Skip to main content

Emerging Application of Nanocelluloses for Microneedle Devices

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

In quest of an efficient delivery system and for accurate delivery of drug to the ailment site, various researchers focused on development of a versatile delivery system. In progression, investigations on novel materials gained spotlight to add new dimension in the delivery devices to provide a more compatible and innovative platform for drug delivery. For innovative delivery systems, biomaterials like nanocelluloses were exploited for designing various scaffolds and delivery devices like microneedles. Microneedle devices are current trends of drug delivery where nanocellulose has evolved as protagonist for delivery aspects and strengthen the structural integrity of device. Nanocelluloses provided a wide choice for polymers to design biodegradable microneedle device. Nanocellulose also offers wide scope in surface engineering to upsurge the applicability of polymer for desired functionality of microneedle device.

This chapter detailed the advances in microneedle exploiting nanocellulose or their combinations as well as it also illuminates current research efforts focusing on production of nanocelluloses and application for microneedle devices and their anticipated prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-[HEA]- [HSO4]:

2-hydroxyethylammonium hydrogen sulfate

AmimCl:

1-allyl-3 methylimidazolium chloride

BC:

Bacterial Cellulose

BM:

Bone marrow

BmimCl:

1-butyl- 3 methylimidazolium chloride

BmimHSO4:

1-butyl-3-methylimidazolium hydrogen sulfate

BmimOAc:

1-allyl-3 methylimidazolium chloride

BNC:

Bacterial Nanocellulose

CMC:

Carboxymethyl cellulose

CMF:

Cellulose microfibrils

CNF:

Cellulose nanofibrils

Co2+:

Cobaltous cation

Co(NO3)2:

Cobalt nitrate

Cr(NO3)3:

Chromium(III) nitrate

d:

Particle size

DMAc:

Dimethyl sulfoxide

DP:

Degree of Polymerization

Fe3+:

Ferric ion

Fe(NO3)3:

ferric nitrate

H3O+:

Hydronium ion

HBr:

Hydrogen bromide

HCl:

Hydrochloric acid

HPH:

High Pressure Homogenization

H3PO4:

Phosphoric acid

H2SO4:

Sulphuric acid

HS:

Hestrin-Schramm

ILs:

Ionic liquids

IPN:

Interpenetrating network

KGy:

Kilogray

MCC:

Microcrystalline cellulose

MimHSO4:

1-butyl-3 methylimidazolium hydrogen sulfate

MN:

Microneedle

MPa:

Megapascal

MTS:

Microstructured transdermal system

NaBr:

Sodium Bromide

NaClO:

Sodium hypochlorite

NaClO2:

Sodium chlorite

NaOH:

Sodium hydroxide

NCC:

Nanocrystalline Cellulose

NFC:

Nanofibtillar cellulose.

Ni2+:

Nickelous ion

nm:

nanometer

Ni(NO3)2:

Nickel nitrate

OP:

Organophosphate

OPi:

Opioid

P:

Pressure of homogenizer

PFI:

Papirindustriens Forsknings institutt

PVA:

Poly vinyl alcohol

PVP:

Poly vinylpyrrolidone

rpm:

Revolutions per minute

SF:

Silk fibroin

TBAA:

Tetrabutylammonium acetate

TEMPO:

2,2,6,6 tetramethylpiperidine-1-oxyl

UV:

Ultra-violet

ZP:

Zosano Pharma

γ:

Gamma

References

  1. Mishra, R.K., et al.: Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J. Sci. Adv. Mater. Dev. 3(3), 263–288 (2018)

    Google Scholar 

  2. Chandra, C.S.J., George, N., Narayanankutty, S.K.: Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 142, 158–166 (2016)

    Article  CAS  Google Scholar 

  3. Salimi, S., et al.: Production of nanocellulose and its applications in drug delivery: a critical review. ACS Sustain. Chem. Eng. 7(19), 15800–15827 (2019)

    Article  CAS  Google Scholar 

  4. Klemm, D., et al.: Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)

    Article  CAS  Google Scholar 

  5. Beck-Candanedo, S., Roman, M., Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 6(2), 1048–1054 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. George, J., Bawa, A., Hatna, S.: Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Adv. Mater. Res. 123, 383–386 (2010)

    Article  CAS  Google Scholar 

  7. Harish, V., Tewari, D., Gaur, M., Yadav, A.B., Swaroop, S., Bechelany, M., Barhoum, A.: Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials. 12, 457 (2022). https://doi.org/10.3390/nano12030457

  8. Curvelo, A., et al.: Extrusion and characterization of functionalized cellulose whisker reinforced polyethylene nanocomposites. Polymer. 50(19), 4552–4563 (2009)

    Article  CAS  Google Scholar 

  9. Lindman, B., Karlström, G., Stigsson, L.: On the mechanism of dissolution of cellulose. J. Mol. Liq. 156(1), 76–81 (2010)

    Article  CAS  Google Scholar 

  10. Chen, Y.W., Lee, H.V.: Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: a source perspective. Int. J. Biol. Macromol. 107(Pt A), 78–92 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Palacios Hinestroza, H., et al.: Isolation and characterization of nanofibrillar cellulose from agave tequilana weber bagasse. Adv. Mater. Sci. Eng. 2019, 1342547 (2019)

    Article  CAS  Google Scholar 

  12. Gu, J., Hsieh, Y.-L.: Alkaline cellulose nanofibrils from streamlined alkali treated rice straw. ACS Sustain. Chem. Eng. 5(2), 1730–1737 (2017)

    Article  CAS  Google Scholar 

  13. Mahardika, M., et al.: Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers. 6(2), 28 (2018)

    Article  CAS  Google Scholar 

  14. de Carvalho Benini, K.C.C., et al.: Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydr. Polym. 192, 337–346 (2018)

    Article  CAS  Google Scholar 

  15. Maciel, M.M.Á.D., et al.: Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: effect of acid hydrolysis conditions. Int. J. Biol. Macromol. 126, 496–506 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Yang, X., et al.: Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Ind. Crop. Prod. 109, 241–247 (2017)

    Article  CAS  Google Scholar 

  17. Wulandari, W.T., Rochliadi, A., Arcana, I.M.: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Ser.: Mater. Sci. Eng. 107, 012045 (2016)

    Google Scholar 

  18. Kirkby, M., Hutton, A.R., Donnelly, R.F.: Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm. Res. 37, 117 (2020). https://doi.org/10.1007/s11095-020-02844-6

  19. Meftahi, A., Samyn, P., Geravand, S.A., Khajavi, R., Alibkhshi, S., Bechelany, M., Barhoum, A.: Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications. Carbohydr. Polym. 278, 118956 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. Phanthong, P., et al.: Nanocellulose: extraction and application. Carbon Resour Convers. 1(1), 32–43 (2018)

    Article  Google Scholar 

  21. Chen, Y.W., Lee, H.V.: Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: a source perspective. Int. J. Biol. Macromol. 107, 78–92 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. Miao, J., et al.: One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose. 23(2), 1209–1219 (2016)

    Article  CAS  Google Scholar 

  23. Tan, X.Y., Abd Hamid, S.B., Lai, C.W.: Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy. 81, 584–591 (2015)

    Article  CAS  Google Scholar 

  24. Hirota, M., et al.: Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose. 17(2), 279–288 (2010)

    Article  CAS  Google Scholar 

  25. Liu, Q., et al.: Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain. Chem. Eng. 5(7), 6183–6191 (2017)

    Article  CAS  Google Scholar 

  26. Herrera, M., et al.: Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose. 25(5), 3121–3133 (2018)

    Article  CAS  Google Scholar 

  27. Wang, B., Sain, M., Oksman, K.: Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl. Compos. Mater. 14(2), 89 (2007)

    Article  CAS  Google Scholar 

  28. Frone, A., et al.: Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. Bioresources. 6, 487 (2011)

    Article  CAS  Google Scholar 

  29. Rohaizu, R., Wanrosli, W.D.: Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason. Sonochem. 34, 631–639 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Larraneta, E., et al.: Microneedle Arrays as Transdermal and Intradermal Drug Delivery Systems: Materials Science, Manufacture and Commercial Development, vol. 104, pp. 1–32 (2016)

    Google Scholar 

  31. Jain, A.K., Lee, C.H., Gill, H.S.: 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release. 239, 72–81 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Z., et al.: Rapidly fabricated microneedle arrays using magnetorheological drawing lithography for transdermal drug delivery. ACS Biomater Sci. Eng. 5(10), 5506–5513 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. Luzuriaga, M.A., et al.: Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 18(8), 1223–1230 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. Kuzina, S.I., et al.: Influence of radiolysis on the yield of nanocellulose from plant biomass. High Energy Chem. 47(4), 192–197 (2013)

    Article  CAS  Google Scholar 

  35. Kim, M., et al.: Novel cosmetic patches for wrinkle improvement: retinyl retinoate-and ascorbic acid-loaded dissolving microneedles. Int. J. Cosmet. Sci. 36(3), 207–212 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. Li, W.Z., et al.: Super-short solid silicon microneedles for transdermal drug delivery applications. Int. J. Pharm. 389(1), 122–129 (2010)

    CAS  PubMed  Google Scholar 

  37. Gaur, M., Misra, C., Yadav, A.B., Swaroop, S., Maolmhuaidh, F.Ó., Bechelany, M., Barhoum, A.: Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials. 14, 5978 (2021). https://doi.org/10.3390/ma14205978

  38. Fomani, A.A., Mansour, R.R.J.S., Physical, A.A.: Fabrication and characterization of the flexible neural microprobes with improved structural design. Sens. Actuators A Phys. 168(2), 233–241 (2011)

    Article  CAS  Google Scholar 

  39. Lee, K., Jung, H.J.B.: Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials. 33(30), 7309–7326 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. Uddin, M.J., et al.: 3D printed microneedles for anticancer therapy of skin tumours. Mater. Sci. Eng. C Mater. Biol. Appl. 107, 110248 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. Han, D., et al.: 4D Printing of a Bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 30(11), 1909197 (2020)

    Article  CAS  Google Scholar 

  42. Yao, W., et al.: 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines. 11(1), 17 (2020)

    Article  Google Scholar 

  43. Park, Y., et al.: Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays. Biotechnol. Bioprocess Eng. 20(3), 543–549 (2015)

    Article  CAS  Google Scholar 

  44. McCrudden, M.T., et al.: Microneedle applications in improving skin appearance. Exp. Dermatol. 24(8), 561–566 (2015)

    Article  PubMed  Google Scholar 

  45. Kumar, A., et al.: Identification of novel hepatitis C virus NS3-4A protease inhibitors by virtual screening approach. J Microb Biochem Technol. 6(4), 1–7 (2014)

    Google Scholar 

  46. Zhang, Y., et al.: Adjuvants to prolong the local anesthetic effects of coated microneedle products. Int. J. Pharm. 439(1–2), 187–192 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. Ita, K.: Transdermal delivery of drugs with microneedles: strategies and outcomes. J. Drug Deliv. Sci. Technol. 29, 16–23 (2015)

    CAS  Google Scholar 

  48. Cleary, G.W.: Microneedles for drug delivery. Pharm. Res. 28(1), 1–6 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. Thakur, R.R.S., et al.: Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery. J. Pharm. Pharmacol. 66(4), 584–595 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. Barhoum, A., García-Betancourt, M.L., Jeevanandam, J., Hussien, E.A., Mekkawy, S.A., Mostafa, M., Omran, M.M., S. Abdalla, M., Bechelany, M.: Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials. 12, 177 (2022). https://doi.org/10.3390/nano12020177

  51. Yang, G., et al.: A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano. 13(4), 4354–4360 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. Salama, A., Abouzeid, R., Leong, W.S., Jeevanandam, J., Samyn, P., Dufresne, A., Bechelany, M., Barhoum, A.: Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials. 11, 3008 (2021). https://doi.org/10.3390/nano11113008

  53. Chen, S., et al.: Smart microneedle fabricated with silk fibroin combined semi-interpenetrating network hydrogel for glucose-responsive insulin delivery. ACS Biomater Sci. Eng. 5(11), 5781–5789 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Xiarong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dwivedi, M., Dwivedi, J., Shen, S., Dwivedi, P., Guangli, L., Xiarong, X. (2022). Emerging Application of Nanocelluloses for Microneedle Devices. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_33

Download citation

Publish with us

Policies and ethics