Skip to main content

Non-targeted Analysis as a Tool for Searching Transformation Products

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Contaminations of environment with xenobiotics is one of the major problems to be faced for environment preservation and sustainability. The monitoring of target compounds based on mass spectrometry and selected reaction monitoring mode is often insufficient to definitely assess the quality of environmental samples. Also potentially harmful non-target pollutants simultaneously present must be taken into account. Non-targeted analysis is expanding at a rapid pace, as researchers develop new instrumental and informatics approaches to cover an increasingly comprehensive section of chemical space. This chapter provides an overview of the state of the art of the application of liquid chromatography and mass spectrometry to the environmental analysis of xenobiotic transformation products.

The chapter begins with comparison of targeted and non-targeted analysis. Following are sections covering techniques and instruments and metrological issues. Procedures for identification outlined next are divided into target identification by methods and unknown/non-target analysis. For the latter, information support, such as mass spectral libraries and chemical databases, programs of formula generation, and spectral prediction/interpretation, is reviewed. Finally, identification and determination of transformation products of selected xenobiotics in the environment and some general trends are briefly noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Milman, B. L., & Zhurkovich, I. K. (2017). The chemical space for non-target analysis. Trends in Analytical Chemistry, 97, 179–187.

    Google Scholar 

  2. Ballin, N. Z., & Laursen, K. H. (2019). To target or not to target? Definitions and nomenclature for targeted versus non-targeted analytical food authentication. Trends in Food Science and Technology, 86, 537–543.

    Google Scholar 

  3. Ulrich, E. M., Sobus, J. R., Grulke, C. R., Richard, A. M., Newton, S. R., Stynar, M. J., Mansouri, K., & Williams, A. J. (2019). EPA’s non-targeted analysis collaborative trial (ENTACT): Genesis, design, and initial findings. Analytical and Bioanalytical Chemistry, 411, 853–866.

    Google Scholar 

  4. Kruve, A. (2018). Semi-quantitative non-target analysis of water with liquid chromatography/high-resolution mass spectrometry: How far are we? Rapid Communications in Mass Spectrometry, 33, 54–63.

    Google Scholar 

  5. Cavanna, D., Righetti, L., Elliott, C., & Suman, M. (2018). The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends in Food Science and Technology, 80, 223–241.

    Google Scholar 

  6. Naz, S., Vallejo, M., García, A., & Barbas, C. (2014). Method validation strategies involved in non-targeted metabolomics. Journal of Chromatography. A, 1353, 99–105.

    Google Scholar 

  7. Nürenberg, G., Schulz, M., Kunkel, U., & Ternes, T. A. (2015). Development and validation of a generic nontarget method based on liquid chromatography – high resolution mass spectrometry analysis for the evaluation of different wastewater treatment options. Journal of Chromatography. A, 1426, 77–90.

    Google Scholar 

  8. Heffernan, A. L., Gómez-Ramos, M. M., Gaus, C., Vijayasarathy, S., Bell, I., Hof, C., Mueller, J. F., & Gómez-Ramos, M. J. (2017). Non-targeted, high resolution mass spectrometry strategy for simultaneous monitoring of xenobiotics and endogenous compounds in green sea turtles on the great barrier reef. Science of the Total Environment, 599–600, 1251–1262.

    Google Scholar 

  9. Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas metabolite profiling experiments. Bioinformatics, 24, 732–737.

    Google Scholar 

  10. Gómez, M. J., Gómez-Ramos, M. M., Agüera, A., Mezcua, M., Herrera, S., & Fernández-Alba, A. R. (2009). A new gas chromatography/mass spectrometry method for the simultaneous analysis of target and non-target organic contaminants in waters. Journal of Chromatography. A, 1216, 4071–4082.

    Google Scholar 

  11. Blum, K. M., Andersson, P. L., Renman, G., Ahrens, L., Gros, M., Wiberg, K., & Haglund, P. (2017). Non-target screening and prioritization of potentially persistent, bioaccumulating and toxic domestic wastewater contaminants and their removal in on-site and large-scale sewage treatment plants. Science of the Total Environment, 575, 265–275.

    Google Scholar 

  12. Sobus, J. R., Wambaugh, J. F., Isaacs, K. K., Williams, A. J., McEachran, A. D., Richard, A. M., Grulke, C. M., Ulrich, E. M., Rager, J. E., Strynar, M. J., & Newton, S. R. (2018). Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. Journal of Exposure Science & Environmental Epidemiology, 28, 411–426.

    Google Scholar 

  13. Muscalu, A. M., & Górecki, T. (2018). Comprehensive two-dimensional gas chromatography in environmental analysis. TrAC – Trends in Analytical Chemistry., 106, 225–245.

    Google Scholar 

  14. Hoh, E., Dodder, N. G., Lehotay, S. J., Pangallo, K. C., Reddy, C. M., & Maruya, K. A. (2012). Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments. Environmental Science & Technology, 46, 8001–8008.

    Google Scholar 

  15. Parsons, B. A., Pinkerton, D. K., Wright, B. W., & Synovec, R. E. (2016). Chemical characterization of the acid alteration of diesel fuel: Non-targeted analysis by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry with tile-based fisher ratio and combinatorial threshold determination. Journal of Chromatography. A, 1440, 179–190.

    Google Scholar 

  16. Wang, C. H., Lee, Y. T., Huang, P. L., & Chu, Y. H. (2015). Application of non-target analysis by high-resolution mass spectrometry. FFTC-KU International Work Risk Management.

    Google Scholar 

  17. Bader, T., Schulz, W., & Lucke, T. (2016). Application of non-target analysis with LC-HRMS for the monitoring of raw and potable water: Strategy and results. ACS Symposium Series, str. 49–70.

    Google Scholar 

  18. Gosetti, F., Mazzucco, E., Gennaro, M. C., & Marengo, E. (2016). Contaminants in water: Non-target UHPLC/MS analysis. Environmental Chemistry Letters, 14, 51–65.

    Google Scholar 

  19. Bletsou, A. A., Jeon, J., Hollender, J., Archontaki, E., & Thomaidis, N. S. (2019). Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends in Analytical Chemistry, 66, 32–44.

    Google Scholar 

  20. Hollender, J., Schymanski, E. L., Singer, H. P., & Ferguson, P. L. (2017). Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? Environmental Science & Technology, 51, 11505–11512.

    Google Scholar 

  21. Makarov, A., & Scigelova, M. (2010). Coupling liquid chromatography to Orbitrap mass spectrometry. Journal of Chromatography. A, 1217, 3938–3945.

    Google Scholar 

  22. Tengstrand, E., Rosén, J., Hellenäs, K. E., & Åberg, K. M. (2013). A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography-mass spectrometry in combination with a metabolomics approach. Analytical and Bioanalytical Chemistry, 405, 1237–1243.

    Google Scholar 

  23. Dom, I., Biré, R., Hort, V., Lavison-Bompard, G., Nicolas, M., & Guérin, T. (2018). Extended targeted and non-targeted strategies for the analysis of marine toxins in mussels and oysters by (LC-HRMS). Toxins (Basel), 10.

    Google Scholar 

  24. Singer, H. P., Wössner, A. E., McArdell, C. S., & Fenner, K. (2016). Rapid screening for exposure to “non-target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling. Environmental Science & Technology, 50, 6698–6707.

    Google Scholar 

  25. Fauhl-Hassek, C. (2019). Quo vadis non-targeted wine analysis? BIO Web of Conferences, 12.

    Google Scholar 

  26. Krauss, M., Singer, H., & Hollender, J. (2010). LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 397, 943–951.

    Google Scholar 

  27. Wegh, R. S., Berendsen, B. J. A., Driessen-Van Lankveld, W. D. M., Pikkemaat, M. G., Zuidema, T., & Van Ginkel, L. A. (2017). Non-targeted workflow for identification of antimicrobial compounds in animal feed using bioassay-directed screening in combination with liquid chromatography-high resolution mass spectrometry. Food ADDITIVES & contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 34, 1935–1947.

    Google Scholar 

  28. Dinka, D. D. (2018). Environmental xenobiotics and their adverse health impacts-a general review. Journal of Environment Pollution and Human Health, 6, 77–88.

    Google Scholar 

  29. Tarfiei, A., Services, H., Eslami, H., & Ebrahimi, A. A. (2018). Pharmaceutical pollution in the environment and health hazards. JEHSD, 3.

    Google Scholar 

  30. Lushchak, V. I., Matviishyn, T. M., Husak, V. V., Storey, J. M., & Storey, K. B. (2018). Pesticide toxicity: A mechanistic approach. EXCLI Journal, 17, 1101–1136.

    Google Scholar 

  31. Rzymski, P., Drewek, A., & Klimaszyk, P. (2017). Pharmaceutical pollution of aquatic environment: An emerging and enormous challenge. Limnological Review, 17, 97–107.

    Google Scholar 

  32. Barchanska, H., Sajdak, M., Szczypka, K., Swientek, A., Tworek, M., & Kurek, M. (2017). Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. Environmental Science and Pollution Research, 24, 644–658.

    Google Scholar 

  33. Barchanska, H., Markowski, P., & Strzebin, M. (2018). Electrochemical determination of mesotrione and its degradation products on glassy carbon electrode. International Journal of Environmental Analytical Chemistry, 98, 493–505.

    Google Scholar 

  34. Southam, A. D., Lange, A., Al-Salhi, R., Hill, E. M., Tyler, C. R., & Viant, M. R. (2014). Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 10, 1050–1058.

    Google Scholar 

  35. Godheja, J., Sk, S., & Siddiqui, S. A. (2016). Xenobiotic compounds present in soil and water: A review on remediation strategies. Journal of Environmental & Analytical Toxicology, 6, 1–18.

    Google Scholar 

  36. Dimzon, I. K. D., Morata, A. S., Müller, J., Yanela, R. K., Lebertz, S., Weil, H., Perez, T. R., Müller, J., Dayrit, F. M., & Knepper, T. P. (2018). Trace organic chemical pollutants from the lake waters of San Pablo City, Philippines by targeted and non-targeted analysis. Science of the Total Environment, 639, 588–595.

    Google Scholar 

  37. González-Gaya, B., Cherta, L., Nozal, L., & Rico, A. (2018). An optimized sample treatment method for the determination of antibiotics in seawater, marine sediments and biological samples using LC-TOF/MS. Science of the Total Environment, 643, 994–1004.

    Google Scholar 

  38. Mirzaei, R., Mesdaghinia, A., Hoseini, S. S., & Yunesian, M. (2019). Antibiotics in urban wastewater and rivers of Tehran, Iran: Consumption, mass load, occurrence, and ecological risk. Chemosphere, 221, 55–66.

    Google Scholar 

  39. Prasse, C., Wagner, M., Schulz, R., & Ternes, T. A. (2011). Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment. Environmental Science & Technology, 45, 2761–2769.

    Google Scholar 

  40. Helbling, D. E., Hollender, J., Kohler, H. P. E., & Fenner, K. (2010). Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors. Environmental Science & Technology, 44, 6628–6635.

    Google Scholar 

  41. Pérez-Parada, A., Agüera, A., Del Mar Gómez-Ramos, M., García-Reyes, J. F., Heinzen, H., & Fernández-Alba, A. R. (2011). Behavior of amoxicillin in wastewater and river water: Identification of its main transformation products by liquid chromatography/electrospray quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 25, 731–742.

    Google Scholar 

  42. Huntscha, S., Hofstetter, T. B., Schymanski, E. L., Spahr, S., & Hollender, J. (2014). Biotransformation of benzotriazoles: Insights from transformation product identification and compound-specific isotope analysis. Environmental Science & Technology, 48, 4435–4443.

    Google Scholar 

  43. Jelic, A., Cruz-Morató, C., Marco-Urrea, E., Sarrà, M., Perez, S., Vicent, T., Petrović, M., & Barcelo, D. (2012). Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Research, 46, 955–964.

    Google Scholar 

  44. Trautwein, C., & Kümmerer, K. (2012). Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC-MS n and their effects on environmental bacteria. Journal of Chromatography B, 889-890, 24–38.

    Google Scholar 

  45. Wick, A., Wagner, M., & Ternes, T. A. (2011). Elucidation of the transformation pathway of the opium alkaloid codeine in biological wastewater treatment. Environmental Science & Technology, 45, 3374–3385.

    Google Scholar 

  46. Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G., & Vicent, T. (2010). Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Journal of Hazardous Materials, 176, 836–842.

    Google Scholar 

  47. Pérez, S., & Barceló, D. (2008). First evidence for occurrence of hydroxylated human metabolites of diclofenac and aceclofenac in wastewater. Analytical Chemistry, 80, 8135–8145.

    Google Scholar 

  48. Shen, M., Cheng, J., Wu, R., Zhang, S., Mao, L., & Gao, S. (2012). Metabolism of polybrominated diphenyl ethers and tetrabromobisphenol a by fish liver subcellular fractions in vitro. Aquatic Toxicology, 114–115, 73–79.

    Google Scholar 

  49. Zhao, L., Folsom, P. W., Wolstenholme, B. W., Sun, H., Wang, N., & Buck, R. C. (2013). Fluorotelomer alcohol biotransformation in an aerobic river sediment system. Chemosphere, 90, 203–209.

    Google Scholar 

  50. Wang, N., Buck, R. C., Szostek, B., Sulecki, L. M., & Wolstenholme, B. W. (2012). Polyfluorinated acid aerobic biotransformation in activated sludge via novel “one-carbon removal pathways”. Chemosphere, 87, 527–534.

    Google Scholar 

  51. Terzic, S., Senta, I., Matosic, M., & Ahel, M. (2011). Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 401, 353–363.

    Google Scholar 

  52. Kormos, J. L., Schulz, M., Wagner, M., & Ternes, T. A. (2009). Multistep approach for the structural identification of biotransformation products of iodinated X-ray contrast media by liquid chromatography/hybrid triple quadrupole linear ion trap mass spectrometry and 1H and 13C nuclear magnetic resonance. Analytical Chemistry, 81, 9216–9224.

    Google Scholar 

  53. Kormos, J. L., Schulz, M., Kohler, H. P. E., & Ternes, T. A. (2010). Biotransformation of selected iodinated X-ray contrast media and characterization of microbial transformation pathways. Environmental Science & Technology, 44, 4998–5007.

    Google Scholar 

  54. Badia-Fabregat, M., Rodríguez-Rodríguez, C. E., Gago-Ferrero, P., Olivares, A., Piña, B., Díaz-Cruz, M. S., Vicent, T., Barceló, D., & Caminal, G. (2012). Degradation of UV filters in sewage sludge and 4-MBC in liquid medium by the ligninolytic fungus Trametes versicolor. Journal of Environmental Management, 104, 114–120.

    Google Scholar 

  55. Trautwein, C., & Kümmerer, K. (2011). Incomplete aerobic degradation of the antidiabetic drug metformin and identification of the bacterial dead-end transformation product Guanylurea. Chemosphere, 85, 765–773.

    Google Scholar 

  56. Helbling, D. E., Hollender, J., Kohler, H. P. E., Singer, H., & Fenner, K. (2010). High-throughput identification of microbial transformation products of organic micropollutants. Environmental Science & Technology, 44, 6621–6627.

    Google Scholar 

  57. Kern, S., Fenner, K., Singer, H. P., Schwarzenbach, R. P., & Hollender, J. (2009). Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environmental Science & Technology, 43, 7039–7046.

    Google Scholar 

  58. Kern, S., Baumgartner, R., Helbling, D. E., Hollender, J., Singer, H., Loos, M. J., Schwarzenbach, R. P., & Fenner, K. (2010). A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. Journal of Environmental Monitoring, 12, 2100–2111.

    Google Scholar 

  59. Quintana, J. B., Weiss, S., & Reemtsma, T. (2005). Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Research, 39, 2654–2664.

    Google Scholar 

  60. Rodríguez-Rodríguez, C. E., Jesús, G.-G. M., Blánquez, P., Díaz-Cruz, M. S., Barceló, D., Caminal, G., & Vicent, T. (2012). Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. Journal of Hazardous Materials, 213-214, 347–354.

    Google Scholar 

  61. Fahrbach, M., Krauss, M., Preiss, A., Kohler, H. P. E., & Hollender, J. (2010). Anaerobic testosterone degradation in Steroidobacter denitrificans – identification of transformation products. Environmental Pollution, 158, 2572–2581.

    Google Scholar 

  62. Murugesan, K., Chang, Y. Y., Kim, Y. M., Jeon, J. R., Kim, E. J., & Chang, Y. S. (2010). Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Research, 44, 298–308.

    Google Scholar 

  63. Robin S., Wegh Bjorn J. A., Berendsen Wilma D. M., Driessen-Van Lankveld Mariël G., Pikkemaat Tina, Zuidema Leen A., & Van G. (2017). Non-targeted workflow for identification of antimicrobial compounds in animal feed using bioassay-directed screening in combination with liquid chromatography-high resolution mass spectrometry. Food Additives & Contaminants: Part A 34(11), 1935–1947. https://doi.org/10.1080/19440049.2017.1364431.

  64. Emma L., Schymanski H. P., Singer J., Slobodnik I. M., Ipolyi P., Oswald M., Krauss T., Schulze P., Haglund T., Letzel S., Grosse N. S., Thomaidis A., Bletsou C., Zwiener M., Ibáñez T., Portolés R., de Boer M. J., Reid M., Onghena U., Kunkel W., Schulz A., Guillon N., Noyon G., Leroy P., Bados S., Bogialli D., Stipaničev P., Rostkowski J., & Hollender (2015). Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry 407(21), 6237–6255. https://doi.org/10.1007/s00216-015-8681-7.

  65. Matthias, Ruff M. S., Mueller M., Loos H. P., & Singer (2015). Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry – Identification of unknown sources and compounds. Water Research, 87, 145–154. https://doi.org/10.1016/j.watres.2015.09.017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Bajkacz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bajkacz, S., Stando, K. (2022). Non-targeted Analysis as a Tool for Searching Transformation Products. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics