. Golkar A, Nasirpour A, Keramat J, Desobry S (2015) Emulsifying properties of Angum gum (Amygdalus scoparia Spach) conjugated to β-lactoglobulin through Maillard-type reaction. Int J Food Prop 189:2042–2055

    Article  CAS  Google Scholar 

  58. Abbasi S, Mohammadi S (2013) Stabilization of milk–orange juice mixture using Persian gum: efficiency and mechanism. Food Biosci 2:53–60

    Article  CAS  Google Scholar 

  59. Teimouri S, Abbasi S, Scanlon MG (2018) Stabilisation mechanism of various inulins and hydrocolloids: Milk–sour cherry juice mixture. Int J Dairy Technol 711:208–215

    Article  CAS  Google Scholar 

  60. Emamverdian P, Moghaddas Kia E, Ghanbarzadeh B, Ghasempour Z (2020) Characterization and optimization of complex coacervation between soluble fraction of Persian gum and gelatin. Colloids Surf A Physicochem Eng Asp 607:125436

    Article  CAS  Google Scholar 

  61. Hadian M, Labbafi M, Hosseini SMH, Safari M, de Vries R (2020) A deeper insight into the characteristics of double-layer oil-in-water emulsions stabilized by Persian gum and whey protein isolate. J Dispersion Sci Technol 1–10

    Google Scholar 

  62. Gharanjig H, Gharanjig K, Hosseinnezhad M, Jafari SM (2020) Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. Int J Biol Macromol 148:31–40

    Article  CAS  PubMed  Google Scholar 

  63. Sarabi-Aghdam V, Mousavi M, Hamishehkar H, Kiani H, Emam-Djomeh Z, Mirarab Razi S, Rashidinejad A (2021) Utilization of chickpea protein isolate and Persian gum for microencapsulation of licorice root extract towards its incorporation into functional foods. Food Chem 362:130040

    Article  CAS  PubMed  Google Scholar 

  64. Raeisi S, Ojagh SM, Quek SY, Pourashouri P, Salaün F (2019) Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT Food Sci Technol 116:108494

    Article  CAS  Google Scholar 

  65. Dabestani M (2011) Influence of some parameters on functional and rheological properties of mixed Persian–tragacanth gums. Dissertation, Tarbiat Modares University

    Google Scholar 

  66. Raoufi N, Kadkhodaee R, Fang Y, Phillips GO (2019) Ultrasonic degradation of Persian gum and gum tragacanth: effect on chain conformation and molecular properties. Ultrason Sonochem 52:311–317

    Article  CAS  PubMed  Google Scholar 

  67. Golkar A, Nasirpour A, Keramat J (2017) Improving the emulsifying properties of β-lactoglobulin–wild almond gum (Amygdalus scoparia Spach) exudate complexes by heat. J Sci Food Agric 971:341–349

    Article  CAS  Google Scholar 

  68. Mozafari H, Hojjatoleslamy M, Mohammadizadeh M (2021) Optimizing the properties of Zodo gum and examining its potential for amino acid binding by periodate oxidation. Int J Biol Macromol 167:1517–1526

    Article  CAS  PubMed  Google Scholar 

  69. Mirmajidi Hashtjin A, Abbasi S (2015) Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll 44:40–48

    Article  CAS  Google Scholar 

  70. Behbahani MS, Abbasi S (2017) Stabilization of flixweed seeds (Descurainia sophia L.) drink: Persian refreshing drink. Food Biosci 18:22–27

    Article  CAS  Google Scholar 

  71. Komeilyfard A, Fazel M, Akhavan H, Mousakhani Ganjeh A (2017) Effect of Angum gum in combination with tragacanth gum on rheological and sensory properties of ketchup. J Texture Stud 482:114–123

    Article  Google Scholar 

  72. Barzegari M, Amiri Raftani Z, Mohammadzadeh MJ, Motamedzadegan A (2013) The effect of carboxymethyl cellulose substitution with Persian gum on the qualitative properties of mayonnaise. J Res Innovation Food Sci Technol 2:381–391

    Google Scholar 

  73. Dabestani M, Yeganehzad S (2019) Effect of Persian gum and xanthan gum on foaming properties and stability of pasteurized fresh egg white foam. Food Hydrocoll 87:550–560

    Article  CAS  Google Scholar 

  74. Nami Y, Lornezhad G, Kiani A, Abdullah N, Haghshenas B (2020) Alginate-Persian gum-prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. LWT Food Sci Technol 124:109190

    Article  CAS  Google Scholar 

  75. Bassijeh A, Ansari S, Hosseini SMH (2020) Astaxanthin encapsulation in multilayer emulsions stabilized by complex coacervates of whey protein isolate and Persian gum and its use as a natural colorant in a model beverage. Food Res Int 137:109689

    Article  CAS  PubMed  Google Scholar 

  76. Mehrnia MA, Jafari SM, Makhmal-Zadeh BS, Maghsoudlou Y (2017) Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food Hydrocoll 66:259–267

    Article  CAS  Google Scholar 

  77. Jalalizand F, Goli M (2021) Optimization of microencapsulation of selenium with gum Arabian/Persian mixtures by solvent evaporation method using response surface methodology (RSM): soybean oil fortification and oxidation indices. J Food Meas Charact 151:495–507

    Article  Google Scholar 

  78. Shaygannia S, Eshaghi MR, Fazel M, Hashemiravan M (2021) Phenolic compounds and antioxidant activities of lemon wastes affected by microencapsulation using coatings of Arabic, Persian, and basil seed gums. J Food Meas Charact 152:1452–1462

    Article  Google Scholar 

  79. Gharanjig H, Gharanjig K, Farzi G, Hosseinnezhad M, Jafari SM (2020) Novel complex coacervates based on Zedo gum, cress seed gum and gelatin for loading of natural anthocyanins. Int J Biol Macromol 164:3349–3360

    Article  CAS  PubMed  Google Scholar 

  80. Izadi S, Ojagh S, Rahmanifarah K, Shabanpour B, Sakhale B (2015) Production of low-fat shrimps by using hydrocolloid coatings. J Food Sci Technol 529:6037–6042

    Article  CAS  Google Scholar 

  81. Khorram F, Ramezanian A, Hosseini SMH (2017) Shellac, gelatin and Persian gum as alternative coating for orange fruit. Sci Hortic 225:22–28

    Article  CAS  Google Scholar 

  82. Khezerlou A, Ehsani A, Tabibiazar M, Moghaddas Kia E (2019) Development and characterization of a Persian gum–sodium caseinate biocomposite film accompanied by Zingiber officinale extract. J Appl Polym Sci 13612:47215

    Article  CAS  Google Scholar 

  83. Jokar A, Barzegar H, Maftoon Azad N, Shahamirian M (2021) Effects of cinnamon essential oil and Persian gum on preservation of pomegranate arils. Food Sci Nutr 95:2585–2596

    Article  CAS  Google Scholar 

  84. Pak ES, Ghaghelestani SN, Najafi MA (2020) Preparation and characterization of a new edible film based on Persian gum with glycerol plasticizer. J Food Sci Technol 579:3284–3294

    Article  CAS  Google Scholar 

  85. Sharif N, Falcó I, Martínez-Abad A, Sánchez G, López-Rubio A, Fabra MJ (2021) On the use of Persian gum for the development of antiviral edible coatings against murine norovirus of interest in blueberries. Polym 132:224

    Article  CAS  Google Scholar 

  86. Maleki M, Mohsenzadeh M (2020) Optimization of biodegradable film production based on carboxymethyl cellulose and Persian gum by response surface methodology. Iran J Food Sci Technol 17104:41–50

    Google Scholar 

  87. Khodaei D, Oltrogge K, Hamidi-Esfahani Z (2020) Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT Food Sci Technol 117:108617

    Article  CAS  Google Scholar 

  88. Mohammadi-Gouraji E, Sheikh-Zeinoddin M, Soleimanian-Zad S (2017) Effects of Persian gum and gum Arabic on the survival of Lactobacillus plantarum PTCC 1896, Escherichia coli, Xanthomonas axonopodis, and Saccharomyces cerevisiae during freeze drying. Br Food J 119:331–341

    Article  Google Scholar 

  89. Rasekhi Kazeruni A, Hosseini E (2017) Effect of bitter almond gum (Amygdalus scoparia Spach) on the survival of Lactobacillus acidophilus La5 in tomato juice during refrigeration storage and exposure to simulated gastric juice. J Mazandaran Univ Med Sci 27147:75–86

    Google Scholar 

  90. Jooyandeh H, Goudarzi M, Rostamabadi H, Hojjati M (2017) Effect of Persian and almond gums as fat replacers on the physicochemical, rheological, and microstructural attributes of low-fat Iranian White cheese. Food Sci Nutr 53:669–677

    Article  CAS  Google Scholar 

  91. Golkar A, Nasirpour A, Keramat J (2016) Production of reduced-fat mayonnaise using electrostatic and covalent complexes of β-lactoglobulin and Farsi gum. Iran J Nutr Sci Food Technol 104:103–114

    Google Scholar 

  92. Abbasi S, Mohammadi S, Rahimi S (2011) Partial substitution of gelatin with Persian gum and use of Olibanum in production of functional pastille. Iran J Biosyst Eng 421:121–131

    Google Scholar 

  93. Razjoo A, Azizkhani M, Esmaeilzadeh Kenari R (2021) The effect of Amygdalus scoparia Spach and Lepidium sativum L. seed gums on the properties of formulated food supplement for soldiers using response surface methodology. Food Sci Nutr 94:2280–2289

    Article  CAS  Google Scholar 

  94. Nouri M, Nasehi B, Samavati V, Mehdizadeh SA (2017) Optimizing the effects of Persian gum and carrot pomace powder for development of low-fat donut with high fibre content. Bioact Carbohydr Diet Fibre 9:39–45

    Article  CAS  Google Scholar 

  95. Rajabi MAM, Sheikholeslami Z, Almasi M (2020) Evaluation of different levels of Persian gum (Zedu) on texture, microstructure and sensory properties of saffron cup cake. Iran J Food Sci Technol 97:137–148

    Google Scholar 

  96. Golkar A, Taghavi SM, Aghili Dehnavi F (2018) The emulsifying properties of Persian gum (Amygdalus scoparia Spach) as compared with gum Arabic. Int J Food Prop 211:416–436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rassoul Kadkhodaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kadkhodaee, R., Mahfouzi, M. (2022). Chemistry and Food Applications of Persian Gum. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-91378-6_13

Download citation

Publish with us

Policies and ethics