Skip to main content

Determination of Plant Phenolic Compounds in Biological Samples

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Oxidative stress in biological systems is caused by an imbalance between the production of free radicals and their elimination by endogenous and exogenous antioxidants. When organism is exposed to a high concentrations of reactive oxygen species (ROS), endogenous antioxidant deficiency may appear. Among the most important exogenous antioxidants are plant phenolic compounds, which play an important role in the prevention of diseases caused by oxidative stress. This chapter presents basic information on plant phenolic compounds, their structure, antioxidant properties, bioavailability, and bioaccessibility. Moreover, the most important factors influencing the bioavailability of dietary phenolic compounds were discussed. Additionally, the rate and degree of absorption of each class of phenolic compounds were briefly characterized. The chapter also reviews the procedures used for the preparation of biological samples (i.e., urine, plasma, milk) and analytical methods that are the most commonly applied for the determination of plant phenolic compounds in body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilska-Jeszka, J., & Podsędek, A. (2001). Bioflawonoidy jako naturalne antyoksydanty. Wiad Chem, 55, 987–1003.

    CAS  Google Scholar 

  2. Grajek, W. (Ed.). (2007). Przeciwutleniacze w żywności. Aspekty zdrowotne, technologiczne, molekularne i analityczne. WNT.

    Google Scholar 

  3. Bartosz, G. (2009). Druga twarz tlenu. PWN.

    Google Scholar 

  4. Goc, Z. (2014). Skład mineralny i właściwości antyoksydacyjne mleka ludzkiego (p. 93). Wydawnictwo Naukowe UP.

    Google Scholar 

  5. Budryn, G., & Nebesny, E. (2005). Struktura i właściwości antyoksydacyjne polifenoli ziarna kakaowego. Bromat Chem Toksykol, XXXVIII, 203–209.

    Google Scholar 

  6. Gawlik-Dziki, U. (2004). Fenolokwasy jako bioaktywne składniki żywności. Żywność Nauka Technologia. Jakość, 4, 29–40.

    Google Scholar 

  7. Robak, J., & Zachwieja, Z. (1999). Rola polifenoli zawartych w diecie w profilaktyce schorzeń. Bromat Chem Toksykol, XXXII, 215–220.

    Google Scholar 

  8. Robards, K., Prenzler, P. D., Tucker, G., et al. (1999). Phenolic compounds and their role in oxidative processes. Food Chemistry, 66, 401–436.

    Article  CAS  Google Scholar 

  9. Nartowska, J. (2001). Związki naturalne o właściwościach antyoksydacyjnych. Farmacja Polska, 57, 741–745.

    Google Scholar 

  10. Gouda, M., Moustafa, A., Hussein, L., & Hamza, M. (2016). Three week dietary intervention using apricots, pomegranate juice or/and fermented sour soya and impact on biomarkers of antioxidative activity, oxidative stress and erythrocytic glutathione transferase activity among adults. Nutrition Journal, 15, 52–62.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Olszewska, M. (2003). Flawonoidy i ich zastosowanie w lecznictwie. Farmacja Polska, 59, 391–401.

    Google Scholar 

  12. Ziyatdinova, G. K., & Budnikov, H. C. (2015). Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development. Russian Chemical Reviews, 84, 194–224.

    Article  CAS  Google Scholar 

  13. Manach, C., Williamson, G., Morand, C., et al. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81, 230S–242S.

    Article  CAS  PubMed  Google Scholar 

  14. Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., et al. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13, 155–171.

    Article  CAS  PubMed  Google Scholar 

  15. Courraud, J., Berger, J., Cristol, J. P., & Avallone, S. (2013). Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chemistry, 136, 871–877.

    Article  CAS  PubMed  Google Scholar 

  16. Hollman, P. C. H. (2004). Absorption, bioavailability and metabolism of flavonoids. Pharmaceutical Biology, 42, 74–83.

    Article  CAS  Google Scholar 

  17. Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., et al. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18, 1818–1892.

    Article  Google Scholar 

  18. D’Archivio, M., Filesi, C., Varí, R., et al. (2010). Bioavailability of the polyphenols: Status and controversies. International Journal of Molecular Sciences, 11, 1321–1342.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y., Wang, G. J., Song, T. T., et al. (1999). Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. The Journal of Nutrition, 129, 957–962.

    Article  CAS  PubMed  Google Scholar 

  20. Stalmach, A., Troufflard, S., Serafini, M., & Crozier, A. (2009). Absorption, metabolism and excretion of Choladi green tea flavan-3-ols by humans. Molecular Nutrition & Food Research, 53, S44–S53.

    Article  Google Scholar 

  21. Mullen, W., Archeveque, M. A., Edwards, C. A., & Crozier, A. (2008). Bioavailability and metabolism of orange juice flavanones in humans: Impact of a full fat yogurt. Journal of Agricultural and Food Chemistry, 56, 11157–11164.

    Article  CAS  PubMed  Google Scholar 

  22. Erlund, I., Meririnne, E., Alfthan, G., & Aro, A. (2001). Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. The Journal of Nutrition, 131, 235–241.

    Article  CAS  PubMed  Google Scholar 

  23. Hollman, P. C., de Vries, J. H., van Leeuwen, S. D., et al. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. The American Journal of Clinical Nutrition, 62, 1276–1278.

    Article  CAS  PubMed  Google Scholar 

  24. Graefe, E. U., Wittig, J., Mueller, S., et al. (2001). Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal of Clinical Pharmacology, 41, 492–499.

    Article  CAS  PubMed  Google Scholar 

  25. Mullen, W., Edwards, C. A., & Crozier, A. (2006). Absorption, excretion and metabolic profiling of methyl-, glucuronyl-, glucosyl and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. The British Journal of Nutrition, 96, 107–116.

    Article  CAS  PubMed  Google Scholar 

  26. Del Rio, D., Costa, L. G., Lean, M. E., & Crozier, A. (2010). Polyphenols and health: What compounds are involved? Nutrition, Metabolism, and Cardiovascular Diseases, 20, 1–6.

    Article  PubMed  Google Scholar 

  27. Lafay, S., & Gil-Izquierdo, A. (2008). Bioavailability of phenolic acids. Phytochemistry Reviews, 7, 301–311.

    Article  CAS  Google Scholar 

  28. Crespy, A. V., Levrat-Verny, M. A., Leenhardt, F., et al. (2002). The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. The Journal of Nutrition, 132, 1962–1968.

    Article  PubMed  Google Scholar 

  29. Jochum, F., Alteheld, B., Meinardus, P., et al. (2017). Mothers’ consumption of soy drink but not black tea increases the flavonoid content of term breast milk: A pilot randomized, controlled intervention study. Annals of Nutrition & Metabolism, 70, 147–153.

    Article  CAS  Google Scholar 

  30. Khymenets, O., Rabassa, M., Rodríguez-Palmero, M., et al. (2016). Dietary epicatechin is available to breastfed infants through human breast milk in the form of host and microbial metabolites. Journal of Agricultural and Food Chemistry, 64, 5354–5360.

    Article  CAS  PubMed  Google Scholar 

  31. Song, B. J., Jouni, Z. E., & Ferruzzi, M. G. (2013). Assessment of phytochemical content in human milk during different stages of lactation. Nutrition, 29, 195–202.

    Article  CAS  PubMed  Google Scholar 

  32. Romaszko, E., Wiczkowski, W., Romaszko, J., et al. (2014). Exposure of breastfed infants to quercetin after consumption of a single meal rich in quercetin by their mothers. Molecular Nutrition & Food Research, 58, 221–228.

    Article  CAS  Google Scholar 

  33. Grace, P. B., Mistry, N. S., Carter, M. H., et al. (2007). High throughput quantification of phytoestrogens in human urine and serum using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 853, 138–146.

    Article  CAS  PubMed  Google Scholar 

  34. Urpi-Sarda, M., Monagas, M., Khan, N., et al. (2009). Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Analytical and Bioanalytical Chemistry, 394, 1545–1556.

    Article  CAS  PubMed  Google Scholar 

  35. Iswaldi, I., Arraez-Roman, D., Gomez-Caravaca, A. M., et al. (2013). Identification of polyphenols and their metabolites in human urine after cranberry-syrup consumption. Food and Chemical Toxicology, 55, 484–492.

    Article  CAS  PubMed  Google Scholar 

  36. Ordonez, J. L., Pereira-Caro, G., Ludwig, I., et al. (2018). A critical evaluation of the use of gas chromatography- and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice. Journal of Chromatography. A, 1575, 100–112.

    Article  CAS  PubMed  Google Scholar 

  37. Banforuzi, S. R., & Hadjmohammadi, M. R. (2017). Two-phase hollow fiber-liquid microextraction based on reverse micelle for the determination of quercetin in human plasma and vegetables samples. Talanta, 173, 14–21.

    Article  Google Scholar 

  38. Burak, C., Brüll, V., Langguth, P., et al. (2017). Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dehydrate in humans. European Journal of Nutrition, 56, 343–353.

    Article  CAS  PubMed  Google Scholar 

  39. Lara-Guzmán, O. J., Álvarez-Quintero, R., Osorio, E., et al. (2016). GC/MS method to quantify bioavailable phenolic compounds and antioxidant capacity determination of plasma after acute coffee consumption in human volunteers. Food Research International, 89, 219–226.

    Article  PubMed  Google Scholar 

  40. Baranowska, I., Magiera, S., & Baranowski, J. (2011). UHPLC method for the simultaneous determination of β-blockers, isoflavones and their metabolites in human urine. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 615–626.

    Article  CAS  PubMed  Google Scholar 

  41. Achaintre, D., Gicquiau, A., Li, L., et al. (2018). Quantification of 38 dietary polyphenols in plasma by differential isotope labelling and liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Chromatography. A, 1558, 50–58.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Q., Zhang, Y., Zhang, Z., & Lu, Z. (2009). Sensitive determination of kaempferol in rat plasma by high-performance liquid chromatography with chemiluminescence detection and application to a pharmacokinetic study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877, 3595–3600.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, J., & Han, S. (2013). Capillary electrophoresis chemiluminescence for the analysis of flavonoids in pharmaceuticals and human plasma. Chromatographia, 76, 715–718.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edyta Nalewajko-Sieliwoniuk .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nalewajko-Sieliwoniuk, E. (2022). Determination of Plant Phenolic Compounds in Biological Samples. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics