Skip to main content

Chemistry, Biological Activities, and Uses of Tara Gum

Gums, Resins and Latexes of Plant Origin

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 110 Accesses

Abstract

Galactomannans are high molecular weight plant polysaccharides obtained from legume seeds of annual crops or perennial trees and shrubs. These heteropolysaccharides are mainly made up of a d-mannose backbone and a d-galactose side chain. Tara gum (TG), a galactomannan with a mannose to galactose ratio of 3:1, is obtained from the seed endosperm of Caesalpinia spinosa. The gum has gained popularity due to its properties and functionality comparable to that of guar gum (GG) and locust bean gum (LBG). TG, an approved food additive (E417), is largely used as a thickener and stabilizer. The gum is also reported to have applications in the field of pharmaceuticals, dairy products, and cosmetics. Through keen references, this chapter discusses chemistry, biological activities, and uses of TG in various areas with examples to expand its future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADI:

Acceptable Daily Intake

Ag :

Silver

CaCl2:

Calcium chloride

CMTG :

Carboxymethyl tara gum

CSA :

Chlorosulfonic acid

EU :

European union

FTIR :

Fourier transform infrared

GG :

Guar gum

HIV :

Human immunodeficiency virus

IR :

Infrared

JECFA :

Joint FAO/WHO Expert Committee on Food Additives

KCl:

Potassium chloride

LBG :

Locust bean gum

LLC-MK2 :

Rhesus monkey kidney epithelial cells

MCA :

Monochloroacetic acid

MTT :

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NaCl:

Sodium chloride

NMR :

Nuclear magnetic resonance

TG :

Tara gum

References

  1. Zanin JLB, de Carvalho BA, Salles Martineli P, dos Santos MH, Lago JHG, Sartorelli P, JrC V, Soares MG (2012) The genus Caesalpinia L. (Caesalpiniaceae): phytochemical and pharmacological characteristics. Molecules 17(7):7887–7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Braga RC, Teixeira-Sá DMA, Ribeiro AF, Miranda RL, de Almeida LM, Horta ACG, RdeA M (2011) Evaluation of Caesalpinia pulcherrima endospermic gum as affinity matrices for galactose-binding lectins interaction. Braz Arch Biol Technol 54(2):283–292

    Article  CAS  Google Scholar 

  3. Sabale V, Paranjape A, Patel V, Sabale P (2017) Characterization of natural polymers from jackfruit pulp, calendula flowers and tara seeds as mucoadhesive and controlled release components in buccal tablets. Int J Biol Macromol 95:321–330

    Article  CAS  PubMed  Google Scholar 

  4. Gallao MI, LdeO N, Vieira ÍGP, Mendes FNP, Ricardo NMPS, de Brito ES (2013) Morphological, chemical and rheological properties of the main seed polysaccharide from Caesalpinia ferrea Mart. Ind Crop Prod 47:58–62

    Article  CAS  Google Scholar 

  5. Martel C, Rojas N, Marín M, Avilés R, Neira E, Santiago J (2014) Caesalpinia spinosa (Caesalpiniaceae) leaves: anatomy, histochemistry, and secondary metabolites. Rev Bras Bot 37(2):167–174

    Google Scholar 

  6. Glicksman M (1986) Tara gum. In: Glicksman M (ed) Food hydrocolloids, vol 3. CRC Press, Boca Raton, pp 185–189

    Google Scholar 

  7. Anderson E (1949) Endosperm mucilages of legumes. Ind Eng Chem 41(12):2887–2890

    Article  CAS  Google Scholar 

  8. Hidalgo ME, Ingrassia R, Nielsen NS, Porfiri MC, Tapia MD, Risso PH (2020) Tara gum–bovine sodium caseinate acid gels: stabilisation of W/W emulsions. Int J Dairy Technol 73(3):521–531

    Article  CAS  Google Scholar 

  9. Wu Y, Ding W, Jia L, He Q (2015) The rheological properties of tara gum (Caesalpinia spinosa). Food Chem 168:366–371

    Article  CAS  PubMed  Google Scholar 

  10. Garro GJM, Riedl B, Conner AH (1997) Analytical studies on Tara tannins. Holzforschung 51:235–243

    Article  Google Scholar 

  11. Abd Alla SG, Sen M, El-Naggar AWM (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89:478–485

    Article  CAS  PubMed  Google Scholar 

  12. Chambi F, Chirinos R, Pedreschi R, Betalleluz-Pallardel I, Debaste F, Campos D (2013) Antioxidant potential of hydrolyzed polyphenolic extracts from tara (Caesalpinia spinosa) pods. Ind Crop Prod 47:168–175

    Article  CAS  Google Scholar 

  13. Rogers JS, Beebe CW (1941) Leaching and tanning experiments with Tara pods. J Am Leather Chem Assoc 36:525–539

    CAS  Google Scholar 

  14. Duke JA (1981) Caesalpinia spinosa. In: Handbook of legumes of world economic importance. Plenum Press, New York, pp 32–33

    Chapter  Google Scholar 

  15. Sangay-Tucto S, Duponnois R (2018) Ecological characteristics of Tara (Caesalpinia spinosa), a multipurpose legume tree of high ecological and commercial value. In: Gorawala P et al (eds) Agricultural research updates, vol 22. Nova Science, New York, pp 189–208

    Google Scholar 

  16. Maier HK, Anderson MW, Karl CL, Magnuson K, Whistler RL (1993) Guar, locust bean, tara, and fenugreek gums. In: Industrial gums. Academic Press, New York, pp 181–226

    Chapter  Google Scholar 

  17. Neukom H (1989) Galactomannans: properties and applications. Lebensm Wiss Technol 22:41–45

    CAS  Google Scholar 

  18. Wielinga WC (1990) Production and applications of seed gums. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilisers for the food industry. IRL Press, Oxford, pp 383–403

    Google Scholar 

  19. Pawar HA, Lalitha KG (2014) Isolation, purification and characterization of galactomannans as an excipient from Senna tora seeds. Int J Biol Macromol 65:167–175

    Article  CAS  PubMed  Google Scholar 

  20. Borzelleca JF, Ladu BN, Senti FR, Egle JL (1993) Evaluation of the safety of tara gum as a food ingredient: a review of the literature. J Am Coll Toxicol 12(1):81–89

    Article  Google Scholar 

  21. Chi M, Liu C, Shen J, Dong Z, Yang Z, Wang L (2018) Antibacterial superabsorbent polymers from tara gum grafted poly(acrylic acid) embedded silver particles. Polymers 10(9):945

    Article  PubMed Central  Google Scholar 

  22. Williams PA, Phillips GO (2000) Introduction to food hydrocolloids. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, New York, pp 1–19

    Google Scholar 

  23. (2017) Re-evaluation of tara gum (E417) as a food additive. EFSA J 15(6):4863

    Google Scholar 

  24. World Health Organization (1987) Toxicological evaluation of certain food additives and contaminants. WHO food additives series 21. Cambridge University Press, Cambridge

    Google Scholar 

  25. Glicksman M (1986) Food hydrocolloids, 3rd edn. CRC Press, Boca Raton, p 247

    Google Scholar 

  26. Antoniou J, Liu F, Majeed H, Qazi HJ, Zhong F (2014) Physicochemical and thermomechanical characterization of tara gum edible films: effect of polyols as plasticizers. Carbohydr Polym 111:359–365

    Article  CAS  PubMed  Google Scholar 

  27. Luca N, Paola C, Costantino F, Jose ARR, Jose MG, Salvatore B, Alberto M (2021) Structural, thermal, and mechanical properties of gelatin-based films integrated with tara gum. Polymers 214:123244

    Article  Google Scholar 

  28. Jinsong Z, Guojing W, Qing L, Wei C, Qiang Z (2019) Rheological and microstructural properties of gelatin B/tara gum hydrogels: effect of protein/polysaccharide ratio, pH and salt addition. LWT 103:108–115

    Article  Google Scholar 

  29. Wu Y, Li W, Cui W, Eskin NAM, Goff HD (2012) A molecular modeling approach to understand conformation–functionality relationships of galactomannans with different mannose/galactose ratios. Food Hydrocoll 26(2):359–364

    Article  CAS  Google Scholar 

  30. Fijan S, Sostar-Turk RJ, Lapasin R (2007) Rheological study of interaction between non-ionic surfactants and polysaccharide thickeners used in textile printing. Carbohydr Polym 68:708–717

    Article  CAS  Google Scholar 

  31. Koocheki A, Taherian R, Bostan A (2013) Studies on the steady shear flow behavior and functional properties of Lepidium perfoliatum seed gum. Food Res Int 50(1):446–456

    Article  CAS  Google Scholar 

  32. Yanbei W, Wei D, He Q (2018) The gelation properties of tara gum blended with κ-carrageenan or xanthan. Food Hydrocoll 77:764–771

    Article  Google Scholar 

  33. Dea ICM, Morris ER, Rees DA, Welsh EJ, Barnes HA, Price J (1977) Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr Res 57:249–272

    Article  CAS  Google Scholar 

  34. Chen Y, Xu L, Wang Y, Chen Z, Zhang M, Chen H (2020) Characterization and functional properties of a pectin/tara gum based edible film with ellagitannins from the unripe fruits of Rubus chingii Hu. Food Chem 325:126964

    Article  CAS  PubMed  Google Scholar 

  35. Patricia C, Gonzalo V, Jose AR, Manuel V (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148

    Article  Google Scholar 

  36. Zuidam NJ, Nedovic V (eds) (2010) Encapsulation technologies for active food ingredients and food processing. Springer, New York

    Google Scholar 

  37. Piet JH, Daas Schols HA, de Jongh HHJ (2000) On the galactosyl distribution of commercial galactomannans. Carbohydr Res 329(3):609–619

    Article  Google Scholar 

  38. Ma Q, Dongying H, Haixia W, Lijuan W (2016) Tara gum edible film incorporated with oleic acid. Food Hydrocoll 56:127–133

    Article  CAS  Google Scholar 

  39. Ba J, Jin LQ, Yao WR (2013) Chemical structure and rheological properties of tara polysaccharide gum. J Adv Mater Res (821–822):986–989

    Google Scholar 

  40. Anderson DMW, Howlett JF, McNab CGA (1986) The amino acid composition of the proteinaceous components of konjac mannan, seed endosperm galactomannans and xanthan gum. Food Hydrocoll 1(2):95–99

    Article  CAS  Google Scholar 

  41. Huamani-Melendez VJ, Mauro MA, Darros-Barbosa R (2020) Physicochemical and rheological properties of aqueous tara gum solutions. Food Hydrocoll (111):106195

    Google Scholar 

  42. Muschin T, Yoshida T (2012) Structural analysis of galactomannans by NMR spectroscopy. Carbohydr Polym 87(3):1893–1898

    Article  CAS  Google Scholar 

  43. Geronço MS, da Silveira Ramos IF, da Silva Filho EC, dos Santos RM, Ribeiro AB, da Costa MP (2021) Are structurally modified galactomannan derivatives biologically active? Polysaccharides 2(1):1–15

    Article  Google Scholar 

  44. Muschin T, Budragchaa D, Kanamoto T, Nakashima H, Ichiyama K, Yamamoto N, Shuqin H, Yoshida T (2016) Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities. Int J Biol Macromol 89:415–420

    Article  CAS  PubMed  Google Scholar 

  45. Wustenberg T (2015) Cellulose and cellulose derivatives in the food industry: fundamentals and applications. Wiley, Weinheim

    Google Scholar 

  46. Kuntz LA (1999) Special effects with gums. In: Food product design. Weeks Publishing Company, Northbrook

    Google Scholar 

  47. Bemiller RLWJN (1992) Industrial gums polysaccharides and their derivatives. Academic Press, New York

    Google Scholar 

  48. Glicksman M, Farkas EH (1974) Gum gelling system xanthan tara dessert gel. U.S. Patent 3,784,712

    Google Scholar 

  49. Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN (2013) Galactomannan: a versatile biodegradable seed polysaccharide. Int J Biol Macromol 60:83–92

    Article  CAS  PubMed  Google Scholar 

  50. Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem 31:241–312

    Article  CAS  Google Scholar 

  51. Richardson PH, Norton IT (1998) Gelation behavior of concentrated locust bean gum solutions. Macromolecules 31:1575–1583

    Article  CAS  Google Scholar 

  52. Wada K, Wada K, Deguchi K (1973) Method for improving the quality of food and drink. Japanese Patent 4835463

    Google Scholar 

  53. Masuelli MA (2016) Tara gum, the new biopolymer for various applications: hydrodynamic properties. In: Handbook of sustainable polymers: processing and applications. CRC Press, Boca Raton

    Google Scholar 

  54. Quisca RP, Moran JV, Galloza GG, Arias JVB, Montoya EN, Urquizo FL, Ramírez MER, Yacchi TA, Chavez TT (2019) Development of a preservative for white fresh cheese from the addition of Peruvian Tara gum Caesalpinia spinosa. Food Sci Technol 39:210–215

    Article  Google Scholar 

  55. Mirhosseini H, Amid BT (2012) A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int 46:387–398

    Article  CAS  Google Scholar 

  56. Dea ICM, Finney DJ (1979) Stabilized spoonable ice cream. U.S. Patent 4,145,454

    Google Scholar 

  57. Glicksman M, Farkas EH (1973) Pudding compositions. U.S. Patent 3,721,571

    Google Scholar 

  58. Macbride JF (1943) Flora of Peru: Leguminosae. Field Mus Nat Hist Bot Ser 13:1–507

    Google Scholar 

  59. San-Ei Chemical Industries Ltd (1983) Emulsifiers for processed marine foods, Tokyo, Japan

    Google Scholar 

  60. Whistler RL, BeMiller JN (1993) Industrial gums, 3rd edn. Academic Press, New York

    Google Scholar 

  61. Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J (2016) Molecular modification of polysaccharides and resulting bioactivities. Compr Rev Food Sci Food Saf 15(2):237–250

    Article  CAS  PubMed  Google Scholar 

  62. Mathur NK (2016) Industrial galactomannan polysaccharides, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  63. Johnson W, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA (2015) Safety assessment of galactomannans as used in cosmetics. Int J Toxicol 34(1_suppl):35S–65S

    Article  CAS  PubMed  Google Scholar 

  64. Qin X, Li R, Zhu S, Hu J, Zeng X, Zhang X, Xu H, Kong W, Liang J, Zhang H, Zhang J, Wang J (2020) A comparative study of sulfated tara gum: RSM optimization and structural characterization. Int J Biol Macromol 150:189–199

    Article  CAS  PubMed  Google Scholar 

  65. Santos MB, de Carvalho CWP, Garcia-Rojas EE (2021) Microencapsulation of vitamin D3 by complex coacervation using carboxymethyl tara gum (Caesalpinia spinosa) and gelatin A. Food Chem 343:128529

    Article  CAS  PubMed  Google Scholar 

  66. Santos MB, Carvalho MG, Garcia-Rojas EE (2021) Carboxymethyl tara gum- lactoferrin complex coacervates as carriers for vitamin D3: encapsulation and controlled release. Food Hydrocoll 112:106347

    Article  CAS  Google Scholar 

  67. Rutz JK, Zambiazi RC, Borges CD, Krumreich FD, da Luz SR, Hartwig N (2013) Microencapsulation of purple Brazilian cherry juice in xanthan, tara gums and xanthan-tara hydrogel matrixes. Carbohydr Polym 98(2):1256–1265

    Article  CAS  PubMed  Google Scholar 

  68. Santos MB, Garcia-Rojas EE (2021) Recent advances in the encapsulation of bioactive ingredients using galactomannans-based as delivery systems. Food Hydrocoll 118:106815

    Article  CAS  Google Scholar 

  69. Viebke C, Piculell L (1996) Adsorption of galactomannans onto agarose. Carbohydr Polym 29(1):1–5

    Article  CAS  Google Scholar 

  70. Santos MB, dos Santos CHC, de Carvalho MG, de Carvalho CWP, Garcia- Rojas EE (2019) Physicochemical, thermal and rheological properties of synthesized carboxymethyl tara gum (Caesalpinia spinosa). Int J Biol Macromol 134:595–603

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Xu QH (2017) Quaternary ammonium cationic tara gum and its application in paper making. In: Advanced materials and energy sustainability: Proceedings of the 2016 International Conference on Advanced materials and energy sustainability (AMES 2016), pp 226–232

    Google Scholar 

  72. Ma Q, Lin D, Yang Y, Lijuan W (2017) Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocoll 63:677–684

    Article  CAS  Google Scholar 

  73. Liu F, Chang W, Chen M, Xu F, Ma J, Zhong F (2020) Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocoll 98:105007

    Article  CAS  Google Scholar 

  74. Ramana G, Kartik RD, Sravanthi O (2012) Design and evaluation of natural gum based oral controlled release matrix tablets of ambroxol hydrochloride. Der Pharm Let 4(4):1105–1114

    CAS  Google Scholar 

  75. Bharathi A, Sushma CH, Silpika K, Deepthi KNV, Bhagya LS (2014) Formulation development and evaluation of sustained release matrix tablets of quetiapine fumarate. J Chem Pharm Res 6(4):628–632

    Google Scholar 

  76. Allender CJ, Richardson C, Woodhouse B, Heard CM, Brain KR (2000) Pharmaceutical applications for molecularly imprinted polymers. Int J Pharm 195(1–2):39–43

    Article  CAS  PubMed  Google Scholar 

  77. Rigano L, Deola M, Zaccariotto F, Colleoni T, Lionetti N (2019) A new gelling agent and rheology modifier in cosmetics: Caesalpinia spinosa gum. Cosmetics 6(2):34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Desai, S., Prajapati, V., Chandarana, C. (2022). Chemistry, Biological Activities, and Uses of Tara Gum. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Chemistry, Biological Activities, and Uses of Tara Gum
    Published:
    07 April 2022

    DOI: https://doi.org/10.1007/978-3-030-76523-1_11-2

  2. Original

    Chemistry, Biological Activities, and Uses of Tara Gum
    Published:
    08 January 2022

    DOI: https://doi.org/10.1007/978-3-030-76523-1_11-1