Skip to main content

Protective Agents in Parkinson’s Disease: Caffeine and Adenosine A2A Receptor Antagonists

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Based on several findings suggesting that the adenosinergic system is one of the most interesting in the field of neuroprotection in Parkinson’s disease, this chapter describes the functions of the purine adenosine and its A2A receptors in the central nervous system, with emphasis on their role in neuroprotection. The neuromodulatory role of A2A receptors and the preclinical and epidemiological studies on the mechanisms of the neuroprotective role of caffeine and urate, the final product of purine catabolism, are extensively discussed in the light of their potential modifying effects on Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HT1A:

Serotonin receptors type-1A

6-OHDA:

6-Hydroxydopamine

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

BG:

Basal ganglia

CB1:

Cannabinoid receptors type-1

CNS:

Central Nervous System

CPS:

Cancer Prevention Study

CPu:

Caudate-putamen nucleus

CSC:

8-(−3-Chlorostyryl) caffeine

DA:

Dopamine

GABA:

γ-Aminobutyric acid

GABAergic:

γ-Aminobutyric acidergic

GPe:

External portion of globus pallidus

GPi:

Internal portion of globus pallidus

HD:

Huntington’s disease

HHP:

Honolulu Heart Program

HPFS:

Health Professionals Follow-Up Study

L-DOPA:

L-3,4-Dihydroxyphenylalanine

mGLU4:

Metabotropic glutamate receptors type-4

mGLU5:

Metabotropic glutamate receptors type-5

MPEP:

2-Methyl-6-(phenylethynyl)pyridine

MPP+:

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NHS:

Nurses’ Health Study

NIH:

National Institutes of Health

NMDA:

N-Methyl-D-aspartate

PD:

Parkinson’s disease

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

STN:

Subthalamic nucleus

TH:

Tyrosine hydroxylase

UPDRS:

Unified Parkinson’s Disease Rating Scale

ZM 241385:

4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol

References

  • Amaro, S., Jiménez-Altayó, F., & Chamorro, Á. (2019). Uric acid therapy for vasculoprotection in acute ischemic stroke. Brain Circulation, 5, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Armentero, M. T., Pinna, A., Ferré, S., Lanciego, J. L., Müller, C. E., & Franco, R. (2011). Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacology & Therapeutics, 132, 280–299.

    Article  CAS  Google Scholar 

  • Ascherio, A., Chen, H., Schwarzschild, M., Zhang, S., Colditz, G., & Speizer, F. (2003). Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology, 60, 790–795.

    Article  CAS  PubMed  Google Scholar 

  • Badshah, H., Ikram, M., Ali, W., Ahmad, S., Hahm, J. R., & Kim, M. O. (2019). Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating Nrf2/TLR4 in adult mouse brains. Biomolecules, 9, 719.

    Article  CAS  PubMed Central  Google Scholar 

  • Baik, K., Chung, S. J., Yoo, H. S., Lee, Y. H., Jung, J. H., Sohn, Y. H., & Lee, P. H. (2020). Sex-dependent association of urate on the patterns of striatal dopamine depletion in Parkinson’s disease. European Journal of Neurology, 27, 773–778.

    Article  CAS  PubMed  Google Scholar 

  • Bakshi, R., Macklin, E. A., Hung, A. Y., Hayes, M. T., Hyman, B. T., Wills, A. M., Gomperts, S. N., Growdon, J. H., Ascherio, A., & Scherzer, C. R. (2020). Associations of lower caffeine intake and plasma urate levels with idiopathic Parkinson’s disease in the harvard biomarkers study. Journal of Parkinson’s Disease, 10, 505–510.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2018). Pharmacology of adenosine receptors: The state of the art. Physiological Reviews, 98, 1591–1625.

    Article  CAS  PubMed  Google Scholar 

  • Carta, A. R., Kachroo, A., Schintu, N., Xu, K., Schwarzschild, M. A., Wardas, J., & Morelli, M. (2009). Inactivation of neuronal forebrain A2A receptors protects dopaminergic neurons in a mouse model of Parkinson’s disease. Journal of Neurochemistry, 111, 1478–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, G. A., & Nikkhah, G. (2001). Subthalamic nucleus lesions are neuroprotective against terminal 6-OHDA-induced striatal lesions and restore postural balancing reactions. Experimental Neurology, 171, 405–417.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Burdett, T. C., Desjardins, C. A., Logan, R., Cipriani, S., Xu, Y., & Schwarzschild, M. A. (2013). Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 110, 300–305.

    Article  CAS  PubMed  Google Scholar 

  • De Luca, M. A., Cauli, O., Morelli, M., & Simola, N. (2014). Elevation of striatal urate in experimental models of Parkinson’s disease: A compensatory mechanism triggered by dopaminergic nigrostriatal degeneration? Journal of Neurochemistry, 131, 284–289.

    Article  PubMed  CAS  Google Scholar 

  • Essawy, S. S., Tawfik, M. K., & Korayem, H. E. (2017). Effects of adenosine receptor antagonists in MPTP mouse model of Parkinson’s disease: Mitochondrial DNA integrity. Archives of Medical Science: AMS, 13, 659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferré, S., Díaz-Ríos, M., Salamone, J. D., & Prediger, R. D. (2018). New developments on the adenosine mechanisms of the central effects of caffeine and their implications for neuropsychiatric disorders. Journal of Caffeine and Adenosine Research, 8, 121–130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira, D. G., Batalha, V. L., Vicente Miranda, H., Coelho, J. E., Gomes, R., Gonçalves, F. Q., Real, J. I., Rino, J., Albino-Teixeira, A., & Cunha, R. A. (2017). Adenosine A2A receptors modulate α-synuclein aggregation and toxicity. Cerebral Cortex, 27, 718–730.

    PubMed  Google Scholar 

  • Fuzzati-Armentero, M. T., Cerri, S., Levandis, G., Ambrosi, G., Montepeloso, E., Antoninetti, G., Blandini, F., Baqi, Y., Müller, C. E., & Volpini, R. (2015). Dual target strategy: Combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates l-DOPA-induced rotational behavior in a rodent model of Parkinson’s disease. Journal of Neurochemistry, 134, 740–747.

    Article  CAS  PubMed  Google Scholar 

  • Gołembiowska, K., & Dziubina, A. (2012). The effect of adenosine A 2A receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2. Neurotoxicity Research, 22, 150–157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong, L., Zhang, Q. L., Zhang, N., Hua, W. Y., Huang, Y. X., Di, P. W., Huang, T., Xu, X. S., Liu, C. F., & Hu, L. F. (2012). Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: Linking to Akt/GSK 3β signaling pathway. Journal of Neurochemistry, 123, 876–885.

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro, S., Ponceau, A., Toulorge, D., Martin, E., Alvarez-Fischer, D., Hirsch, E. C., & Michel, P. P. (2009). Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: Potentiation by low-level depolarization. Journal of Neurochemistry, 109, 1118–1128.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, G. M., & Stevens, C. H. (2011). Glia: Initiators and progressors of pathology in Parkinson’s disease. Movement Disorders, 26, 6–17.

    Article  PubMed  Google Scholar 

  • Hasimoglu, Y. G., Chen, X., Bakshi, R., Schwarzschild, M. A., & Macklin, E. A. (2020). Does serum urate change as Parkinson’s disease progresses? Journal of Parkinson’s Disease, 10, 1571–1576.

    Google Scholar 

  • Hong, C. T., Chan, L., & Bai, C.-H. (2020). The effect of caffeine on the risk and progression of Parkinson’s disease: A meta-analysis. Nutrients, 12, 1860.

    Article  CAS  PubMed Central  Google Scholar 

  • Hooper, D., Scott, G., Zborek, A., Mikheeva, T., Kean, R., Koprowski, H., & Spitsin, S. (2000). Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. The FASEB Journal, 14, 691–698.

    Article  CAS  PubMed  Google Scholar 

  • Jung, J. H., Chung, S. J., Yoo, H. S., Lee, Y. H., Baik, K., Ye, B. S., Sohn, Y. H., & Lee, P. H. (2020). Sex-specific association of urate and levodopa-induced dyskinesia in Parkinson’s disease. European Journal of Neurology, 27, 1948–1956.

    Article  CAS  PubMed  Google Scholar 

  • Khadrawy, Y. A., Salem, A. M., El-Shamy, K. A., Ahmed, E. K., Fadl, N. N., & Hosny, E. N. (2017). Neuroprotective and therapeutic effect of caffeine on the rat model of Parkinson’s disease induced by rotenone. Journal of Dietary Supplements, 14, 553–572.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. W., Im, J. Y., Woo, J. M., Grosso, H., Kim, Y. S., Cristovao, A. C., Sonsalla, P. K., Schuster, D. S., Jalbut, M. M., & Fernandez, J. R. (2013). Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson’s disease. Neurotherapeutics, 10, 143–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., Guo, X., Park, Y., Huang, X., Sinha, R., Freedman, N. D., Hollenbeck, A. R., Blair, A., & Chen, H. (2012). Caffeine intake, smoking, and risk of Parkinson disease in men and women. American Journal of Epidemiology, 175, 1200–1207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T. H., Luo, C. L., Huang, B., Lu, T. S., & Fu, Y. S. (2018). The caffeine effects on rotenone-induced Parkinson’s disease model in vitro and in vivo. The FASEB Journal, 32, 740.2.

    Google Scholar 

  • Luan, Y., Ren, X., Zheng, W., Zeng, Z., Guo, Y., Hou, Z., Guo, W., Chen, X., Li, F., & Chen, J.-F. (2018). Chronic caffeine treatment protects against α-synucleinopathy by reestablishing autophagy activity in the mouse striatum. Frontiers in Neuroscience, 12, 301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado-Filho, J. A., Correia, A. O., Montenegro, A. B. A., Nobre, M. E. P., Cerqueira, G. S., Neves, K. R. T., Da Graça Naffah-Mazzacoratti, M., Cavalheiro, E. A., De Castro Brito, G. A., & De Barros Viana, G. S. (2014). Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors, including pro-inflammatory cytokines and histone deacetylase inhibitions. Behavioural Brain Research, 264, 116–125.

    Article  CAS  PubMed  Google Scholar 

  • Moccia, M., Erro, R., Picillo, M., Vitale, C., Longo, K., Amboni, M., Pellecchia, M. T., & Barone, P. (2016). Caffeine consumption and the 4-year progression of de novo Parkinson’s disease. Parkinsonism & Related Disorders, 32, 116–119.

    Article  Google Scholar 

  • Nakashima, A., Yamauchi, A., Matsumoto, J., Dohgu, S., Takata, F., Koga, M., Fukae, J., Tsuboi, Y., & Kataoka, Y. (2019). Feeding-produced subchronic high plasma levels of uric acid improve behavioral dysfunction in 6-hydroxydopamine-induced mouse model of Parkinson’s disease. Behavioural Pharmacology, 30, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Nobre, H. V., Jr., De Andrade Cunha, G. M., De Vasconcelos, L. M., Magalhães, H. I. F., Neto, R. N. O., Maia, F. D., De Moraes, M. O., Leal, L. K. a. M., & De Barros Viana, G. S. (2010). Caffeine and CSC, adenosine A2A antagonists, offer neuroprotection against 6-OHDA-induced neurotoxicity in rat mesencephalic cells. Neurochemistry International, 56, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Oh, Y. S., Kim, J. S., Yoo, S. W., Hwang, E. J., Lyoo, C., & Lee, K. S. (2020). Gender difference in the effect of uric acid on striatal dopamine in early Parkinson’s disease. European Journal of Neurology, 27, 258–264.

    Article  PubMed  Google Scholar 

  • Paganoni, S., & Schwarzschild, M. A. (2017). Urate as a marker of risk and progression of neurodegenerative disease. Neurotherapeutics, 14, 148–153.

    Article  CAS  PubMed  Google Scholar 

  • Paiva, I., Carvalho, K., Santos, P., Cellai, L., Pavlou, M. a. S., Jain, G., Gnad, T., Pfeifer, A., Vieau, D., & Fischer, A. (2019). A2AR-induced transcriptional deregulation in astrocytes: An in vitro study. Glia, 67, 2329–2342.

    Article  PubMed  Google Scholar 

  • Palacios, N., Gao, X., Mccullough, M. L., Schwarzschild, M. A., Shah, R., Gapstur, S., & Ascherio, A. (2012). Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Movement Disorders, 27, 1276–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinna, A., Serra, M., Morelli, M., & Simola, N. (2018). Role of adenosine A2A receptors in motor control: Relevance to Parkinson’s disease and dyskinesia. Journal of Neural Transmission, 125, 1273–1286.

    Article  CAS  PubMed  Google Scholar 

  • Postuma, R. B., Anang, J., Pelletier, A., Joseph, L., Moscovich, M., Grimes, D., Furtado, S., Munhoz, R. P., Appel-Cresswell, S., & Moro, A. (2017). Caffeine as symptomatic treatment for Parkinson disease (Cafe-PD): A randomized trial. Neurology, 89, 1795–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, X., & Chen, J. F. (2020). Caffeine and Parkinson’s disease: Multiple benefits and emerging mechanisms. Frontiers in Neuroscience, 14, 602697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarukhani, M. R., Haghdoost-Yazdi, H., & Khandan-Chelarci, G. (2018). Changes in the serum urate level can predict the development of Parkinsonism in the 6-hydroxydopamine animal model. Neurochemical Research, 43, 1086–1095.

    Article  CAS  PubMed  Google Scholar 

  • Simon, D. K., Wu, C., Tilley, B. C., Wills, A. M., Aminoff, M. J., Bainbridge, J., Hauser, R. A., Schneider, J. S., Sharma, S., & Singer, C. (2015). Caffeine and progression of Parkinson’s disease: A deleterious interaction with creatine. Clinical Neuropharmacology, 38, 163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleeman, I., Lawson, R. A., Yarnall, A. J., Duncan, G. W., Johnston, F., Khoo, T. K., & Burn, D. J. (2019). Urate and homocysteine: Predicting motor and cognitive changes in newly diagnosed Parkinson’s disease. Journal of Parkinson’s Disease, 9, 351–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer, E. S., Pitcher, T., Veron, G., Hannam, T., Macaskill, M., Anderson, T., Dalrymple-Alford, J., & Carr, A. C. (2020). Positive association of ascorbate and inverse association of urate with cognitive function in people with Parkinson’s disease. Antioxidants, 9, 906.

    Article  CAS  PubMed Central  Google Scholar 

  • Tronci, E., Simola, N., Carta, A. R., De Luca, M. A., & Morelli, M. (2006). Potentiation of amphetamine-mediated responses in caffeine-sensitized rats involves modifications in A2A receptors and zif-268 mRNAs in striatal neurons. Journal of Neurochemistry, 98, 1078–1089.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H., Hattori, T., Kume, A., Misu, K., Ito, T., Koike, Y., Johnson, T. A., Kamitsuji, S., Kamatani, N., & Sobue, G. (2020). Improved Parkinsons disease motor score in a single-arm open-label trial of febuxostat and inosine. Medicine, 99, e21576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisskopf, M., O’Reilly, E., Chen, H., Schwarzschild, M., & Ascherio, A. (2007). Plasma urate and risk of Parkinson’s disease. American Journal of Epidemiology, 166, 561–567.

    Article  CAS  PubMed  Google Scholar 

  • Xu, K., Xu, Y., Brown-Jermyn, D., Chen, J.-F., Ascherio, A., Dluzen, D. E., & Schwarzschild, M. A. (2006). Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson’s disease. Journal of Neuroscience, 26, 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Xu, K., Di Luca, D. G., Orrú, M., Xu, Y., Chen, J. F., & Schwarzschild, M. A. (2016). Neuroprotection by caffeine in the MPTP model of Parkinson’s disease and its dependence on adenosine A2A receptors. Neuroscience, 322, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, S., Gupta, S. P., Srivastava, G., Srivastava, P. K., & Singh, M. P. (2012). Role of secondary mediators in caffeine-mediated neuroprotection in maneb-and paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochemical Research, 37, 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, T. G., Wang, X. X., Luo, W. F., Zhang, Q. L., Huang, T. T., Xu, X. S., & Liu, C. F. (2012). Protective effects of urate against 6-OHDA-induced cell injury in PC12 cells through antioxidant action. Neuroscience Letters, 506, 175–179.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funds from MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca PRIN 2017 (Pr. 2017LYTE9M, PI Prof. Micaela Morelli).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Morelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Simola, N. et al. (2021). Protective Agents in Parkinson’s Disease: Caffeine and Adenosine A2A Receptor Antagonists. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_103-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics