Skip to main content

A Review of Recent Advancements Regarding the Geometry of Flow Field Channels in the Bipolar Plates of Polymer Electrolyte Membrane Fuel Cells

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2020) (AI2SD 2020)

Abstract

The Polymer Electrolyte Membrane Fuel Cell (PEMFC) is one of the most promising technologies for energy production. It is composed of an electrolyte membrane sealed in a catalyst layer, gas diffusion layer and a bipolar plate in each side. The performance of the PEMFC is affected by many operational and physical parameters. One of the most important is the flow field channel geometry. This work reviews the last advancements regarding the flow field channel geometries and forecasts the future development trends. After comparison, it seems clear that the foam flow field is very promising due to its high performance regarding power density, water management and versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grove, W.: Pile voltaïque d’une grande énergie électro-chimique (1839)

    Google Scholar 

  2. Liebhafsky, H.A., Cairns, E.J.: Fuel Cells and Fuel Batteries - A Guide to Their Research and Development, vol. 258, p. 2. Wiley, New York, London, Sydney (1968). X, 692 Seiten, 300 Abbildungen, 48 Tabellen. Preis

    Google Scholar 

  3. Bacon, F.T.: Fuel Cells, Past, Present and Future (1969)

    Google Scholar 

  4. Amamou, A., Boulon, L., Kelouwani, S., Agbossou, K., Sicard, P.: Thermal management strategies for cold start of automotive PEMFC. In: 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE, Montreal, QC (2015)

    Google Scholar 

  5. Uchimura, M., Kocha, S.S.: The impact of cycle profile on PEMFC durability. In: ECS Transactions, pp. 1215–1226. ECS, Washington, DC (2007)

    Google Scholar 

  6. Curtin, D.E., Lousenberg, R.D., Henry, T.J., Tangeman, P.C., Tisack, M.E.: Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41–48 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.023

    Article  Google Scholar 

  7. Parts of a Fuel Cell

    Google Scholar 

  8. Stone, C.: Technology leadership: a roadmap to commercially viable PEMFC stack technology. In: Proceedings of the International Green Energy Conference (2005)

    Google Scholar 

  9. Wilberforce, T., et al.: A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renew. Sustain. Energy Rev. 111, 236–260 (2019). https://doi.org/10.1016/j.rser.2019.04.081

    Article  Google Scholar 

  10. Nguyen, T.V.: A gas distributor design for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 143, L103 (1996). https://doi.org/10.1149/1.1836666

    Article  Google Scholar 

  11. Hu, G., Fan, J., Chen, S., Liu, Y., Cen, K.: Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. J. Power Sources 136, 1–9 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.010

    Article  Google Scholar 

  12. Wang, M., Guo, H., Ma, C.: Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed. J. Power Sources 157, 181–187 (2006)

    Article  Google Scholar 

  13. Choi, K.-S., Kim, H.-M., Moon, S.-M.: Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC. Int. J. Hydrogen Energy 36, 1613–1627 (2011)

    Article  Google Scholar 

  14. Le, A.D., Zhou, B.: Fundamental understanding of liquid water effects on the performance of a PEMFC with serpentine-parallel channels. Electrochim. Acta 54, 2137–2154 (2009)

    Article  Google Scholar 

  15. Lakshminarayanan, V., Karthikeyan, P.: Investigation of PEMFC performance with various configurations of serpentine and interdigitated flow channel. 9

    Google Scholar 

  16. Jeon, D.: The effect of serpentine flow-field designs on PEM fuel cell performance. Int. J. Hydrogen Energy 33, 1052–1066 (2008). https://doi.org/10.1016/j.ijhydene.2007.11.015

    Article  Google Scholar 

  17. Limjeerajarus, N., Santiprasertkul, T.: Novel hybrid serpentine-interdigitated flow field with multi-inlets and outlets of gas flow channels for PEFC applications. Int. J. Hydrogen Energy S0360319918341624 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.160

  18. He, L., et al.: A novel three-dimensional flow field design and experimental research for proton exchange membrane fuel cells. Energy Convers. Manage. 205, 112335 (2020). https://doi.org/10.1016/j.enconman.2019.112335

    Article  Google Scholar 

  19. Zhu, W., Zheng, M.: Radial flow field of circular bipolar plate for proton exchange membrane fuel cells. IJHT 37, 733–740 (2019). https://doi.org/10.18280/ijht.370309

  20. Mert, S.O., Toprak, M.M.: Exergetic comparison of various flow patterns in PEMFCs. Int. J. Thermodyn. 22, 159–166 (2019). https://doi.org/10.5541/ijot.405050

    Article  Google Scholar 

  21. Terzi, R.: Application of exergy analysis to energy systems. In: Taner, T. (ed.) Application of Exergy. InTech (2018)

    Google Scholar 

  22. Kjelstrup, S., Coppens, M.-O., Pharoah, J.G., Pfeifer, P.: Nature-inspired energy- and material-efficient design of a polymer electrolyte membrane fuel cell. Energy Fuels. 24, 5097–5108 (2010). https://doi.org/10.1021/ef100610w

    Article  Google Scholar 

  23. Ramos-Alvarado, B., Hernandez-Guerrero, A., Elizalde-Blancas, F., Ellis, M.W.: Constructal flow distributor as a bipolar plate for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36, 12965–12976 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.017

    Article  Google Scholar 

  24. Cho, J.I.S., et al.: Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography. Energy 170, 14–21 (2019). https://doi.org/10.1016/j.energy.2018.12.143

    Article  Google Scholar 

  25. Trogadas, P., et al.: A lung-inspired approach to scalable and robust fuel cell design. Energy Environ. Sci. 11, 136–143 (2018). https://doi.org/10.1039/C7EE02161E

    Article  Google Scholar 

  26. Bethapudi, V.S., et al.: A lung-inspired printed circuit board polymer electrolyte fuel cell. Energy Convers. Manage. 202, 112198 (2019). https://doi.org/10.1016/j.enconman.2019.112198

    Article  Google Scholar 

  27. Badduri, S.R., Srinivasulu, G.N., Rao, S.S.: Influence of lung channel design bipolar plate on performance of PEMFC using computational fluid dynamic analysis. MSF 969, 530–535 (2019). https://doi.org/10.4028/www.scientific.net/MSF.969.530

    Article  Google Scholar 

  28. Barbir, F.: PEM Fuel Cells: Theory and Practice. Academic Press (2012)

    Google Scholar 

  29. U.S. Environmental Protection Agency. Technology Characterization Fuel Cells, Catalog of CHP Technology (2017). https://www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies_section_6._technology_characterization_-_fuel_cells.pdf

  30. Zhang, J., Wu, J., Zhang, H.: PEM fuel cell testing and diagnosis. Newnes (2013)

    Google Scholar 

  31. Park, J.E., et al.: Gas diffusion layer/flow-field unified membrane-electrode assembly in fuel cell using graphene foam. Electrochim. Acta 323, 134808 (2019). https://doi.org/10.1016/j.electacta.2019.134808

    Article  Google Scholar 

  32. Azarafza, A., Ismail, M.S., Rezakazemi, M., Pourkashanian, M.: Comparative study of conventional and unconventional designs of cathode flow fields in PEM fuel cell. Renew. Sustain. Energy Rev. 116, 109420 (2019). https://doi.org/10.1016/j.rser.2019.109420

    Article  Google Scholar 

  33. Baroutaji, A., Carton, J.G., Stokes, J., Olabi, A.G.: Design and Development of Proton Exchange Membrane Fuel Cell using Open Pore Cellular Foam as Flow Plate Material. 16

    Google Scholar 

  34. Bao, Z., Niu, Z., Jiao, K.: Numerical simulation for metal foam two-phase flow field of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 44, 6229–6244 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.086

    Article  Google Scholar 

  35. Awin, Y., Dukhan, N.: Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells. Appl. Energy 252, 113458 (2019). https://doi.org/10.1016/j.apenergy.2019.113458

    Article  Google Scholar 

  36. Li, W., et al.: Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Appl. Energy 195, 278–288 (2017). https://doi.org/10.1016/j.apenergy.2017.03.008

    Article  Google Scholar 

  37. Kim, J., Luo, G., Wang, C.-Y.: Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells. J. Power Sources 365, 419–429 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.003

    Article  Google Scholar 

  38. Anyanwu, I.S., et al.: Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. Int. J. Hydrogen Energy 44, 13807–13819 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.213

    Article  Google Scholar 

  39. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Special thanks to all the members of Research Team EMISys, Research Center ENGINEERING 3S.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nejma, M.H., Mounir, H., Marjani, A.E. (2022). A Review of Recent Advancements Regarding the Geometry of Flow Field Channels in the Bipolar Plates of Polymer Electrolyte Membrane Fuel Cells. In: Kacprzyk, J., Balas, V.E., Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2020). AI2SD 2020. Advances in Intelligent Systems and Computing, vol 1418. Springer, Cham. https://doi.org/10.1007/978-3-030-90639-9_5

Download citation

Publish with us

Policies and ethics