Skip to main content

Numerical Optimization of the Galactomannan Sulfation Process with a Sulfamic Acid-Urea Complex

  • Conference paper
  • First Online:
Software Engineering Perspectives in Intelligent Systems (CoMeSySo 2020)

Abstract

The process of sulfation of galactomannan of herbaceous plants with complex of sulfamic acid and urea, was optimized. The influence of varying factors was established - the ratio of sulfamic acid: urea (SAA: U), the ratio of galactomannan: sulfating complex (GM: SC) and the duration of the process on the degree of substitution in the obtained galactomannan sulfate. The data of analysis of variance for the obtained mathematical models indicate good prognostic properties. The optimal conditions for galactomannan sulfation, which provide water-soluble sulfated galactomannan with a high (0.89) degree of substitution, have been established. The optimal conditions for the process of sulfation of galactomannan of herbaceous plants amount of urea (mol) per 1 mol of SAA – 2.26 mol, amount of SC (mol) per 1 mol of GM – 3.9 mol and process time – 118 min. Sulfated galactomannan of herbaceous plants can be used as a substitute for animal-derived anticoagulant heparin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gopinath, V., Saravanan, S., Al-Maleki, A.R., Ramesh, M., Vadivelu, J.: A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen. Biomed. Pharmacother. 107, 96–108 (2018)

    Article  Google Scholar 

  2. Xiong, Y., Qu, X., Liu C., Bentley, W.E., Shi, X.-W., Payne, G.F.: Polysaccharide-based smart materials. In: Chemoresponsive Materials: Stimulation by Chemical and Biological Signals, pp. 208–241. The Royal Society of Chemistry (2015)

    Google Scholar 

  3. Liu, Y., Sun, Y., Huang, G.: Preparation and antioxidant activities of important traditional plant polysaccharides. Int. J. Biol. Macromol. 111, 780–786 (2018)

    Article  Google Scholar 

  4. Yu, Y., Shen, M., Song, Q., Xie, J.: Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohyd. Polym. 183, 91–101 (2018)

    Article  Google Scholar 

  5. Parikka, M.: Global biomass fuel resources. Biomass Bioenergy 27(6), 613–620 (2004)

    Article  Google Scholar 

  6. Liu, J., Willför, S., Xu, C.: A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Diet. Fibre 5(1), 31–61 (2015)

    Article  Google Scholar 

  7. Gracher, A.H.P., Santana, A.G., Cipriani, T.R., Lacomini, M.: A procoagulant chemically sulfated mannan. Carbohyd. Polym. 136, 177–186 (2015)

    Article  Google Scholar 

  8. Reis, R.L., Neves, N.M., Mano, J.F., Gomes, M.E., Marques, A.P., Azevedo, H.S.: Natural-Based Polymers for Biomedical Applications. Elsevier, Lisboa (2008). 832 p.

    Book  Google Scholar 

  9. Goun, E.A., Petrichenko, V.M., Solodnikov, S.U., Suhinina, T.V.: Anti-cancer and anti-thrombin activity of Russian plants. J. Ethnopharmacol. 81, 337–342 (2002)

    Article  Google Scholar 

  10. Silveira, J.L.M., Bresolin, T.M.B.: Pharmaceutical use of galactomannans. Quim. Nova 34(2), 292–299 (2011)

    Article  Google Scholar 

  11. Filatova, A.V., Azimova, L.B., Turaev, A.S.: Study of the process of gelation of galactomannan from the seeds of Styphnolobium japonicum (Fabaceae). Chem. Plant Raw Mater. 1, 33–39 (2020)

    Article  Google Scholar 

  12. Mercier, T., Guldentops, E., Lagrou, K., Maertens, J.: Galactomannan, a surrogate marker for outcome in invasive aspergillosis: finally coming of age. Front. Microbiol. 9, 661 (2018)

    Article  Google Scholar 

  13. Perera, N., Yang, F.L., Chang, C.M., Lu, Y.T., Zhan, S.H., Tsai, Y.T., Hsieh, J.F., Li, L.H., Hua, K.F., Wu, S.H.: Galactomannan from antrodia cinnamomea enhances the phagocytic activity of macrophages. Org. Lett. 19(13), 3486–3489 (2017)

    Article  Google Scholar 

  14. Tolstenkov, A.C., Drozd, H.H., Lapikova, E.U., Makarov, V.A., Mestechkina, N.M., Bannikova, G.E., Ilyina, A.B., Varlamov, V.P.: Effect of galactomannan from seeds of Cyamopsis Tetragonoloba (L.) taub on anticoagulant activity of rat plasma with intravenous administration. Clin. Hematol. Hemorheol. Cardiovasc. Surg. 7, 242–243 (2007)

    Google Scholar 

  15. Mestechkina, N.M., Dovletmuradov, K., Scherbukhin, V.D.: Galactomannan common licorice seeds (Glyzyrrhizaglabra). Appl. Biochem. Microbiol. 27(3), 435–441 (1991)

    Google Scholar 

  16. Krishtanova, N.A., Safonova, M.J., Bolotova, V.Ts.: Prospects for the use of plant polysaccharides as therapeutic and therapeutic agents. Proc. Voronezh St Univ. Ser. Chem. Biol. Pharm. 1, 212–221 (2005). (in Russian)

    Google Scholar 

  17. Mestechkina, N.M., Anulov, O.V., Scherbukhin, V.D.: Study of galactomannan seed Amorphafruticosa L. Appl. Biochem. Microbiol. 34(5), 549–552 (1998)

    Google Scholar 

  18. Caputo, H.E., Strau, J.E., Grinstaff, M.W.: Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem. Soc. Rev. 48, 2338–2365 (2019)

    Article  Google Scholar 

  19. Vasilyeva, N.Y., Levdanskiy, A.V., Kazachenko, A.S., Djakovich, L., Pinel, K., Kuznetsov, B.N.: Sulfation of mechanoactivated arabinogalactan with sulfuric anhydride–pyridine complex in pyridine medium. J. Sib. Fed. Univ. Chem. 6(2), 158–169 (2013)

    Google Scholar 

  20. Mestechkina, N.M., Egorov, A.V., Shcherbukhin, V.D.: Synthesis of galactomannan sulfates. Appl. Biochem. Microbiol. 42, 326 (2006)

    Article  Google Scholar 

  21. Wang, X., Wang, J., Zhang, J., Zhao, B., Yao, J., Wang, Y.: Structure-antioxidant relationships of sulfated galactomannan from guar gum. Int. J. Biol. Macromol. 46(1), 59–66 (2009)

    Article  Google Scholar 

  22. Zhang, Z., Wang, H., Chen, T., Zhang, H., Liang, J., Kong, W., Yao, J., Zhang, J., Wang, J.: Synthesis and structure characterization of sulfated galactomannan from fenugreek gum. Int. J. Biol. Macromol. 125, 1184–1191 (2019)

    Article  Google Scholar 

  23. Sirviö, J.A., Ukkola, J., Liimatainen, H.: Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose 26(4), 2303–2316 (2019)

    Article  Google Scholar 

  24. Akman, F., Kazachenko, A.S., Vasilyeva, N.Y., Malyar, Y.N.: Synthesis and characterization of starch sulfates obtained by the sulfamic acid-urea complex. J. Mol. Struct. 1208, 127899 (2020)

    Article  Google Scholar 

  25. Wang, J., Zhao, B., Wang, X., Yao, J., Zhang, J.: Structure and antioxidant activities of sulfated guar gum: homogeneous reaction using DMAP/DCC catalyst. Int. J. Biol. Macromol. 50(5), 1201–1206 (2012)

    Article  Google Scholar 

  26. Kazachenko, A.S., Vasilyeva, N.Y., Sudakova, I.G., Levdansky, V.A., Lutoshkin, M.A., Kuznetsov, B.N.: Numerical optimization of the process of abies ethanol lignin sulfation with sulfamic acid in 1,4-dioxane medium in the presence of urea. J. Sib. Fed. Univ. Chem. 13(2), 232–246 (2020)

    Article  Google Scholar 

  27. Pen, R.Z.: Planning an experiment at Statgraphics Centurion. SibSTU, Krasnoyarsk (2014). 293

    Google Scholar 

  28. Vasilyeva, N.Y., Levdansky, A.V., Kuznetsov, B.N., Skvortsova, G.P., Kazachenko, A.S., Djakovitch, L., Pinel, C.: Sulfation of arabinogalactan by sulfamic acid in dioxane. Russ. J. Bioorg. Chem. 41(7), 725–731 (2015)

    Article  Google Scholar 

  29. Al-Horani, R.A., Desai, U.R.: Chemical sulfation of small molecules—advances and challenges. Tetrahedron 66(16), 2907–2918 (2010)

    Article  Google Scholar 

  30. Spillane, W., Malaubier, J.B.: Sulfamic acid and its N- and O-substituted derivatives. Chem. Rev. 114(4), 2507–2586 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR, project number 20-33-70256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr S. Kazachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazachenko, A.S., Vasilyeva, N.Y., Malyar, Y.N. (2020). Numerical Optimization of the Galactomannan Sulfation Process with a Sulfamic Acid-Urea Complex. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-63319-6_52

Download citation

Publish with us

Policies and ethics