Skip to main content

Review of Advanced Driver Assistance Systems and Their Applications for Collision Avoidance in Urban Driving Scenario

  • Conference paper
  • First Online:
Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021) (ICMLBDA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 256))

Included in the following conference series:

Abstract

Automobile safety systems have become the most important area of research and development in today’s world. It is observed that due to increased population and heavy traffic, the number of on-road accidents are also increasing. According to the varied road safety reports, most road accidents occur be-cause of driving error, human behavior, traffic congestion and lane change over, etc. Advanced driver-assistance systems (ADAS) are mainly focusing on automating, and enhancing various vehicle related tasks to provide the better driving experience, which ultimately increases the safety of driver, passenger, and road users as well. The intelligent ADAS system takes appropriate measures to solve problems during transmission by providing automatic controls for varying the speed of the vehicle or stop it during emergency situations. This technique monitors distance between a moving-vehicles, obstacles, etc. With the advancements in technology, today’s cars are equipped with many advanced driver assistant systems, which play a significant role in detection of road-side objects including vehicles, cyclist, pedestrians, obstacles, etc. and assist the driver through the navigation. The ADAS system enables safe and comfortable driving, based on intelligent algorithms and sensor technology. ADAS together with a secure human-machine interface, increase both car safety as well as road safety. This paper primarily focusses upon reviewing ADAS and its applications for effective collision avoidance with road objects and users in urban driving scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alinda, A., et al.: Global Status Report on Road Safety 2018. World Health Organization, Geneva (2018)

    Google Scholar 

  2. Shantajit, T., Kumar, C.R., Zahiruddin, Q.S.: Road traffic accidents in India: an overview. Int. J. Clin. Biomed. Res. 4(4), 36–38 (2018)

    Article  Google Scholar 

  3. Blanco, M., et al.: Human Factors Evaluation of Level 2 and Level 3 Automated Driving Concepts. (Report No. DOT HS 812 182), No. August, p. 300 (2015)

    Google Scholar 

  4. Bhushan, V.: An efficient automotive collision avoidance system for Indian traffic conditions. Int. J. Res. Eng. Technol. 05(04), 114–122 (2016)

    Article  Google Scholar 

  5. Badue, C., et al.: Self-Driving Cars: A Survey (2019). http://arxiv.org/abs/1901.04407

  6. Combs, T.S., Sandt, L.S., Clamann, M.P., McDonald, N.C.: Automated vehicles and pedestrian safety: exploring the promise and limits of pedestrian detection. Am. J. Prev. Med. 56(1), 1–7 (2019)

    Article  Google Scholar 

  7. Ziebinski, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). AIP Conf. Proc. 1906 (2017)

    Google Scholar 

  8. Zhu, H., Yuen, K.V., Mihaylova, L., Leung, H.: Overview of environment perception for intelligent vehicles. IEEE Trans. Intell. Transp. Syst. 18(10), 2584–2601 (2017)

    Article  Google Scholar 

  9. Mosquet, X., Andersen, M., Arora, A.: A roadmap to safer driving through advanced driver assistance systems. Auto Tech Rev. 5(7), 20–25 (2016)

    Article  Google Scholar 

  10. Greguri, M., Mandžuka, S.: The use of cooperative approach in intelligent speed adaptation. In: 2018 26th Telecommunications Forum, pp. 1–4 (2018)

    Google Scholar 

  11. Abdi, L., Takrouni, W., Meddeb, A.: In-vehicle cooperative driver information systems. In: 2017 13th International Wireless Communications and Mobile Computing Conference IWCMC 2017, pp. 396–401 (2017)

    Google Scholar 

  12. Bengler, K., Dietmayer, K., Färber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems. In: XXVIII Encontro da Associação Nacional de Pós Graduação e Pesquisa em Administração, vol. 6, no. 4, pp. 1–9 (2004)

    Google Scholar 

  13. Ziebinski, A., Cupek, R., Erdogan, H., Waechter, S.: A survey of ADAS technologies for the future perspective. Int. Conf. Comput. Collect. Intell. 2, 135–146 (2016)

    Google Scholar 

  14. Zhao, Z., Zhou, L., Zhu, Q., Luo, Y., Li, K.: A review of essential technologies for collision avoidance assistance systems. Adv. Mech. Eng. 9(10), 1–15 (2017)

    Article  Google Scholar 

  15. Kukkala, V.K., Tunnell, J., Pasricha, S., Bradley, T.: Advanced driver-assistance systems: a path toward autonomous vehicles. IEEE Consum. Electron. Mag. 7(5), 18–25 (2018)

    Article  Google Scholar 

  16. Andreone, L., Guarise, A., Lilli, F., Gavrila, D.M., Pieve, M.: Cooperative systems for vulnerable road users: the concept of the watch-over project. In: 13th World Congress Intelligence Transportation System Services, pp. 1–6 (2006)

    Google Scholar 

  17. Ahmed, S., Huda, M.N., Rajbhandari, S., Saha, C., Elshaw, M., Kanarachos, S.: Pedestrian and cyclist detection and intent estimation for autonomous vehicles: a survey. Appl. Sci. 9(11), 1–38 (2019)

    Article  Google Scholar 

  18. Rasouli, A., Tsotsos, J.K.: Autonomous vehicles that interact with pedestrians: a survey of theory and practice. IEEE Trans. Intell. Transp. Syst. 21(3), 900–918 (2020)

    Article  Google Scholar 

  19. Mars, F., Chevrel, P.: Modelling human control of steering for the design of advanced driver assistance systems. Annu. Rev. Control 44, 292–302 (2017)

    Article  Google Scholar 

  20. Rahman, M.M., Lesch, M.F., Horrey, W.J., Strawderman, L.: Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accid. Anal. Prev. 108, 361–373 (2017)

    Article  Google Scholar 

  21. Ammoun, S., Nashashibi, F., Laurgeau, C.: Real-time crash avoidance system on crossroads based on 802.11 devices and GPS receivers. In: IEEE Conference on Intelligent Transportation Systems Proceedings, ITSC, pp. 1023–1028 (2006)

    Google Scholar 

  22. Schnelle, S., Wang, J., Jagacinski, R., Jun Su, H.: A feedforward and feedback integrated lateral and longitudinal driver model for personalized advanced driver assistance systems. Mechatronics 50, 177–188 (2018)

    Article  Google Scholar 

  23. Emirler, M.T., Wang, H., Güvenç, B.A.: Socially acceptable collision avoidance system for vulnerable road users. IFAC-PapersOnLine 49(3), 436–441 (2016)

    Article  Google Scholar 

  24. Jiménez, F., Naranjo, J.E., Anaya, J.J., García, F., Ponz, A., Armingol, J.M.: Advanced driver assistance system for road environments to improve safety and efficiency. Transp. Res. Procedia 14, 2245–2254 (2016)

    Article  Google Scholar 

  25. Korssen, T., Dolk, V., Van De Mortel-Fronczak, J., Reniers, M., Heemels, M.: Systematic model-based design and implementation of supervisors for advanced driver assistance systems. IEEE Trans. Intell. Transp. Syst. 19(2), 533–544 (2018)

    Article  Google Scholar 

  26. Hamid, U.Z.A., et al.: Multi-actuators vehicle collision avoidance system - experimental validation. IOP Conf. Ser. Mater. Sci. Eng. 342, 012018 (2018)

    Article  Google Scholar 

  27. Moon, S., Yi, K.: Human driving data-based design of a vehicle adaptive cruise control algorithm. Veh. Syst. Dyn. 46(8), 661–690 (2008)

    Article  Google Scholar 

  28. Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous driving: common practices and emerging technologies. IEEE Access 8, 58443–58469 (2020)

    Article  Google Scholar 

  29. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018)

    Google Scholar 

  30. Sligar, A.P.: Machine learning-based radar perception for autonomous vehicles using full physics simulation. IEEE Access 8, 51470–51476 (2020)

    Article  Google Scholar 

  31. Shinar, D.: Safety and mobility of vulnerable road users: pedestrians, bicyclists, and motorcyclists. Accid. Anal. Prev. 44(1), 1–2 (2012)

    Article  Google Scholar 

  32. Janai, J., Güney, F., Behl, A., Geiger, A.: Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art (2017)

    Google Scholar 

  33. Le, L., Festag, A., Baldessari, R., Zhang, W.: V2X communication and intersection safety. In: Meyer, G., Valldorf, J., Gessner, W. (eds.) Advanced Microsystems for Automotive Applications 2009, pp. 97–107. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00745-3_8

    Chapter  Google Scholar 

  34. Goldhammer, M., Kohler, S., Zernetsch, S., Doll, K., Sick, B., Dietmayer, K.: Intentions of vulnerable road users-detection and forecasting by means of machine learning. IEEE Trans. Intell. Transp. Syst. 21(7), 3035–3045 (2020)

    Article  Google Scholar 

  35. Hurney, P., Waldron, P., Morgan, F., Jones, E., Glavin, M.: Review of pedestrian detection techniques in automotive far-infrared video. IET Intell. Transp. Syst. 9(8), 824–832 (2015)

    Article  Google Scholar 

  36. Cai, Y., Sun, X., Wang, H., Chen, L., Jiang, H.: Night-time vehicle detection algorithm based on visual saliency and deep learning. J. Sens. 2016, 1–7 (2016)

    Article  Google Scholar 

  37. Wang, H., Cai, Y., Chen, X., Chen, L.: Night-time vehicle sensing in far infrared image with deep learning. J. Sens. 2016, 1–8 (2016)

    Google Scholar 

  38. Cai, Y., Liu, Z., Wang, H., Sun, X.: Saliency-based pedestrian detection in far infrared images. IEEE Access 5, 5013–5019 (2017)

    Google Scholar 

  39. Jiménez, F., Aparicio, F., Páez, J.: Intelligent transport systems and effects on road traffic accidents: state of the art. IET Intell. Transp. Syst. 2(2), 132 (2008)

    Google Scholar 

  40. Wiethoff, M., Oei, H.L., Penttinen, M., Anttila, V., Marchau, V.A.W.J.: Advanced driver assistance systems: An overview and actor position. IFAC Proc. Vol. 35(1), 1–6 (2002)

    Article  Google Scholar 

  41. Katteler, H.: Driver acceptance adaptation of mandatory intelligent speed (2005)

    Google Scholar 

  42. Mannion, P.: Vulnerable road user detection: state-of-the-art and open challenges, pp. 1–5 (2019). http://arxiv.org/abs/1902.03601

  43. Wang, X., Wang, M., Li, W.: Scene-specific pedestrian detection for static video surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 361–374 (2014)

    Article  Google Scholar 

  44. Campmany, V., Silva, S., Espinosa, A., Moure, J.C., Vázquez, D., López, A.M.: GPU-based pedestrian detection for autonomous driving. Procedia Comput. Sci. 80, 2377–2381 (2016)

    Article  Google Scholar 

  45. Saponara, S.: Hardware accelerator IP cores for real time Radar and camera-based ADAS. J. Real-Time Image Proc. 16(5), 1493–1510 (2016)

    Article  Google Scholar 

  46. Borrego-Carazo, J., Castells-Rufas, D., Biempica, E., Carrabina, J.: Resource-constrained machine learning for ADAS: a systematic review. IEEE Access 8, 40573–40598 (2020)

    Article  Google Scholar 

  47. Chilukuri, D., Yi, S., Seong, Y.: Computer vision for vulnerable road users using machine learning. J. Mechatronics Robot. 3(1), 33–41 (2019)

    Article  Google Scholar 

  48. Velez, G., Otaegui, O.: Embedding vision-based advanced driver assistance systems: a survey. IET Intell. Transp. Syst. 11(3), 103–112 (2017)

    Article  Google Scholar 

  49. Chen, Y., Fisher, D., Ozguner, U.: T. A. S. Institute, C. I. S. U. T. Center, and R. and I. T. Administration. Pre-Crash Interactions between Pedestrians and Cyclists and Intelligent Vehicles (2018)

    Google Scholar 

  50. Bengler, K., Dietmayer, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistence systems. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narkhede, M.M., Chopade, N.B. (2022). Review of Advanced Driver Assistance Systems and Their Applications for Collision Avoidance in Urban Driving Scenario. In: Misra, R., Shyamasundar, R.K., Chaturvedi, A., Omer, R. (eds) Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021). ICMLBDA 2021. Lecture Notes in Networks and Systems, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-030-82469-3_23

Download citation

Publish with us

Policies and ethics