Skip to main content

Microbial Production of Limonene

  • Living reference work entry
  • First Online:
Microbial Production of Food Bioactive Compounds

Abstract

Limonene is a valuable natural product with diverse applications in food, pharmaceutical, paints and coatings, chemicals, etc. Commercial production of limonene based on extraction from plants is economically inviable to meet the ever-growing market demand. Metabolic engineering and synthetic biology offer a promising and sustainable way to produce limonene in microbes. Massive works have been done to promote the limonene bio-production efficiency of microbial cell factories toward economic viability. This chapter provides a comprehensive overview of recent progress in engineering microorganisms for limonene biosynthesis with special attention to bottleneck engineering, microbial host choosing, and limonene cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso-Gutierrez J, Chan R, Batth TS, et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng. 2013;19:33–41.

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Gutierrez J, Kim EM, Batth TS, et al. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng. 2015;28:123–33.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharkey TD. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep. 2014;31:1043–55.

    Article  CAS  PubMed  Google Scholar 

  • Behrendorff JB, Vickers CE, Chrysanthopoulos P, et al. 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microb Cell Factories. 2013;12:76.

    Article  Google Scholar 

  • Bohlmann J, Steele CL, Croteau R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S,5S)-pinene synthase. J Biol Chem. 1997;272:21784–92.

    Google Scholar 

  • Bohlmann J, Phillips M, Ramachandiran V, et al. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys. 1999;368:232–43.

    Article  CAS  PubMed  Google Scholar 

  • Brennan TC, Turner CD, Krömer JO, et al. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109:2513–22.

    Article  CAS  PubMed  Google Scholar 

  • Brennan TC, Williams TC, Schulz BL, et al. Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae. Appl Environ Microbiol. 2015;81:3316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun-McKay A, Godard KA, Toudefallah M, et al. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol. 2006;140:1009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Lv YB, Chen J, et al. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction. Biotechnol Biofuels. 2016;9:214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter OA, Peters RJ, Croteau R. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry. 2003;64:425–33.

    Article  CAS  PubMed  Google Scholar 

  • Chatzivasileiou AO, Warda V, Edgara SM, et al. Two-step pathway for isoprenoid synthesis. Proc Natl Acad Sci U S A. 2019;116:506–11.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Yang S, Zhang L, et al. Advanced strategies for production of natural products in yeast. 2020;iScience 23:100879.

    Google Scholar 

  • Cheng BQ, Wei LJ, Lv YB, et al. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition. Biotechnol Bioproc E. 2019a;24:500–6.

    Article  CAS  Google Scholar 

  • Cheng S, Liu X, Jiang GZ, et al. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae. ACS Synth Biol. 2019b;8:968–75.

    Article  CAS  PubMed  Google Scholar 

  • Chubukov V, Mingardon F, Schackwitz W, et al. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl Environ Microbiol. 2015;81:4690–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciriminna R, Lomeli-Rodriguez M, Carà PD, et al. Limonene: a versatile chemical of the bioeconomy. Chem Commun. 2014;50:15288–96.

    Article  CAS  Google Scholar 

  • Clomburg JM, Qian S, Tan ZG, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci U S A. 2019;116:12810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colby SM, Alonso WR, Katahira EJ, et al. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem. 1993;268:23016–24.

    Article  CAS  PubMed  Google Scholar 

  • Curto MA, Puppo P, Ferreira D, et al. Development of phylogenetic markers from single-copy nuclear genes for multi locus, species level analyses in the mint family (Lamiaceae). Mol Phylogenet Evol. 2012;63:758–67.

    Article  PubMed  Google Scholar 

  • Davies FK, Work VH, Beliaev AS, et al. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol. 2014;2:21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Terra L, Lonzarich V, Asquini E, et al. Functional characterization of three Coffea arabica L. monoterpene synthases: insights into the enzymatic machinery of coffee aroma. Phytochemistry. 2013;89:6–14.

    Article  PubMed  Google Scholar 

  • Demissie ZA, Tarnowycz M, Adal AM, et al. A lavender ABC transporter confers resistance to monoterpene toxicity in yeast. Planta. 2019;249:139–44.

    Article  CAS  PubMed  Google Scholar 

  • Du FL, Yu HL, Xu JH, et al. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in Escherichia coli. Bioresour Bioproc. 2014;1:10.

    Article  Google Scholar 

  • Dudley QM, Nash CJ, Jewett MC. Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synth Biol. 2019;Oxf) 4:ysz003.

    Article  Google Scholar 

  • Dudley QM, Karim AS, Nash CJ, et al. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab Eng. 2020;61:251–60.

    Article  CAS  PubMed  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol. 2011;7:487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dusséaux S, Wajn WT, Liu Y, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc Natl Acad Sci U S A. 2020;117:31789–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eddin LB, Jha NK, Meeran MFN, et al. Neuroprotective potential of limonene and limonene containing natural products. Molecules. 2021;26:4535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, et al. Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol. 2012;38:665–703.

    Article  CAS  PubMed  Google Scholar 

  • Falara V, Akhtar TA, Nguyen TT, et al. The tomato terpene synthase gene family. Plant Physiol. 2011;157:770–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara MA, Almeida DS, Siani AC, et al. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica. Braz J Microbiol. 2013;44:1075–80.

    Article  PubMed  Google Scholar 

  • Firdaus M, de Espinosa LM, Meier MAR. Terpene-based renewable monomers and polymers via thiol-ene additions. Macromolecules. 2011;44:7253–62.

    Article  CAS  Google Scholar 

  • Global Market Insights. Dipentene market share-industry size research report 2018–2024. https://www.gminsights.com/industry-analysis/dipentene-market. (2018). Accessed 7 Mar 2020.

  • Gonzales-Vigil E, Hufnagel DE, Kim J, et al. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Plant J. 2012;71:921–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnewich N, Page JE, Kollner TG, et al. Functional expression and characterization of trichome-specific (−)-limonene synthase and (+)-α-pinene synthase from Cannabis sativa. Nat Prod Commun. 2007;2:223–32.

    CAS  Google Scholar 

  • Halfmann C, Gu LP, Zhou RB. Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem. 2014;16:3175–85.

    Article  CAS  Google Scholar 

  • Hardcastle IR, Rowlands MG, Barber AM, et al. Inhibition of protein prenylation by metabolites of limonene. Biochem Pharmacol. 1999;57:801–9.

    Article  CAS  PubMed  Google Scholar 

  • Hu FF, Liu JD, Du GC, et al. Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene. Biotechnol Lett. 2012;34:1505–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang KF, Lee YR, Tseng YH, et al. Cloning and functional characterization of a monoterpene synthase gene from Eleutherococcus trifoliatus. Holzforschung. 2015;69:163–71.

    Article  CAS  Google Scholar 

  • Hyatt DC, Youn B, Zhao Y, et al. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci U S A. 2007;104:5360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignea C, Pontini M, Maffei ME, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol. 2014;3:298–306.

    Article  CAS  PubMed  Google Scholar 

  • Ignea C, Raadam MH, Motawia MS, et al. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate. Nat Commun. 2019;10:3799.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito M, Kiuchi F, Yang LL, et al. Perilla citriodora from Taiwan and its phytochemical characteristics. Biol Pharm Bull. 2000;23:359–62.

    Article  CAS  PubMed  Google Scholar 

  • Jia SS, Xi GP, Zhang M, et al. Induction of apoptosis by d-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol Rep. 2013;29:349–54.

    Article  CAS  PubMed  Google Scholar 

  • Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of themonoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast. 2015;32:159–71.

    CAS  PubMed  Google Scholar 

  • Jongedijk E, Cankar K, Buchhaupt M, et al. Biotechnological production of limonene in microorganisms. Appl Microb Biotechnol. 2016;100:2927–38.

    Article  CAS  Google Scholar 

  • Jongedijk E, Müller S, van Dijk A, et al. Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from salvia dorisiana trichomes. J Exp Bot. 2020;71:3052–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyota H, Okud Y, Ito M, et al. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol. 2014;185:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Korman TP, Opgenorth PH, Bowie JU. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat Commun. 2017;8:15526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RP, Morehouse BR, Matos JO, et al. Structural characterization of early Michaelis complexes in the reaction catalyzed by (+)-limonene synthase from Citrus sinensis using fluorinated substrate analogues. ACS Biochem. 2017;56:1716–25.

    Article  CAS  Google Scholar 

  • Lan WJ, Li HJ, Cai CH, et al. Biotransformation of (D)-limonene by marine bacteria Aeromonas hydrophila and Vibrio vulnificus. Acta Sci Nat Univ Sunyat. 2006;45:126–8.

    CAS  Google Scholar 

  • Landmann C, Fink B, Festner M, et al. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch Biochem Biophys. 2007;465:417–29.

    Article  CAS  PubMed  Google Scholar 

  • Leferink NGH, Ranaghan KE, Karuppiah V, et al. Experiment and simulation reveal how mutations in functional plasticity regions guide plant monoterpene synthase product outcome. ACS Catal. 2018;8:3780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhu K, Miao L, et al. Simultaneous improvement of limonene production and tolerance in Yarrowia lipolytica through tolerance engineering and evolutionary engineering. ACS Synth Biol. 2021a;10:884–96.

    Article  CAS  PubMed  Google Scholar 

  • Li SL, Rong LX, Wang SH, et al. Enhanced limonene production by metabolically engineered Yarrowia lipolytica from cheap carbon sources. Chem. Eng. Sci. 249, 117342. Lin, P.C., Pakrasi, H.B., 2018. Engineering cyanobacteria for production of terpenoids. Planta. 2021b;249:145–54.

    Google Scholar 

  • Lin C, Shen B, Xu Z, et al. Characterization of the monoterpene synthase gene tps26, the ortholog of a gene induced by insect herbivory in maize. Plant Physiol. 2008;146:940–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin PC, Saha R, Zhang FZ, et al. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp PCC 6803. Sci Rep. 2017;7:17503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin PC, Zhang FZ, Pakrasi HB. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metab Eng Commun. 2021;12:e00164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng. 2010;12:70–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu SS, Zhang MY, Ren YY, et al. Engineering Rhodosporidium toruloides for limonene production. Biotechnol Biofuels. 2021;14:243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lücker J, Tamer MK, Schwab W, et al. Monoterpene biosynthesis in lemon (Citrus Limon) - cDNA isolation and functional analysis of four monoterpene synthases. Eur J Biochem. 2002;269:3160–71.

    Article  PubMed  Google Scholar 

  • Lund S, Hall R, Williams GJ. An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism. ACS Synth Biol. 2019;8:232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DM, Fäldt J, Bohlmann J. Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 2004;135:1908–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama T, Ito M, Kiuchi F, et al. Molecular cloning, functional expression and characterization of d-limonene synthase from Schizonepeta tenuifolia. Biol Pharm Bull. 2001;24:373–7.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Saeki D, Ito M, et al. Molecular cloning, functional expression and characterization of d-limonene synthase from Agastache rugosa. Biol Pharm Bull. 2002;25:661–5.

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Perez D, Alonso-Gutierrez J, Hu QJ, et al. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol Bioeng. 2017;114:1703–12.

    Google Scholar 

  • Mirata MA, Heerd D, Schrader J. Integrated bioprocess for the oxidation of limonene to perillic acid with pseudomonas putida DSM 12264. Process Biochem. 2009;44:764–71.

    Article  CAS  Google Scholar 

  • Molina G, Pinheiro DM, Pimentel MR, et al. Monoterpene bioconversion for the production of aroma compounds by fungi isolated from Brazilian fruits. Food Sci Biotechnol. 2013;22:999–1006.

    Article  CAS  Google Scholar 

  • Molina G, Bution ML, Bicas JL, et al. Comparative study of the bioconversion process using R-(+)- and S-(−)-limonene as substrates for Fusarium oxysporum 152B. Food Chem. 2015;174:606–13.

    Article  CAS  PubMed  Google Scholar 

  • Molina G, Pessôaa MG, Bicasa JL, et al. Optimization of limonene biotransformation for the production of bulk amounts of α-terpineol. Bioresour Technol. 2019;294:122180.

    Article  CAS  PubMed  Google Scholar 

  • Morehouse BR, Kumar RP, Matos JO, et al. Functional and structural characterization of a (+)-limonene synthase from Citrus sinensis. ACS Biochem. 2017;56:1706–15.

    Article  CAS  Google Scholar 

  • Mukhtar YM, Adu-Frimpong M, Xu XM, et al. Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Biosci Rep. 2018;38:BSR20181253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang YR, Zhao YK, Li SL, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. Biotechnol Biofuels. 2019;12:241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng BY, Nielsen LK, Kampranis SC, et al. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metab Eng. 2018;47:83–93.

    Article  CAS  PubMed  Google Scholar 

  • Rasoul-Amini S, Fotooh-Abadi E, Ghasemi Y. Biotransformation of monoterpenes by immobilized microalgae. J Appl Phycol. 2011;23:975–81.

    Article  CAS  Google Scholar 

  • Rau MH, Calero P, Lennen RM, et al. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Microb Cell Factories. 2016;15:176.

    Article  Google Scholar 

  • Roach MJ, Johnson DL, Bohlmann J, et al. Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar chardonnay. PLoS Genet. 2018;14:1–24.

    Article  Google Scholar 

  • Rolf J, Julsing MK, Rosenthal K, et al. A gram-scale limonene production process with engineered Escherichia coli. Molecules. 2020;25:1881.

    Article  CAS  PubMed Central  Google Scholar 

  • Sales A, Afonso LF, Americo JA, et al. Monoterpene biotransformation by Colletotrichum species. Biotechnol Lett. 2017;40:561–7.

    Article  PubMed  Google Scholar 

  • Shah AA, Wang CL, Chung YR, et al. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J Biosci Bioeng. 2013;115:253–8.

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Endo T, Fujii H, et al. Isolation and characterization of a new d-limonene synthase gene with a different expression pattern in Citrus unshiu marc. Sci Hortic. 2005;105:507–12.

    Article  CAS  Google Scholar 

  • Srividya N, Lange I, Lange BM. Determinants of enantiospecificity in limonene synthases. Biochemistry. 2020;59(17):1661–4.

    Article  CAS  PubMed  Google Scholar 

  • Thomsett MR, Moore JC, Buchard AB, et al. New renewably-sourced polyesters from limonene-derived monomers. Green Chem. 2019;21:149–56.

    Article  CAS  Google Scholar 

  • Tracy NI, Chen DC, Crunkleton DW, et al. Hydrogenated monoterpenes as diesel fuel additives. Fuel. 2009;88:2238–40.

    Article  CAS  Google Scholar 

  • Trapp SC, Croteau RB. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics. 2001;158:811–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu L, Su P, Zhang Z, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat Commun. 2020;11:971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HT, Yu X, Liu Y, et al. Analysis of genetic variability and relationships among Mentha L. using the limonene synthase gene. LS Gene. 2013;524:246–52.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu W, Xin CP, et al. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc Natl Acad Sci U S A. 2016;113:14225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willrodt C, David C, Cornelissen S, et al. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol J. 2014;9:1000–12.

    Article  CAS  PubMed  Google Scholar 

  • Willrodt C, Hoschek A, Brühler B, et al. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production. Biotechnol Bioeng. 2016;113:1305–14.

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Cheng S, Cao JY, et al. Systematic optimization of limonene production in engineered Escherichia coli. J Agric Food Chem. 2019;67:7087–97.

    Article  CAS  PubMed  Google Scholar 

  • Xu JK, Xu JW, Ai Y, et al. Mutational analysis and dynamic simulation of S-limonene synthase reveal the importance of Y573: insight into the cyclization mechanism in monoterpene synthases. Arch Biochem Biophys. 2018;638:27–34.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki Y, Akimitsu K. In situ localization of gene transcriptions for monoterpene synthesis in irregular parenchymic cells surrounding the secretory cavities in rough lemon (Citrus jambhiri). J Plant Physiol. 2007;164:1436–48.

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Gao X, Jiang Y, et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng. 2016;37:79–91.

    Article  CAS  PubMed  Google Scholar 

  • Yee DA, DeNicola AB, Billingsley JM, et al. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab Eng. 2019;55:76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Kim S, Wafula EK, et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr Biol. 2019;29:3041–52.

    Article  CAS  PubMed  Google Scholar 

  • Zager JJ, Lange I, Srividya N, et al. Gene networks underlying cannabinoid and terpenoid accumulation in cannabis. Plant Physiol. 2019;180:1877–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xiao WH, Wang Y, et al. Chassis and key enzymes engineering for monoterpenes production. Biotechnol Adv. 2017;35:1022–31.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu X, Meng YH, et al. Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production. Biochem Eng J. 2021;176:108155.

    Article  CAS  Google Scholar 

  • Zhuang X, Kilian O, Monroe E, et al. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb Cell Factories. 2019;18:54.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Natural Science Foundation of Shaanxi Province (2020JM-177) and supported by Chinese Universities Scientific Fund (2452018314). The authors would thank Prof. Yongjin J. Zhou for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, X., Ren, Y., Zhang, M. (2022). Microbial Production of Limonene. In: Jafari, S.M., Harzevili, F.D. (eds) Microbial Production of Food Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-030-81403-8_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81403-8_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81403-8

  • Online ISBN: 978-3-030-81403-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics