Skip to main content

Modelling Spherical Joints in Multibody Systems

  • Conference paper
  • First Online:
Multibody Mechatronic Systems (MuSMe 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 110))

Included in the following conference series:

Abstract

Spherical joints are commonly utilized in many real-world scenarios. From the more simplistic to the more complex perspectives, spherical joints might be modelled considering different cases. Thus, the aim of this study is to analyze and compare the influence of different spherical joint modelling approaches, namely the ideal, dry, lubricated, and bushing models, on the dynamic response of multibody systems. Initially, the kinematic and dynamic aspects of the spherical joint models are comprehensively reviewed. In this process, several approaches are explored and studied considering the normal, tangential, lubrication and bushing forces experienced by the multibody systems in such cases of spherical joints. The application of the spherical joint models in the dynamic modeling and simulation of the spatial four bar mechanism is investigated. From the results obtained, it can be stated that the choice of the spherical joint model can significantly affect the dynamic response of mechanical multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrósio, J., Verissimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Sys.Dyn. 22, 341–365 (2009). https://doi.org/10.1007/s11044-009-9161-7

    Article  MATH  Google Scholar 

  2. Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-16190-7

    Book  MATH  Google Scholar 

  3. Flores, P., Ambrósio, J., Pimenta Claro, J.C., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. ASME J. Comput. Nonlinear Dyn. 1, 240–247 (2006). https://doi.org/10.1115/1.2198877

    Article  Google Scholar 

  4. Flores, P., Ambrósio, P., Pimenta Claro, J.C., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints - Models and Case Studies. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74361-3

    Book  MATH  Google Scholar 

  5. Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60, 99–114 (2010). https://doi.org/10.1007/s11071-009-9583-z

    Article  MATH  Google Scholar 

  6. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990). https://doi.org/10.1115/1.2912617

    Article  Google Scholar 

  7. Threlfall, D.C.: The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM au programme DRAM. Mech. Mach. Theory 13, 475–483 (1978). https://doi.org/10.1016/0094-114X(78)90020-4

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Portuguese Foundation for Science and Technology, under the national support to R&D units grant, with the reference project UIDB/04436/2020 and UIDP/04436/2020, as well as through IDMEC, under LAETA, project UIDB/50022/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Rodrigues da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues da Silva, M., Marques, F., Tavares da Silva, M., Flores, P. (2022). Modelling Spherical Joints in Multibody Systems. In: Pucheta, M., Cardona, A., Preidikman, S., Hecker, R. (eds) Multibody Mechatronic Systems. MuSMe 2021. Mechanisms and Machine Science, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-88751-3_9

Download citation

Publish with us

Policies and ethics