Skip to main content

Review on Supervised and Unsupervised Deep Learning Techniques for Hyperspectral Images Classification

  • Conference paper
  • First Online:
Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021) (AICV 2021)

Abstract

Nowadays, the deep learning concept is used to solve Computer Vision’s many problems, as remote-sensing image classification. Hyperspectral image (HSI) classification is a major topic in the remote sensing field. Deep learning has different models used for hyperspectral image classification. These models are applied on numerous datasets and achieved excellent accuracy values. The existing HSI classification methods are categorized according to the features they use: pixel-wise methods, spectral-spatial methods, and deep learning methods. In this article, a comparison of different classification techniques is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shafaey, M.A., Salem, M.A.M., Ebied, H.M., Al-Berry, M.N., Tolba, M.F.: Remote sensing image classification based on convolutional neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV 2020), vol. 1153, pp. 353–361 (2020)

    Google Scholar 

  2. Shafaey, M.A., Salem, M.A.M., Ebied, H.M., Al-Berry, M.N., El-Dahshan, E.A., Tolba, M.F.: Hyperspectral image classification using deep learning technique. In: Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV 2020), vol. 1153, pp. 334–342 (2020)

    Google Scholar 

  3. Tucker, L.R., Lewis, C.: A reliability coefficient for maximum likelihood factor analysis. Psychometrika 88(1) (1973)

    Google Scholar 

  4. Millar, P.W.: Robust estimation via minimum distance methods. 55, 73–89 (1981)

    Google Scholar 

  5. Venkateswarlu, N.B., Singh, R.P.: Various approaches to speed up Mahalanobis distance classifier. Int. J. Remote Sens. 16(16), 3157–3163 (1995)

    Article  Google Scholar 

  6. Erzhu, L., et al.: High-resolution imagery classification based on different levels of information. Remote Sens. 11(24) (2019)

    Google Scholar 

  7. Li, Y., Zhang, H., Shen, Q.: Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(67) (2017)

    Google Scholar 

  8. Lv, Z., Zhang, P., Benediktsson, J.A.: Automatic object-oriented, spectral-spatial feature extraction driven by tobler’s first law of geography for very high resolution aerial imagery classification. Remote Sens. 9(285) (2017)

    Google Scholar 

  9. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  11. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24, 1967–2006 (2012)

    Article  MathSciNet  Google Scholar 

  12. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. In: International Conference on Learning Representations, pp.1–16 (2014)

    Google Scholar 

  14. Shafaey, M.A., Salem, M.A.M., Al-Berry, M.N., Ebied, H.M., Tolba, M.F.: Comparison of CNNs for remote sensing scene classification. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES). IEEE, December 2018

    Google Scholar 

  15. Shafaey, M.A., Salem, M.A.M., Ebied, H.M., Al-Berry, M.N., Tolba, M.F.: Deep learning for satellite image classification. In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, AISI 2018. Advances in Intelligent Systems and Computing, vol. 845. Springer, Cham (2019)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large scale image recognition. CoRR, vol. 1409.1556, pp. 1–14 (2014)

    Google Scholar 

  17. Szegedy, C., et al.: Going deeper with convolutions. In: CVF, vol. 2015, pp. 1–9 (2015)

    Google Scholar 

  18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVF, vol. 2016, pp. 2818–2826 (2016)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVF, vol. 2016, pp. 770–778 (2016)

    Google Scholar 

  20. Salinas Dataset. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. Accessed 4 Mar 2020

  21. Zhao, B., Zhong, Y., Zhang, L.: A spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 116, 73–85 (2016)

    Article  Google Scholar 

  22. Olshausen, B.A., Field, D.J.: Sparse coding with an over complete basis set: a strategy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations, pp. 1–13 (2015)

    Google Scholar 

  24. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)

    Article  MathSciNet  Google Scholar 

  25. Zhong, Y., Fei, F., Zhang, L.: Large patch convolutional neural networks for the scene classification of high spatial resolution imagery. Appl. Remote Sens. 10(2), 025006 (2016)

    Article  Google Scholar 

  26. Wang, Z., et al.: Hyperspectral image classification based on spectral and spatial information using multi-scale ResNet. Appl. Sci. 9(22) (2019)

    Google Scholar 

  27. Zhang, H., et al.: Hyperspectral classification based on light weight 3D-CNN with transfer learning. IEEE Trans. Geosci. Remote Sens. 57(8), 5813–5828 (2020)

    Article  Google Scholar 

  28. Lowe, A., Harrison, N., French, A.P.: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13(80) (2017)

    Google Scholar 

  29. Li, C., et al.: Hyperspectral remote sensing image classification based on maximum overlap pooling convolutional neural network. Sensors 18(10) (2018)

    Google Scholar 

  30. Yang, X., et al.: Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. (99), 1–17 (2018)

    Google Scholar 

  31. Hasan, H., et al.: A comparison between support vector machine (SVM) and convolutional neural network (CNN) models for hyperspectral image classification. In: IOP Conference Series: Earth and Environmental Science (2019)

    Google Scholar 

  32. Gao, Q., Lim, S., Jia, X.: Hyperspectral image classification usingconvolutional neural networks and multiple feature learning. Remote Sens. 10(299) (2018)

    Google Scholar 

  33. Almotairi, S., Kareem, G., Aouf, M., Almutairi, B., Salem, M.A.-M.: Liver tumor segmentation in CT scans using modified signet. Sensors (Switzerland) 20(5) (2020)

    Google Scholar 

  34. Mateus, H., Vincent, F., Elcio, H.: Unsupervised band selection in hyperspectral images using autoencoder. In: 9th International Conference on Pattern Recognition Systems (ICPRS 2018), Valparaiso, Chile, May 2018

    Google Scholar 

  35. Zhang, X., Liang, Y., Li, C., Jiao, L., Zhou, H.: Recursive autoencoders based unsupervised feature learning for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. (2017)

    Google Scholar 

  36. Salem, M.A.-M., Appel, M., Winkler, F., Meffert, B.: FPGA-based smart camera for 3D wavelet-based image segmentation. In: 2008 2nd ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2008 (2008)

    Google Scholar 

  37. Al-Berry, M.N., Salem, M.A.-M., Hussein, A.S., Tolba, M.F.: Spatio-temporal motion detection for intelligent surveillance applications. Int. J. Comput. Methods 12(1) (2015)

    Google Scholar 

  38. Salem, M.A.-M., Klaus, K., Winkler, F., Meffert, B.: Resolution mosaic-based smart camera for video surveillance. In: 2009 3rd ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2009 (2009)

    Google Scholar 

  39. Salem, M.A.-M.: Multi-stage localization given topological map for autonomous robots. In: Proceedings - ICCES 2012: 2012 International Conference on Computer Engineering and Systems, pp. 55–60 (2012)

    Google Scholar 

  40. HSI datasets. https://lesun.weebly.com/hyperspectral-data-set.html. Accessed 09 Mar 2021

  41. Khattab, N., Rashwan, S., Ebied, H.M., Sheta, W., Shedeed, H., Tolba, M.F.: Unsupervised spectral-spatial multiscale feature learning framework for hyperspectral image classification based on multiple kernel self-organizing maps. J. Appl. Remote Sens. 14(4), 046503 (2020)

    Google Scholar 

  42. Laban, N., Abdellatif, B., Ebied, H.M., Shedeed, H., Tolba, M.F.: Convolutional neural network with dilated anchors for object detection in very high resolution satellite images. In: 14th IEEE International Conference on Computer Engineering and Systems (2019)

    Google Scholar 

  43. Elkholy, M.M., Mostafa, M., Ebied, H.M., Tolba, M.F.: Hyperspectral unmixing using deep convolutional autoencoder. Int. J. Remote Sens. 41(12), 4799–4819 (2020)

    Article  Google Scholar 

  44. Mughees, A., Tao, L.: Efficient deep auto-encoder learning for the classification of hyperspectral images. In: 2016 International Conference on Virtual Reality and Visualization, pp. 44–51 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shafaey, M.A., Salem, M.AM., Al-Berry, M.N., Ebied, H.M., Tolba, M.F. (2021). Review on Supervised and Unsupervised Deep Learning Techniques for Hyperspectral Images Classification. In: Hassanien, A.E., et al. Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021). AICV 2021. Advances in Intelligent Systems and Computing, vol 1377. Springer, Cham. https://doi.org/10.1007/978-3-030-76346-6_7

Download citation

Publish with us

Policies and ethics