Skip to main content

Bioactive Phytochemicals from Palm Oil Processing By-Products

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Abstract

Palm oil is extracted from the palm tree, whose scientific name is Elaeis guineensis, which accounts for roughly 40% of global edible oil consumption and produces the most oil compared to other oil-producing plants. It is unique because it generates two types of oil: crude and kernel palm oil. The main production of oil palm cultivation is done in Southeast Asia on an area of 12.5 million hectares (about 70% of the total cultivated area in the world), mainly in Indonesia and Malaysia. Kernel oil from the kernel inside the nut and outside mesocarp are the two main products of its fruits. In the palm plantation, oil extraction makes up 10% of the entire biomass, while the remaining 90% is made up of oil palm biowaste (OPW); in other words, oil palm biomass (OPB), particularly oil palm fronds (OPF), oil palm trunks (OPT), empty fruit bunches (EFB), palm-pressed fiber (PPF), palm kernel shells (PKS), palm oil mill effluent (POME), and palm fatty acid distillate (PFAD). Like by-products from other oil processing industries, OPB poses a potential hazard for environmental pollution. However, they have substantially greater nutritional or bioactive components, i.e., phenols, sterols, polysterols, terpenes, coenzyme Q10, and glycolipids which contain biologically important properties such as anticancer and antioxidants. Thus, it is suitable for use as a nutraceutical ingredient in various foodstuffs after undergoing various processes. In contrast, OPB has excellent potential for conversion into renewable energy sources and value-added items, i.e., raw material used for pellets, fillers, adsorbents, fertilizers, and bioplastics. Therefore, in this section, the economic value of POB is emphasized. Furthermore, the qualities of the bioactive compounds in the extracts obtained from these wastes and the functional/biological characteristics of the extracts are examined. In addition, the food and nonfood applications of biomass extracts and their nonhealth uses are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Corley RHV, Tinker PB (2008) The oil palm. 4th Edition, Wiley-Blackwell, NJ

    Google Scholar 

  2. Rosli F, Ghazali CMR, Abdullah MMAB, Hussin K (2016) A review: characteristics of oil palm trunk (OPT) and quality improvement of palm trunk plywood by resin impregnation. Bioresources 11(2):5565–5580

    Article  CAS  Google Scholar 

  3. Leong W (2016) Aceite de palma rojo, el aceite más nutritivo. Rev Palmas 37:339–347

    Google Scholar 

  4. Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S et al (2015) Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules 20(9):17339–17361

    Article  CAS  Google Scholar 

  5. Rincón SM, Martínez DM (2009) An analysis of the properties of oil palm in the development of the its industry. Revista Palmas 30(2):11–24

    Google Scholar 

  6. Chinedu EE, Ebere EC, Emeka AC (2017) Quality assessment of palm oil from different palm oil local factories in Imo State, Nigeria. World Scientific News 88(2):152–167

    CAS  Google Scholar 

  7. Enyoh CE, Ihionu EA, Verla AW, Ebosie PN (2017) Physicochemical parameter of palm oil and soil from Ihube community, Okigwe, Imo State Nigeria. Int Lett Nat Sci 62:35–43

    Google Scholar 

  8. Dey S, Reang N, Das P, Deb M (2021) A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. J Clean Prod 286:124981

    Article  CAS  Google Scholar 

  9. Tsouko E, Alexandri M, Vieira Fernandes K, Guimarães Freire DM, Mallouchos A, Koutinas AA (2019) Extraction of phenolic compounds from palm oil processing residues and their application as antioxidants. Food Technol Biotechnol 57(1):29–38

    Article  Google Scholar 

  10. Tan JP, Jahim JM, Harun S, Wu TY, Mumtaz T (2016) Utilization of oil palm fronds as a sustainable carbon source in biorefineries. Int J Hydrog Energy 41(8):4896–4906

    Article  CAS  Google Scholar 

  11. H’ng P, Wong L, Chin K, Tor E, Tan S, Tey B et al (2011) Oil palm (Elaeis guineensis) trunk as a resource of starch and other sugars. J Appl Sci 11(16):3053–3057

    Article  Google Scholar 

  12. Piarpuzán D, Quintero JA, Cardona CA (2011) Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass Bioenergy 35(3):1130–1137

    Article  Google Scholar 

  13. Neoh B, Thang Y, Zain M, Junaidi A (2011) Palm pressed fibre oil: a new opportunity for premium hardstock. Int Food Res J 18(2):769–773

    CAS  Google Scholar 

  14. Kamarun Zaman H (2008) Production of high fibre bread from oil palm pericarp fibre. M.Sc. Thesis, Universiti Teknologi MARA (UiTM), Malaysia

    Google Scholar 

  15. May CY, Ngan MA, Yoo CK, Majid RA, Chung AYK, Nang HLL et al (2005) Palm diesel: green and renewable fuel from palm oil. Palm Oil Dev 23:3–7

    Google Scholar 

  16. Azizi MN, Loh TC, Foo HL, Teik Chung EL (2021) Is Palm Kernel cake a suitable alternative feed ingredient for poultry? Animals 11(2):338

    Article  Google Scholar 

  17. Nizamuddin S, Shrestha S, Athar S, Ali BS, Siddiqui MA (2016) A critical analysis on palm kernel shell from oil palm industry as a feedstock for solid char production. Rev Chem Eng 32(5):489–505

    Article  CAS  Google Scholar 

  18. Tsouko E, Kachrimanidou V, Dos Santos AF, Lima ME d NV, Papanikolaou S, de Castro AM et al (2017) Valorization of by-products from palm oil mills for the production of generic fermentation media for microbial oil synthesis. Appl Biochem Biotechnol 181(4):1241–1256

    Article  CAS  Google Scholar 

  19. Obibuzor JU, Okogbenin EA, Abigor RD (2012) Oil recovery from palm fruits and palm kernel. In: Palm oil. Production, Processing, Characterization, and Uses. Elsevier Inc., pp 299–328

    Google Scholar 

  20. Poku K (2002) Small-scale palm oil processing in Africa, FAO agricultural services bulletin 148, Roma, ISSN 1010-1365

    Google Scholar 

  21. Čmolík J, Pokorný J (2000) Physical refining of edible oils. Eur J Lipid Sci Technol 102(7):472–486

    Article  Google Scholar 

  22. Dunford NT (2012) Advancements in oil and oilseed processing. In: Food and industrial bioproducts and bioprocessing. First Edition, John Wiley & Sons, Inc. 115–143

    Google Scholar 

  23. Haslenda H, Jamaludin M (2011) Industry to industry by-products exchange network towards zero waste in palm oil refining processes. Resour Conserv Recycl 55(7):713–718

    Article  Google Scholar 

  24. Paisan S, Chetpattananondh P, Chongkhong S (2017) Assessment of water degumming and acid degumming of mixed algal oil. J Environ Chem Eng 5(5):5115–5123

    Article  CAS  Google Scholar 

  25. Chew SC, Tan CP, Nyam KL (2017) Optimization of degumming parameters in chemical refining process to reduce phosphorus contents in kenaf seed oil. Sep Purif Technol 188:379–385

    Article  CAS  Google Scholar 

  26. Sadhukhan S, Bhattacharjee A, Sarkar U, Baidya PK, Baksi S (2018) Simultaneous degumming and production of a natural gum from Crotalaria juncea seeds: physicochemical and rheological characterization. Int J Biol Macromol 111:967–975

    Article  CAS  Google Scholar 

  27. Jiang X, Chang M, Jin Q, Wang X (2015) Application of phospholipase A1 and phospholipase C in the degumming process of different kinds of crude oils. Process Biochem 50(3):432–437

    Article  CAS  Google Scholar 

  28. Zhao Z-L, Li W-W, Wang F, Zhang Y-Q (2018) Using of hydrated lime water as a novel degumming agent of silk and sericin recycling from wastewater. J Clean Prod 172:2090–2096

    Article  CAS  Google Scholar 

  29. Aparicio R, Harwood J (2013) Olive oil characterization and traceability. In: Aparicio R, Harwood J, eds. Handbook of olive oil: Analysis and properties, Nueva York (NY, USA): Springer Publishers, pp. 431–478

    Google Scholar 

  30. Sherazi STH, Mahesar SA (2016) Vegetable oil deodorizer distillate: a rich source of the natural bioactive components. J Oleo Sci 65:957

    Article  CAS  Google Scholar 

  31. Ooi ZX, Teoh YP, Kunasundari B, Shuit SH (2017) Oil palm frond as a sustainable and promising biomass source in Malaysia: a review. Environ Prog Sustain Energy 36(6):1864–1874

    Article  CAS  Google Scholar 

  32. Stichnothe H, Schuchardt F (2010) Comparison of different treatment options for palm oil production waste on a life cycle basis. Int J Life Cycle Assess 15(9):907–915

    Article  CAS  Google Scholar 

  33. Abas R, Kamarudin MF, Nordin ABA, Simeh MA (2011) A study on the Malaysian oil palm biomass sector—supply and perception of palm oil millers. Oil Palm Industry Econ J 11(1):28–41

    Google Scholar 

  34. Sulaiman F, Abdullah N, Gerhauser H, Shariff A (2010) A perspective of oil palm and its wastes. J Phys Sci 21(1):67–77

    Google Scholar 

  35. Tan HT, Lee KT, Mohamed AR (2011) Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM] Cl for glucose recovery: an optimisation study using response surface methodology. Carbohydr Polym 83(4):1862–1868

    Article  CAS  Google Scholar 

  36. Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841

    Article  CAS  Google Scholar 

  37. Chew TL, Bhatia S (2008) Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour Technol 99(17):7911–7922

    Article  CAS  Google Scholar 

  38. Hong LS, Ibrahim D, Omar IC (2012) Oil palm frond for the production of bioethanol. Int J Biochem Biotechnol 1(1):7–11

    Google Scholar 

  39. Lim S-H, Ibrahim D, Omar IC (2013) Effect of physical parameters on second generation bio-ethanol production from oil palm frond by Saccharomyces cerevisiae. Bioresources 8(1):969–980

    Article  Google Scholar 

  40. Singh P, Sulaiman O, Hashim R, Peng LC, Singh RP (2013) Using biomass residues from oil palm industry as a raw material for pulp and paper industry: potential benefits and threat to the environment. Environ Dev Sustain 15(2):367–383

    Article  Google Scholar 

  41. Nanna N, Rhamadhani S, Aminah S, Riadi ALP, Putri NP (2020) Making paper from mixture of oil palm fronds (opf) and oil palm empty fruit bunches (OPEFB). Konversi 9(2):67–72

    Google Scholar 

  42. Kosugi A, Tanaka R, Magara K, Murata Y, Arai T, Sulaiman O et al (2010) Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. J Biosci Bioeng 110(3):322–325

    Article  CAS  Google Scholar 

  43. Rahman S, Choudhury J, Ahmad A (2006) Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem Eng J 30(1):97–103

    Article  CAS  Google Scholar 

  44. Chin K, H’ng P, Wong L, Tey B, Paridah M (2010) Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae. Bioresour Technol 101(9):3287–3291

    Article  CAS  Google Scholar 

  45. Bukhari NA, Jahim JM, Loh SK, Nasrin AB, Harun S, Abdul PM (2020) Organic acid pretreatment of oil palm trunk biomass for succinic acid production. Waste Biomass Valoriz 11:1–11

    Article  Google Scholar 

  46. Awalludin MF, Sulaiman O, Hashim R, Nadhari WNAW (2015) An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew Sust Energ Rev 50:1469–1484

    Article  CAS  Google Scholar 

  47. Xu B, Ma H, Hu C, Yang S, Li Z (2016) Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites. Constr Build Mater 102:613–619

    Article  CAS  Google Scholar 

  48. Yusof M, Lamaming J, Hashim R, Yhaya MF, Sulaiman O, Selamat ME (2020) Flame retardancy of particleboards made from oil palm trunk-poly (vinyl) alcohol with citric acid and calcium carbonate as additives. Constr Build Mater 263:120906

    Article  CAS  Google Scholar 

  49. Sakulkit P, Palamanit A, Dejchanchaiwong R, Reubroycharoen P (2020) Characteristics of pyrolysis products from pyrolysis and co-pyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications. J Environ Chem Eng 8(6):104561

    Article  CAS  Google Scholar 

  50. Duangwang S, Sangwichien C (2015) Utilization of oil palm empty fruit bunch hydrolysate for ethanol production by baker’s yeast and loog-pang. Energy Procedia 79:157–162

    Article  CAS  Google Scholar 

  51. Ying TY, Teong LK, Abdullah WNW, Peng LC (2014) The effect of various pretreatment methods on oil palm empty fruit bunch (EFB) and kenaf core fibers for sugar production. Procedia Environ Sci 20:328–335

    Article  CAS  Google Scholar 

  52. Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttilä M, Lidén G et al (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47(10):1452–1459

    Article  CAS  Google Scholar 

  53. Shamsudin S, Shah UKM, Zainudin H, Abd-Aziz S, Kamal SMM, Shirai Y et al (2012) Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass Bioenergy 36:280–288

    Article  CAS  Google Scholar 

  54. Derman E, Abdulla R, Marbawi H, Sabullah MK (2018) Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia. Renew Energy 129:285–298

    Article  Google Scholar 

  55. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  Google Scholar 

  56. Doğan M, Abak H, Alkan M (2009) Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J Hazard Mater 164(1):172–181

    Article  Google Scholar 

  57. Duman E, Şimşek M, Özcan MM (2018) Monitoring of composition and antimicrobial activity of fig (Ficus carica L.) fruit and seed oil. J Agroaliment Process Technol 24(2):75–80

    CAS  Google Scholar 

  58. Plante L, Sheehan NP, Bier P, Murray K, Quell K, Ouellette C et al (2019) Bioenergy from biofuel residues and waste. Water Environ Res 91(10):1199–1204

    Article  CAS  Google Scholar 

  59. Riansa-Ngawong W, Prasertsan P (2011) Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process. Carbohydr Res 346(1):103–110

    Article  CAS  Google Scholar 

  60. Sajab MS, Chia CH, Zakaria S, Khiew PS (2013) Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions. Bioresour Technol 128:571–577

    Article  CAS  Google Scholar 

  61. Olisa Y, Kotingo K (2014) Utilization of palm empty fruit bunch (PEFB) as solid fuel for steam boiler. Eur J Eng Technol 2(2):1–7

    Google Scholar 

  62. Hoe TK (2014) Utilization of oil palm fruits mesocarp fibres waste as growing media for banana tissue culture seedling in Malaysia. J Adv Agric Technol 1(1):52–55

    Google Scholar 

  63. Koay YS, Ahamad IS, Nourouzi MM, Abdullah LC, Choong TSY (2014) Development of novel low-cost quaternized adsorbent from palm oil agriculture waste for reactive dye removal. Bioresources 9(1):66–85

    CAS  Google Scholar 

  64. Nourouzi M, Chuah T, Choong TS (2009) Equilibrium and kinetic study on reactive dyes adsorption by palm kernel shell-based activated carbon: in single and binary systems. J Environ Eng 135(12):1393

    Article  CAS  Google Scholar 

  65. Bashir M, Salmiaton A, Nourouzi M, Azni I, Harun R (2015) Fluoride removal by chemical modification of palm kernel shell-based adsorbent: a novel agricultural waste utilization approach. Asian J Microbial Biotech Environ Sci 17(3):533–542

    Google Scholar 

  66. Abd Rashid RZ, Salleh HM, Ani MH, Yunus NA, Akiyama T, Purwanto H (2014) Reduction of low grade iron ore pellet using palm kernel shell. Renew Energy 63:617–623

    Article  CAS  Google Scholar 

  67. Ong HL, Yee TG, Nik Nur Azza N, Muhammad Safwan M, Villagracia AR, Mern CK, et al (2016) Utilization of modified palm kernel shell for biocomposites production. In: Key engineering materials, 2016. Trans Tech Publ Ltd. Switzerland, 700:60–69

    Google Scholar 

  68. Khankhaje E, Salim MR, Mirza J, Hussin MW, Rafieizonooz M (2016) Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Constr Build Mater 126:1054–1065

    Article  Google Scholar 

  69. Yahayu M, Abas FZ, Zulkifli SE, Ani FN (2018) Utilization of oil palm fiber and palm kernel shell in various applications. In: Sustainable technologies for the management of agricultural wastes. Springer, ISBN: 978-981-10-5061-9, pp 45–56

    Google Scholar 

  70. Arrieta F, Teixeira F, Yáñez E, Lora E, Castillo E (2007) Cogeneration potential in the Columbian palm oil industry: three case studies. Biomass Bioenergy 31(7):503–511

    Article  CAS  Google Scholar 

  71. Foo K, Hameed B (2010) Insight into the applications of palm oil mill effluent: a renewable utilization of the industrial agricultural waste. Renew Sust Energ Rev 14(5):1445–1452

    Article  CAS  Google Scholar 

  72. Aziz N, Hanafiah MM (2017) The potential of palm oil mill effluent (POME) as a renewable energy source. J Green Energy 1(2):323–346

    Google Scholar 

  73. Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11(1):70–81

    CAS  Google Scholar 

  74. Jamal P, Alam MZ, Ramlan M, Salleh M, Nadzir MM (2005) Screening of Aspergillus for citric acid production from palm oil mill effluent. Biotechnology 4(4):275–278

    Article  CAS  Google Scholar 

  75. Onyla C, Uyub A, Akunna JC, Norulaini N, Omar A (2001) Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification. Water Sci Technol 44(10):157–162

    Article  Google Scholar 

  76. Molla A, Fakhru’l-Razi A, Abd-Aziz S, Hanafi M, Roychoudhury P, Alam M (2002) A potential resource for bioconversion of domestic wastewater sludge. Bioresour Technol 85(3):263–272

    Article  CAS  Google Scholar 

  77. Ahmad A, Chan C, Abd Shukor S, Mashitah M (2008) Recovery of oil and carotenes from palm oil mill effluent (POME). Chem Eng J 141(1–3):383–386

    Article  CAS  Google Scholar 

  78. Cheah K, Toh T, Koh P (2010) Palm fatty acid distillate biodiesel. Int News Fats Oils Related Mater 21(5):264–266

    Google Scholar 

  79. Liu Y, Wang L (2009) Biodiesel production from rapeseed deodorizer distillate in a packed column reactor. Chem Eng Process Process Intensif 48(6):1152–1156

    Article  CAS  Google Scholar 

  80. Naz S, Kara H, Sherazi STH, Aljabour A, Talpur FN (2014) A green approach for the production of biodiesel from fatty acids of corn deodorizer distillate. RSC Adv 4(89):48419–48425

    Article  CAS  Google Scholar 

  81. Verleyen T, Verhé R, Garcia L, Dewettinck K, Huyghebaert A, De Greyt W (2001) Gas chromatographic characterization of vegetable oil deodorization distillate. J Chromatogr A 921(2):277–285

    Article  CAS  Google Scholar 

  82. Chang AS, Sherazi STH, Kandhro AA, Mahesar SA, Chang F, Shah SN et al (2016) Characterization of palm fatty acid distillate of different oil processing industries of Pakistan. J Oleo Sci 65:897

    Article  CAS  Google Scholar 

  83. Wittaya T (2009) Microcomposites of rice starch film reinforced with microcrystalline cellulose from palm pressed fiber. Int Food Res J 16(4):493–500

    CAS  Google Scholar 

  84. Phattaraporn T, Waranyou S, Thawien W (2011) Effect of palm pressed fiber (PPF) surface treatment on the properties of rice starch films. Int Food Res J 18(1):289

    Google Scholar 

  85. Borja R, Banks CJ (1995) Comparison of an anaerobic filter and an anaerobic fluidized bed reactor treating palm oil mill effluent. Process Biochem 30(6):511–521

    Article  CAS  Google Scholar 

  86. Poh PE, Yong W-J, Chong MF (2010) Palm oil mill effluent (POME) characteristic in high crop season and the applicability of high-rate anaerobic bioreactors for the treatment of POME. Ind Eng Chem Res 49(22):11732–11740

    Article  CAS  Google Scholar 

  87. Wang X, Hu J, Liang Y, Zeng J (2012) TCF bleaching character of soda-anthraquinone pulp from oil palm frond. Bioresources 7(1):0275–0282

    Article  CAS  Google Scholar 

  88. Wanrosli W, Zainuddin Z, Law K, Asro R (2007) Pulp from oil palm fronds by chemical processes. Ind Crop Prod 25(1):89–94

    Article  CAS  Google Scholar 

  89. Rosli WW, Law K, Zainuddin Z, Asro R (2004) Effect of pulping variables on the characteristics of oil-palm frond-fiber. Bioresour Technol 93(3):233–240

    Article  Google Scholar 

  90. Abdul Khalil H, Siti Alwani M, Ridzuan R, Kamarudin H, Khairul A (2008) Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polym-Plast Technol Eng 47(3):273–280

    Article  CAS  Google Scholar 

  91. Ahmad MN, Mokhtar MN, Baharuddin AS, Hock LS, Ali SRA, Abd-Aziz S et al (2011) Changes in physicochemical and microbial community during co-composting of oil palm frond with palm oil mill effluent anaerobic sludge. Bioresources 6(4):4762–4780

    CAS  Google Scholar 

  92. Tay P, H’ng P, Chin K, Wong L, Luqman A (2013) Effects of steeping variables and substrate mesh size on starch yield extracted from oil palm trunk. Ind Crop Prod 44:240–245

    Article  CAS  Google Scholar 

  93. Deris RRR, Sulaiman M, Darus F, Mahmud M, Bakar N (2006) Pyrolysis of oil palm trunk (OPT). In: Proceedings of the 20th symposium of malaysian chemical engineers, (SOMChE 2006), 19 – 21 December 2006, UiTM Shah Alam, Selangor. pp 245–250

    Google Scholar 

  94. Nomanbhay SM, Hussain R, Palanisamy K (2013) Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. J Sustain Bioenergy Syst 3:7–17

    Google Scholar 

  95. Sali NFM, Deraman R (2019) The selection of optimum water-cement ratio for production of low thermal conductivity cement sand brick with Oil Palm Mesocarp Fibre as admixture. In: IOP conference series: materials science and engineering. IOP Publishing 601:1–9

    Google Scholar 

  96. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA (2017) Factors affecting spinnability of oil palm mesocarp fiber cellulose solution for the production of microfiber. Bioresources 12(1):715–734

    CAS  Google Scholar 

  97. Wu T, Mohammad AW, Jahim JM, Anuar N (2007) Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: effect of pressure on membrane fouling. Biochem Eng J 35(3):309–317

    Article  CAS  Google Scholar 

  98. Zinatizadeh A, Mohamed A, Abdullah A, Mashitah M, Isa MH, Najafpour G (2006) Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Res 40(17):3193–3208

    Article  CAS  Google Scholar 

  99. Choorit W, Wisarnwan P (2007) Effect of temperature on the anaerobic digestion of palm oil mill effluent. Electron J Biotechnol 10(3):376–385

    Article  CAS  Google Scholar 

  100. Chin MJ, Poh PE, Tey BT, Chan ES, Chin KL (2013) Biogas from palm oil mill effluent (POME): opportunities and challenges from Malaysia’s perspective. Renew Sust Energ Rev 26:717–726

    Article  CAS  Google Scholar 

  101. Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157(1–3):87–95

    Article  CAS  Google Scholar 

  102. Zhang Y, Li Y, Lina C, Xiuhua L, Zhijian M, Zhang Z (2008) Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent. J Environ Sci 20(6):658–663

    Article  CAS  Google Scholar 

  103. Ma A, Ong AS (1985) Pollution control in palm oil mills in Malaysia. J Am Oil Chem Soc 62(2):261–266

    Article  CAS  Google Scholar 

  104. Gapoor A, Hassan W, Sulong M (2002) Phytochemical for nutraceutical from the by product of palm oil refining. Palm Oil Dev 36:13–19

    Google Scholar 

  105. Goh S, Gee P (1986) Noncarotenoid hydrocarbons in palm oil and palm fatty acid distillate. J Am Oil Chem Soc 63(2):226–230

    Article  CAS  Google Scholar 

  106. Posada LR, Shi J, Kakuda Y, Xue SJ (2007) Extraction of tocotrienols from palm fatty acid distillates using molecular distillation. Sep Purif Technol 57(2):220–229

    Article  CAS  Google Scholar 

  107. Estiasih T, Mukhlishiyiyah J (2015) Optimizing saponification condition for unsaponifiable matters preparation from crude palm oil research report of agricultural technology faculty grant. Brawijaya University Malang, Malang

    Google Scholar 

  108. Khatoon S, Rajan RR, Krishna AG (2010) Physicochemical characteristics and composition of Indian soybean oil deodorizer distillate and the recovery of phytosterols. J Am Oil Chem Soc 87(3):321–326

    Article  CAS  Google Scholar 

  109. Estiasih T, Ahmadi K, Widyaningsih T, Maligan J (2012) Multi components of bioactive compounds for food supplement and fortificant as an effort to increase economical value of byproduct of palm oil refinery year 1 MP3EI report. Research Centre Brawijaya University Malang, Malang

    Google Scholar 

  110. Ahmadi K, Estiasih T (2010) Low temperature solvent crystallization in vitamin E enriched tocotrienols preparation from palm fatty acid distillate and its application for functional foods year 2 PHB report. Research Centre, Tribhuwana Tunggadewi University, Malang

    Google Scholar 

  111. Ahmadi K, Estiasih T (2011) Phytosterols separation from palm fatty acid distillate and its utilization for reducing cholesterol year 1 PHB report. Research Centre, Tribhuwana Tunggadewi University, Malang

    Google Scholar 

  112. Loganathan R, Selvaduray KR, Radhakrishnan A, Nesaretnam K (2009) Palm oil rich in health promoting phytonutrients. Palm Oil Dev 50:16–25

    Google Scholar 

  113. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12):3479S–3485S

    Article  CAS  Google Scholar 

  114. Tsouko E, Alexandri M, Fernandes KV, Freire DMG, Mallouchos A, Koutinas AA (2019) Extraction of phenolic compounds from palm oil processing residues and their application as antioxidants. Food Technol Biotechnol 57(1):29

    Article  Google Scholar 

  115. Ofori-Boateng C, Lee KT (2013) Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochem Rev 12(1):173–190

    Article  CAS  Google Scholar 

  116. Bonnie TYP, Choo YM (2000) Valuable minor constituents of commercial red palm olein: carotenoids, vitamin E, ubiquinones and sterols. J Oil Palm Res 12(1):14–24

    CAS  Google Scholar 

  117. Zeb A, Mehmood S (2004) Carotenoids contents from various sources and their potential health applications. Pak J Nutr 3(3):199–204

    Article  Google Scholar 

  118. Choo Y-M, Yap S-C, Ooi C-K, Ma A-N, Goh S-H, Ong AS-H (1996) Recovered oil from palm-pressed fiber: a good source of natural carotenoids, vitamin E, and sterols. J Am Oil Chem Soc 73(5):599–602

    Article  CAS  Google Scholar 

  119. Choo Y, Yap S, Ooi C, Ong A, Goh S (1992) Production of palm oil carotenoid concentrate and its potential application in nutrition. In: Ong, A.S.H., Packer, L. (eds) Lipid-Soluble Antioxidants: Biochemistry and Clinical Applications. Springer, pp. 243–254

    Google Scholar 

  120. Lau HLN, Choo YM, Ma AN, Chuah CH (2008) Selective extraction of palm carotene and vitamin E from fresh palm-pressed mesocarp fiber (Elaeis guineensis) using supercritical CO2. J Food Eng 84(2):289–296

    Article  CAS  Google Scholar 

  121. de França LF, Meireles MAA (2000) Modeling the extraction of carotene and lipids from pressed palm oil (Elaes guineensis) fibers using supercritical CO2. J Supercrit Fluids 18(1):35–47

    Article  Google Scholar 

  122. Ahmad AL, Chan C, Abd Shukor S, Mashitah M, Sunarti A (2009) Isolation of carotenes from palm oil mill effluent and its use as a source of carotenes. Desalin Water Treat 7(1–3):251–256

    Article  CAS  Google Scholar 

  123. Nesaretnam K, Lim EJ, Reimann K, Lai LC (2000) Effect of a carotene concentrate on the growth of human breast cancer cells and pS2 gene expression. Toxicology 151(1–3):117–126

    Article  CAS  Google Scholar 

  124. Yu F-L, Gapor A, Bender W (2005) Evidence for the preventive effect of the polyunsaturated phytol side chain in tocotrienols on 17β-estradiol epoxidation. Cancer Detect Prev 29(4):383–388

    Article  CAS  Google Scholar 

  125. Majima T, Tsutsumi M, Nishino H, Tsunoda T, Konishi Y (1998) Inhibitory effects of beta-carotene, palm carotene, and green tea polyphenols on pancreatic carcinogenesis initiated by N-nitorsobis (2-oxopropyl) amine in Syrian golden hamsters. Pancreas 16(1):13–18

    Article  CAS  Google Scholar 

  126. Kausar H, Bhasin G, Zargar MA, Athar M (2003) Palm oil alleviates 12-O-tetradecanoyl-phorbol-13-acetate-induced tumor promotion response in murine skin. Cancer Lett 192(2):151–160

    Article  CAS  Google Scholar 

  127. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  Google Scholar 

  128. Babbar N, Oberoi HS, Uppal DS, Patil RT (2011) Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res Int 44(1):391–396

    Article  CAS  Google Scholar 

  129. Shamala DS, Soon-Sen L, Najwa A, Kok KT, Kalyana S, Ravigadevi S et al (2010) Effects of oil palm phenolics on tumor cells in vitro and in vivo. Afr J Food Sci 4(8):495–502

    Google Scholar 

  130. Ogbuagu M (2008) The change in physico-chemical properties of blended oils of palm origin with soyabean oil. Global J Pure Appl Sci 14(4):397–400

    CAS  Google Scholar 

  131. Akpan EJ, Usoh IF (2004) Phytochemical screening and effect of aqueous root extract of Raphia hookeri (raffia palm) on metabolic clearance rate of ethanol in rabbits. Biochemistry 16:37–42

    Google Scholar 

  132. Sékou D, Séverin A, Roger KK, Arsène CO, Pierre N (2010) Phenolic diversity in the defence reaction of the oil palm against vascular wilt disease. Agric Biol JN Am 1:407–415

    Google Scholar 

  133. Abeywardena M, Runnie I, Nizar M, Momamed S, Head R (2002) Polyphenol-enriched extract of oil palm fronds (Elaeis guineensis) promotes vascular relaxation via endothelium-dependent mechanisms. Asia Pac J Clin Nutr 11:S467–S472

    Article  CAS  Google Scholar 

  134. Han N, May C (2010) Determination of antioxidants in oil palm leaves (Elaeis guineensis). Am J Appl Sci 7(9):1243–1247

    Article  CAS  Google Scholar 

  135. Micera M, Botto A, Geddo F, Antoniotti S, Bertea CM, Levi R et al (2020) Squalene: more than a step toward sterols. Antioxidants 9(8):688

    Article  CAS  Google Scholar 

  136. Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala AL (2018) Plant sources, extraction methods, and uses of squalene. Int J Agron, Hindawi, 2018:1–13

    Google Scholar 

  137. Güneş FE (2013) Medical use of squalene as a natural antioxidant. J Marmara Univ Instit Health Sci 3(4):221–229

    Google Scholar 

  138. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA (2005) Application of supercritical fluid chromatography in the quantitative analysis of minor components (carotenes, vitamin E, sterols, and squalene) from palm oil. Lipids 40(4):429–432

    Article  CAS  Google Scholar 

  139. Chua CSL, Baharin BS, Man YBC, Tan CP (2007) Separation of squalene from palm fatty acid distillate using adsorption chromatography. Eur J Lipid Sci Technol 109(11):1083–1087

    Article  CAS  Google Scholar 

  140. Chuanphongpanich S, Tuwanon N, Buddhasukh D, Pirakitikulr P, Phanichphant S (2006) Stanol synthesis from palm oil distillate. Chiang Mai J Sci 33(1):109–116

    CAS  Google Scholar 

  141. Birtigh A, Johannsen M, Brunner G, Nair N (1995) Supercritical-fluid extraction of oil-palm components. J Supercrit Fluids 8(1):46–50

    Article  CAS  Google Scholar 

  142. Szewczyk K, Chojnacka A, Górnicka M (2021) Tocopherols and tocotrienols—bioactive dietary compounds; what is certain, what is doubt? Int J Mol Sci 22(12):6222

    Article  CAS  Google Scholar 

  143. Jiang Q (2017) Natural forms of vitamin E as effective agents for cancer prevention and therapy. Adv Nutr 8(6):850–867

    Article  CAS  Google Scholar 

  144. Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O et al (1997) Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409(1):105–108

    Article  CAS  Google Scholar 

  145. Reboul E (2017) Vitamin E bioavailability: mechanisms of intestinal absorption in the spotlight. Antioxidants 6(4):95

    Article  Google Scholar 

  146. Mohd Mutalip SS, Ab-Rahim S, Rajikin MH (2018) Vitamin E as an antioxidant in female reproductive health. Antioxidants 7(2):22

    Article  Google Scholar 

  147. Weil PC, Muyt CY, Nganl MA, Hock CC (2006) Production of carotenoids-rich palm olein by supercritical fluid extraction. Malays J Sci 25(2):147–152

    Google Scholar 

  148. Sanagi MM, See H, Ibrahim WAW, Naim AA (2005) Determination of carotene, tocopherols and tocotrienols in residue oil from palm pressed fiber using pressurized liquid extraction-normal phase liquid chromatography. Anal Chim Acta 538(1–2):71–76

    Article  CAS  Google Scholar 

  149. Chu B, Baharin B, Man YC, Quek S (2004) Separation of vitamin E from palm fatty acid distillate using silica: I equilibrium of batch adsorption. J Food Eng 62(1):97–103

    Article  Google Scholar 

  150. Authority EFS, Panel on Dietetic Products, Nutrition and Allergies (NDA) (2011) Scientific opinion on the substantiation of health claims related to chitosan and reduction in body weight (ID 679, 1499), maintenance of normal blood LDL-cholesterol concentrations (ID 4663), reduction of intestinal transit time (ID 4664) and reduction of inflammation (ID 1985) pursuant to article 13 (1) of regulation (EC) no 1924/2006. EFSA J 9(6):2214

    Article  Google Scholar 

  151. Zadák Z, Hyspler R, Tichá A, Solichová D, Bláha V, Melichar B (2006) Polyunsaturated fatty acids, phytosterols and cholesterol metabolism in the Mediterranean diet. ACTA MEDICA-HRADEC KRALOVE 49(1):23

    Google Scholar 

  152. García-Llatas G, Rodríguez-Estrada MT (2011) Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 164(6):607–624

    Article  Google Scholar 

  153. Laredj LN, Licitra F, Puccio HM (2014) The molecular genetics of coenzyme Q biosynthesis in health and disease. Biochimie 100:78–87

    Article  CAS  Google Scholar 

  154. Davis BM, Tian K, Pahlitzsch M, Brenton J, Ravindran N, Butt G et al (2017) Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 36:114–123

    Article  CAS  Google Scholar 

  155. Lohan SB, Bauersachs S, Ahlberg S, Baisaeng N, Keck CM, Müller RH et al (2015) Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. Eur J Pharm Biopharm 89:201–207

    Article  CAS  Google Scholar 

  156. Paley EL, Merkulova-Rainon T, Faynboym A, Shestopalov VI, Aksenoff I (2018) Geographical distribution and diversity of gut microbial NADH: ubiquinone oxidoreductase sequence associated with Alzheimer’s disease. J Alzheimers Dis 61(4):1531–1540

    Article  CAS  Google Scholar 

  157. Han N, May C, Ngan M, Hock C, Hashim MA (2006) Separation of coenzyme Q10 in palm oil by supercritical fluid chromatography. Am J Appl Sci 3(7):1929–1932

    Article  CAS  Google Scholar 

  158. Ng MH, Choo YM, Ma AN, Chuah CH, Hashim MA (2009) Determination of coenzyme Q9 and Q10 in developing palm fruits. J Am Oil Chem Soc 86(3):201–205

    Article  CAS  Google Scholar 

  159. Hamid H, Choo Y, Goh S, Khor H (1995) The ubiquinones of palm oil. In (Ong, Niki and Packer Eds) Nutrition, Lipids, Health and Disease. AOCS Press, USA. pp. 122–128

    Google Scholar 

  160. Kum WH, Zahari MW (2011) Utilisation of oil palm by-products as ruminant feed in Malaysia. J Oil Palm Res 23(1):1029–1035

    CAS  Google Scholar 

  161. Sumathi S, Chai S, Mohamed A (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sust Energ Rev 12(9):2404–2421

    Article  CAS  Google Scholar 

  162. Ong H, Mahlia T, Masjuki H, Norhasyima R (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energ Rev 15(8):3501–3515

    Article  CAS  Google Scholar 

  163. Demirbaş A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manag 44(13):2093–2109

    Article  Google Scholar 

  164. Zahan KA, Kano M (2018) Biodiesel production from palm oil, its by-products, and mill effluent: a review. Energies 11(8):2132

    Article  Google Scholar 

  165. Bardant TB, Abimanyu H, Adriana N (2012) Effect of pretreatment technology on enzyme susceptibility in high substrate loading enzymatic hydrolysis of palm oil EFB and water hyacinth. Int J Environ Bioenergy 3(3):193–200

    CAS  Google Scholar 

  166. Daud WRW, Law KN (2011) Oil palm fibers as papermaking material: potentials and challenges. Bioresources 6(1):901–917

    Article  Google Scholar 

  167. Syafwina S, Honda Y, Watanabe T, Kuwahara M (2002) Pre-treatment of oil palm empty fruit bunch by white-rot fungi for enzymatic saccharification. Wood Res Bull Wood Res Instit Kyoto Univ 89:19–20

    CAS  Google Scholar 

  168. Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour Technol 135:683–689

    Article  CAS  Google Scholar 

  169. Misson M, Haron R, Kamaroddin MFA, Amin NAS (2009) Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour Technol 100(11):2867–2873

    Article  CAS  Google Scholar 

  170. Bari MN, Alam MZ, Muyibi SA, Jamal P (2009) Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs. Bioresour Technol 100(12):3113–3120

    Article  CAS  Google Scholar 

  171. Tan L, Wang M, Li X, Li H, Zhao J, Qu Y et al (2016) Fractionation of oil palm empty fruit bunch by bisulfite pretreatment for the production of bioethanol and high value products. Bioresour Technol 200:572–578

    Article  CAS  Google Scholar 

  172. Estiasih T, Ahmadi K (2018) Bioactive compounds from palm fatty acid distillate and crude palm oil. In: IOP conference series: earth and environmental science. IOP Publishing Ltd. 131:012–016

    Google Scholar 

  173. Garcia-Nunez JA, Ramirez-Contreras NE, Rodriguez DT, Silva-Lora E, Frear CS, Stockle C et al (2016) Evolution of palm oil mills into bio-refineries: literature review on current and potential uses of residual biomass and effluents. Resour Conserv Recycl 110:99–114

    Article  Google Scholar 

  174. Ayob S, Othman N, Altowayti WAH, Khalid FS, Bakar NA, Tahir M et al (2021) A review on adsorption of heavy metals from wood-industrial wastewater by oil palm waste. J Ecol Eng 22(3):249–265

    Google Scholar 

  175. Hashim R, Nadhari WNAW, Sulaiman O, Kawamura F, Hiziroglu S, Sato M et al (2011) Characterization of raw materials and manufactured binderless particleboard from oil palm biomass. Mater Des 32(1):246–254

    Article  CAS  Google Scholar 

  176. Onoja E, Chandren S, Abdul Razak FI, Mahat NA, Wahab RA (2019) Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste Biomass Valorizat 10(8):2099–2117

    Article  CAS  Google Scholar 

  177. Chaikitkaew S, Kongjan P, Sompong O (2015) Biogas production from biomass residues of palm oil mill by solid state anaerobic digestion. Energy Procedia 79:838–844

    Article  CAS  Google Scholar 

  178. Elias N, Chandren S, Attan N, Mahat NA, Razak FIA, Jamalis J et al (2017) Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr Polym 176:281–292

    Article  CAS  Google Scholar 

  179. Karina M, Onggo H, Abdullah AD, Syampurwadi A (2008) Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin. J Biol Sci 8(1):101–106

    Google Scholar 

  180. Abdul Khalil H, Nurul Fazita M, Jawaid M, Bhat A, Abdullah C (2011) Empty fruit bunches as a reinforcement in laminated bio-composites. J Compos Mater 45(2):219–236

    Article  Google Scholar 

  181. Mulakhudair AR, Hanotu J, Zimmerman W (2016) Exploiting microbubble-microbe synergy for biomass processing: application in lignocellulosic biomass pretreatment. Biomass Bioenergy 93:187–193

    Article  CAS  Google Scholar 

  182. Chen H, Wang L (2016) Technologies for biochemical conversion of biomass. Academic Press, 1st Edition, ISBN: 9780128024171

    Google Scholar 

  183. Shuit SH, Tan KT, Lee KT, Kamaruddin A (2009) Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy 34(9):1225–1235

    Article  CAS  Google Scholar 

  184. Chaiyaomporn K, Chavalparit O (2010) Fuel pellets production from biodiesel waste. Environ Asia 3(1):103–110

    Google Scholar 

  185. Siti MI, Khairiah HB, Osman H (2012) A study on glycerolysis of oil palm empty fruit bunch fiber. Sains Malaysiana 41(12):1579–1585

    Google Scholar 

  186. Mohamed WZ, Alimon A (2012) Recent advances in the utilization of oil palm by-products as animal feed. In: International Conference on Livestock Production and Veterinary Technology 2012, 1–4 Oct. 2012, Bogor, Indonesia. (pp. 211–219)

    Google Scholar 

  187. Mokhtar A, Hassan K, Aziz AA, Wahid M (2011) Plywood from oil palm trunks. J Oil Palm Res 23(3):1159–1165

    Google Scholar 

  188. Saari N, Lamaming J, Hashim R, Sulaiman O, Sato M, Arai T et al (2020) Optimization of binderless compressed veneer panel manufacturing process from oil palm trunk using response surface methodology. J Clean Prod 265:121757

    Article  Google Scholar 

  189. Ahmadzadeh A, Zakaria S, Rashid R (2009) Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin. Ind Crop Prod 30(1):54–58

    Article  CAS  Google Scholar 

  190. Kelly-Yong TL, Lee KT, Mohamed AR, Bhatia S (2007) Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35(11):5692–5701

    Article  Google Scholar 

  191. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31(2):171–192

    Article  CAS  Google Scholar 

  192. Idris SS, Abd Rahman N, Ismail K, Alias AB, Abd Rashid Z, Aris MJ (2010) Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol 101(12):4584–4592

    Article  CAS  Google Scholar 

  193. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91(1):1–33

    Article  CAS  Google Scholar 

  194. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    Article  CAS  Google Scholar 

  195. Sulaiman F, Abdullah N (2011) Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy 36(5):2352–2359

    Article  CAS  Google Scholar 

  196. Abnisa F, Daud WW, Husin W, Sahu J (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy 35(5):1863–1872

    Article  CAS  Google Scholar 

  197. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  Google Scholar 

  198. Demirbaş A (2003) Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers Manag 44(9):1481–1486

    Article  Google Scholar 

  199. Bulushev DA, Ross JR (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13

    Article  CAS  Google Scholar 

  200. Boerrigter H, Den Uil H, Calis H-P (2002) Green diesel from biomass via Fischer-Tropsch synthesis: new insights in gas cleaning and process design. Paper presented at: Pyrolysis and Gasification of Biomass and Waste, Expert Meeting, 30 September – 1 October 2002, Strasbourg, France

    Google Scholar 

  201. Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2(3):556–581

    Article  CAS  Google Scholar 

  202. Pan H, Shupe TF, Hse CY (2007) Characterization of liquefied wood residues from different liquefaction conditions. J Appl Polym Sci 105(6):3740–3746

    Article  Google Scholar 

  203. Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010) Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents. Bioresour Technol 101(19):7641–7647

    Article  CAS  Google Scholar 

  204. Fan S-P, Zakaria S, Chia C-H, Jamaluddin F, Nabihah S, Liew T-K et al (2011) Comparative studies of products obtained from solvolysis liquefaction of oil palm empty fruit bunch fibres using different solvents. Bioresour Technol 102(3):3521–3526

    Article  CAS  Google Scholar 

  205. Zamri MF, Milano J, Shamsuddin AH, Roslan ME, Salleh SF, Rahman AA, et al (2022) An overview of palm oil biomass for power generation sector decarbonization in Malaysia: progress, challenges, and prospects. WIREs Energy Environ. 11:e437

    Google Scholar 

  206. Lim HK, Lee KI, Hwang DW, Hwang IT (2016) Complete saccharification of cellulose through chemo-enzymatic hydrolysis. Biomass Bioenergy 94:31–38

    Article  CAS  Google Scholar 

  207. Chooklin S, Kaewsichan L, Kaewsrichan J (2011) Potential utilization of sap from oil palm (Elaeis guineensis) for lactic acid production by lactobacillus casei. J Sustain Energy Environ 2:99–104

    Google Scholar 

  208. Shahirah MNN, Gimbun J, Pang SF, Zakria RM, Cheng CK, Chua GK et al (2015) Influence of nutrient addition on the bioethanol yield from oil palm trunk sap fermented by Saccharomyces cerevisiae. J Ind Eng Chem 23:213–217

    Article  CAS  Google Scholar 

  209. Eom I-Y, Yu J-H, Jung C-D, Hong K-S (2015) Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Biotechnol Biofuels 8(1):1–11

    Article  CAS  Google Scholar 

  210. Kumneadklang S, Larpkiattaworn S, Niyasom C, Sompong O (2015) Bioethanol production from oil palm frond by simultaneous saccharification and fermentation. Energy Procedia 79:784–790

    Article  CAS  Google Scholar 

  211. Richana N, Winarti C, Hidayat T, Prastowo B (2015) Hydrolysis of empty fruit bunches of palm oil (Elaeis Guineensis Jacq.) by chemical, physical, and enzymatic methods for bioethanol production. Int J Chem Eng Appl 6(6):422

    CAS  Google Scholar 

  212. Christia A, Setiowati AD, Millati R, Karimi K, Cahyanto MN, Niklasson C et al (2016) Ethanol production from alkali-pretreated oil palm empty fruit bunch by simultaneous saccharification and fermentation with mucor indicus. Int J Green Energy 13(6):566–572

    Article  CAS  Google Scholar 

  213. Saidur R, Abdelaziz E, Demirbas A, Hossain M, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15(5):2262–2289

    Article  CAS  Google Scholar 

  214. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S (2006) Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci Total Environ 366(1):187–196

    Article  CAS  Google Scholar 

  215. Chan YJ, Chong MF, Law CL (2012) An integrated anaerobic–aerobic bioreactor (IAAB) for the treatment of palm oil mill effluent (POME): start-up and steady state performance. Process Biochem 47(3):485–495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ayyildiz, H.F., Shoaib, H., Kara, H. (2023). Bioactive Phytochemicals from Palm Oil Processing By-Products. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics