Skip to main content

Nanoparticle Decoration of Nanocellulose for Improved Performance

  • Living reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Cellulose, one of the most widely used polymeric materials, contains β-1,4-linked glucopyranose units with each glucopyranose unit having three hydroxyl groups. The hydroxyl groups confer high hydrophilicity and biodegradability to cellulose and their ability to form strong hydrogen bonds provides cellulose with high strength and insolubility in water and usual solvents. Nanocellulose is either isolated from plants or synthesized by bacteria and possess unique properties of high strength, low density, high crystallinity along with biodegradability and biocompatibility. Nanocellulose does not have some features of electrical, magnetic, and antibacterial properties that limit its utility in some biomedical applications. This is overcome by decorating nanocellulose with nanoparticles depending on the desired end-use of the system. Metal oxide nanoparticles decoration confers special optical, electronic, magnetic, and antibacterial properties to the system and have been developed with appealing outcomes. Nanocellulose/metal oxides hybrids demonstrate significant antibacterial, magnetic, sensing properties, improved absorption as required in packaging, wound healing, magnetic resonance imaging, drug delivery, bioseparation, and water purification applications. This review is an effort to highlight the applications of nanoparticle decorated nanocellulose for improved performance across diverse utility sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ag:

Silver

AgNPs:

Silver nanoparticles

Al:

Aluminum

Al2O3:

Aluminium oxide

Al2O3:

Aluminum oxide

Au:

Gold

BB:

Bambusa bamboos

BC:

Bacterial cellulose

BCF:

Bacterial cellulose fibrils

BCM:

Bacterial cellulose membranes

BCP:

Bacterial cellulose pellicle

BNC:

Bacterial nanocellulose

C.F:

Citrobacter freundii

CA:

Cellulose acetate

CBNs:

Carbon-based nanoparticles

Cd:

Cadmium

CeO2:

Cerium oxide

CNCs:

Cellulose nanocrystals

CNF:

Cellulose nanofibrils

CNFs:

Cellulose nanofibers

CNFs:

Cellulose nanofibrils

CNT:

Carbon nanotubes

Co:

Cobalt

Cu:

Copper

CV:

Cyclic voltammetry

DAPT:

4,6-diamino-2-pyrimidinethiol

DH:

Dendrocalamus hamiltonii

DI:

deionized

E. coli :

Escherichia coli

ECHs:

Electro conductive hydrogel

EDS:

Energy dispersive spectroscopy

Fe:

Iron

Fe2O3:

Iron oxide

FO:

Forward osmosis

FTIR:

Fourier Transform Infrared Spectroscopy

GCD:

Galvanostatic charge/discharge

GO:

Graphene oxide

HA:

Hydroxyapatite

HAF:

Human fibroblast

hMSCs:

Human mesenchymal stem cells

HRTEM:

High-resolution transmission electron microscopy

HUVEC:

Human umbilical vascular endothelial

LBNPs:

Lipid-based nanoparticles

LIB:

Li-on batteries

LSPR:

Localized surface plasmon resonance

LVP:

Lithium vanadium phosphate

LVP:

Lithium vanadium phosphates

MFC:

Micro-fibrillated cellulose

MO:

Methylene orange

NaOH:

Sodium hydroxide

NC:

Nanocellulose

NCC:

Nanocrystalline cellulose

NFC:

Nano-fibrillated cellulose

NPs:

Nanoparticles

nZnO:

Nano zinc oxide

ONC:

Oxidized nanocellulose

PANI:

Polyaniline

Pb:

Lead

Pd:

palladium

PE:

Polyester

PHBV:

Poly 3-hydroxybutyrate-co-3-hydroxyvalerate

PPy:

Polypyrrole

PSF:

Polysulfone

Pt:

platinum

PVA:

Polyvinyl alcohol

RGO:

Reduced graphene oxide

S.E:

Staphylococcus epidermis

SEM:

Scanning electron microscope

SiO2:

Silica oxide

SiO2:

Silicon dioxide

TEA:

Triethanolamine

TEM:

Transmission electron microscopy

TEMPO:

Tetramethylpiperidine-1-oxyl

TGA:

Thermogravimetric analysis

TGF-β1:

Transforming growth factor beta-1

TiO2:

Titanium oxide

TOBC:

Tempo-oxidized bacterial cellulose

TOC:

Total organic count

TOCNFs:

Cellulose nanofibers

TPP:

Sodium tripolyphosphate

XPS:

X-ray Photoelectron Spectroscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

Zn:

Zinc

ZnO:

Zinc oxide

ZrO2:

Zirconia

References

  1. Souza, E., Gottschalk, L., Freitas-Silva, O.: Overview of nanocellulose in food packaging. Recent Pat. Food Nutr. Agric. 11, 154–167 (2019)

    Article  Google Scholar 

  2. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. (2011)

    Google Scholar 

  3. Fu, L., Zhou, P., Zhang, S., Yang, G.: Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater. Sci. Eng. C. 33, 2995–3000 (2013). https://doi.org/10.1016/j.msec.2013.03.026

    Article  CAS  Google Scholar 

  4. Hao, W., Wang, M., Zhou, F., Luo, H., Xie, X., Luo, F., et al.: A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydr. Polym. 243, 116466 (2020). https://doi.org/10.1016/j.carbpol.2020.116466

    Article  CAS  PubMed  Google Scholar 

  5. Khan, I., Saeed, K., Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  6. Talapin, D.V., Shevchenko, E.V.: Introduction: nanoparticle chemistry. Chem. Rev. 116, 10343–10345 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Oun, A.A., Shankar, S., Rhim, J.W.: Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit. Rev. Food Sci. Nutr. 60, 435–460 (2020). https://doi.org/10.1080/10408398.2018.1536966

    Article  CAS  PubMed  Google Scholar 

  8. Nyström, G., Marais, A., Karabulut, E., Wågberg, L., Cui, Y., Hamedi, M.M.: Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat. Commun. 6, 1–8 (2015)

    Article  Google Scholar 

  9. Dias, O.A.T., Konar, S., Leão, A.L., Yang, W., Tjong, J., Sain, M.: Current state of applications of nanocellulose in flexible energy and electronic devices. Front. Chem. 8 (2020)

    Google Scholar 

  10. Vijayakumar, V., Samal, S.K., Mohanty, S., Nayak, S.K.: Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol. 122, 137–148 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.120

    Article  CAS  PubMed  Google Scholar 

  11. Ning, R., Takeuchi, M., Lin, J.M., Saito, T., Isogai, A.: Influence of the morphology of zinc oxide nanoparticles on the properties of zinc oxide/nanocellulose composite films. React. Funct. Polym. 131, 293–298 (2018). https://doi.org/10.1016/j.reactfunctpolym.2018.08.005

    Article  CAS  Google Scholar 

  12. Tshikovhi, A., Mishra, S.B., Mishra, A.K.: Nanocellulose-based composites for the removal of contaminants from wastewater. Int. J. Biol. Macromol. 152, 616–632 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.221

    Article  CAS  PubMed  Google Scholar 

  13. Applications, B., Oprea, M.: Nanocellulose hybrids with metal oxides. Molecules, 4–6 (2020)

    Google Scholar 

  14. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., et al.: Nanocellulose: from fundamentals to advanced applications. Front, Chem (2020)

    Google Scholar 

  15. Stark, W.J.: Nanoparticles in biological systems. Angew Chem. Int. Ed. 50, 1242–1258 (2011)

    Article  CAS  Google Scholar 

  16. Ealias, A.M., Saravanakumar, M.P.: A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 263 (2017)

    Google Scholar 

  17. Gandhi, K.J., Deshmane, S.V., Biyani, K.R.: Polymers in pharmaceutical drug delivery system: a review. Int. J. Pharm. Sci. Rev. Res. 14, 57–66 (2012)

    CAS  Google Scholar 

  18. Zielinska, A., Carreiró, F., Oliveira, A.M., Neves, A., Pires, B., Nagasamy Venkatesh, D., et al.: Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 25 (2020)

    Google Scholar 

  19. Rao, J.P., Geckeler, K.E.: Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36, 887–913 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.001

    Article  CAS  Google Scholar 

  20. Moreno-Vega, A.I., Gómez-Quintero, T., Nuñez-Anita, R.E., Acosta-Torres, L.S., Castaño, V.: Polymeric and ceramic nanoparticles in biomedical applications. J. Nanotechnol. 2012 (2012)

    Google Scholar 

  21. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59, 302–325 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  22. Bhatia, S.: Natural Polymer Drug Delivery Systems Nanoparticles: Nanoparticles, Mammals and Microbes. Springer (2016)

    Book  Google Scholar 

  23. Ghaffari, M., Dolatabadi, J.E.N.: Nanotechnology for pharmaceuticals. Ind. Appl. Nanomater. (2019). https://doi.org/10.1016/B978-0-12-815749-7.00017-7

  24. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013). https://doi.org/10.1016/j.addr.2012.09.037

    Article  CAS  PubMed  Google Scholar 

  25. Alkilany, A.M., Huang, X., CJE-S, M.: The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–0 (2012)

    Google Scholar 

  26. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., et al.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nanoscale C, Das R, Pachfule P, Banerjee R, Poddar P. Nanoscale Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides †. 591–9 (2012)

    Google Scholar 

  28. Sigmund, W., Yuh, J., Park, H., Maneeratana, V., Pyrgiotakis, G., Daga, A., et al.: Processing and structure relationships in electrospinning of ceramic fiber systems. J. Am. Ceram. Soc. 89, 395–407 (2006)

    Article  CAS  Google Scholar 

  29. Fadeel, B., Garcia-Bennett, A.E.: Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010). https://doi.org/10.1016/j.addr.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  30. Lim, D.J., Sim, M., Oh, L., Lim, K., Park, H.: Carbon-based drug delivery carriers for cancer therapy. Arch. Pharm. Res. 37, 43–52 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. Cha, C., Shin, S.R., Annabi, N., Dokmeci, M.R.: Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano. 7, 2891–2897 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, Y., Yang, P., Yang, F., Chang, C.: Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. J. Memb. Sci. 635, 119537 (2021). https://doi.org/10.1016/j.memsci.2021.119537

    Article  CAS  Google Scholar 

  33. Lazić, V., Vivod, V., Peršin, Z., Stoiljković, M., Ratnayake, I.S., Ahrenkiel, P.S., et al.: Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging. Food Packag. Shelf Life. 26 (2020)

    Google Scholar 

  34. Abdalkarim, S.Y.H., Chen, L.M., Yu, H.Y., Li, F., Chen, X., Zhou, Y., et al.: Versatile nanocellulose-based nanohybrids: a promising-new class for active packaging applications. Int. J. Biol. Macromol. 182, 1915–1930 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.169

    Article  CAS  PubMed  Google Scholar 

  35. Adel, A. M., Al-Shemy, M. T., Diab, M. A., El-Sakhawy, M., Toro, R. G., Montanari, R., et al.: Fabrication of packaging paper sheets decorated with alginate/oxidized nanocellulose‑silver nanoparticles bio-nanocomposite. International Journal of Biological Macromolecules, 181, 612–620. (2021). https://doi.org/10.1016/j.ijbiomac.2021.03.18

  36. Amiralian, N., Mustapic, M., Hossain, M.S.A., Wang, C., Konarova, M., Tang, J., et al.: Magnetic nanocellulose: a potential material for removal of dye from water. J. Hazard. Mater. 394, 122571 (2020). https://doi.org/10.1016/j.jhazmat.2020.122571

    Article  CAS  PubMed  Google Scholar 

  37. Hou, M., Xu, M., Hu, Y., Li, B.: Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim. Acta. 313, 245–254 (2019). https://doi.org/10.1016/j.electacta.2019.05.037

    Article  CAS  Google Scholar 

  38. Lehtonen, J., Hassinen, J., Honkanen, R., Kumar, A.A., Viskari, H., Kettunen, A., et al.: Effects of chloride concentration on the water disinfection performance of silver containing nanocellulose-based composites. Sci. Rep. 9, 1–10 (2019)

    Article  Google Scholar 

  39. Jessen, B.A., Lee, L., Koudriakova, T., Haines, M., Lundgren, K., Price, S., et al.: Peripheral white blood cell toxicity induced by broad spectrum cyclin-dependent kinase inhibitors. J. Appl. Toxicol. 27, 133–142 (2007) http://doi.wiley.com/10.1002/jat.1177

    Article  CAS  PubMed  Google Scholar 

  40. Luo, Z., Liu, J., Lin, H., Ren, X., Tian, H., Liang, Y., et al.: In situ fabrication of nano zno/bcm biocomposite based on ma modified bacterial cellulose membrane for antibacterial and wound healing. Int. J. Nanomedicine. 15, 1–15 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pal, S., Nisi, R., Stoppa, M., Licciulli, A.: Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega. 2, 3632–3639 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, X., Zhan, X., Wen, C., Xu, F., Luo, L.: Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution. J. Mater. Sci. Technol. 34, 855–863 (2018). https://doi.org/10.1016/j.jmst.2017.03.013. The editorial office of Journal of Materials Science & Technology

    Article  CAS  Google Scholar 

  43. Jiang, Y., Zhao, Y., Feng, X., Fang, J., Shi, L.: TEMPO-mediated oxidized nanocellulose incorporating with its derivatives of carbon dots for luminescent hybrid films. RSC Adv. 6, 6504–6510 (2016)

    Article  CAS  Google Scholar 

  44. Kuzmenko, V., Karabulut, E., Pernevik, E., Enoksson, P., Gatenholm, P.: Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr. Polym. 189, 22–30 (2018). https://doi.org/10.1016/j.carbpol.2018.01.097

    Article  CAS  PubMed  Google Scholar 

  45. Thomas, P., Duolikun, T., Rumjit, N.P., Moosavi, S., Lai, C.W., Bin Johan, M.R., et al.: Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J. Mech. Behav. Biomed. Mater. 110, 103884 (2020). https://doi.org/10.1016/j.jmbbm.2020.103884

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, Q., Cai, Z., Ma, Z., Gong, S.: Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces. 7, 3263–3271 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. Wang, H., Biswas, S.K., Zhu, S., Lu, Y., Yue, Y., Han, J., et al.: Self-healable electro-conductive hydrogels based on core-shell structured nanocellulose/carbon nanotubes hybrids for use as flexible supercapacitors. Nano. 10, 1–21 (2020)

    Google Scholar 

  48. Zhang, C., Jiang, Q., Liu, A., Wu, K., Yang, Y., Lu, J., et al.: The bead-like Li3V2(PO4)3/NC nanofibers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydr. Polym. 237, 116134 (2020). https://doi.org/10.1016/j.carbpol.2020.116134

    Article  CAS  PubMed  Google Scholar 

  49. Orsted, H.L., keast, D., Forest-Lalande, L., RN MFMM: Basic principles of wound healing. Wound Care Canada. 9, 395–402 (2008)

    Google Scholar 

  50. Robert S. Kirsner; William H. Eagleastin. The wound healing process (1993)

    Google Scholar 

  51. Christine Theoret, D.M.V., PhD, D.A.: Physiology of wound healing. Equine Wound Manag. 99, 792–793 (2017)

    Google Scholar 

  52. Franchini, A.: Immunity and wound healing: regeneration or repair? In: Lessons in Immunity. From Single-Cell Organism to Mammals (2016). https://doi.org/10.1016/B978-0-12-803252-7.00020-5

    Chapter  Google Scholar 

  53. Jalili Tabaii, M., Emtiazi, G.: Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J. Drug Deliv. Sci. Technol. 44, 244–253 (2018). https://doi.org/10.1016/j.jddst.2017.12.019

    Article  CAS  Google Scholar 

  54. Wu, C.N., Fuh, S.C., Lin, S.P., Lin, Y.Y., Chen, H.Y., Liu, J.M., et al.: TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules. 19, 544–554 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. Drogat, N., Granet, R., Sol, V., Memmi, A., Saad, N., Klein Koerkamp, C., et al.: Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J. Nanopart. Res. 13, 1557–1562 (2011)

    Article  CAS  Google Scholar 

  56. Barud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y., Ribeiro, S.J.L.: Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J. Nanomater. 2011 (2011)

    Google Scholar 

  57. Ma, B., Huang, Y., Zhu, C., Chen, C., Chen, X., Fan, M., et al.: Novel cu@SiO2/bacterial cellulose nanofibers: preparation and excellent performance in antibacterial activity. Mater. Sci. Eng. C. 62, 656–661 (2016)

    Article  CAS  Google Scholar 

  58. Patwa, R., Zandraa, O., Capáková, Z., Saha, N., Sáha, P.: Effect of iron-oxide nanoparticles impregnated bacterial cellulose on overall properties of alginate/casein hydrogels: potential injectable biomaterial for wound healing applications. Polymers (Basel). 12, 1–21 (2020)

    Article  Google Scholar 

  59. Singla, R., Soni, S., Kulurkar, P.M., Kumari, A., Mahesh, S., Patial, V., et al.: In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr. Polym. 155, 152–162 (2017). https://doi.org/10.1016/j.carbpol.2016.08.065

    Article  CAS  PubMed  Google Scholar 

  60. Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., et al.: In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 102, 762–771 (2014). https://doi.org/10.1016/j.carbpol.2013.10.093

    Article  CAS  PubMed  Google Scholar 

  61. Moniri, M., Moghaddam, A.B., Azizi, S., Rahim, R.A., Zuhainis, S.W., Navaderi, M., et al.: In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/ silver nanocomposite assisted by bioinformatics databases. Int. J. Nanomedicine. 13, 5097–5112 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin, J.U., Gwon, J., Lee, S.Y., Yoo, H.S.: Silver-incorporated Nanocellulose fibers for antibacterial hydrogels. ACS Omega. Am. Chem. Soc. 3, 16150–16157 (2018)

    Article  CAS  Google Scholar 

  63. Li, Y., Tian, Y., Zheng, W., Feng, Y., Huang, R., Shao, J., et al.: Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small. 13, 1–10 (2017)

    Google Scholar 

  64. Liu, X., Shen, H., Song, S., Chen, W., Zhang, Z.: Accelerated biomineralization of graphene oxide – incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloids Surf. B Biointerfaces. 159, 251–258 (2017). https://doi.org/10.1016/j.colsurfb.2017.07.078

    Article  CAS  PubMed  Google Scholar 

  65. Jin, L., Zeng, Z., Kuddannaya, S., Wu, D., Zhang, Y., Wang, Z.: Biocompatible, free-standing film composed of bacterial cellulose nanofibers-graphene composite. ACS Appl. Mater. Interfaces. 8, 1011–1018 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. Pedrotty, D.M., Kuzmenko, V., Karabulut, E., Sugrue, A.M., Livia, C., Vaidya, V.R., et al.: Three-dimensional printed biopatches with conductive ink facilitate cardiac conduction when applied to disrupted myocardium. Circ Arrhythmia Electrophysiol. 12, 1–11 (2019)

    Article  Google Scholar 

  67. Zhang, H., Yu, H.Y., Wang, C., Yao, J.: Effect of silver contents in cellulose nanocrystal/silver nanohybrids on PHBV crystallization and property improvements. Carbohydr. Polym. 173, 7–16 (2017). https://doi.org/10.1016/j.carbpol.2017.05.064

    Article  CAS  PubMed  Google Scholar 

  68. Yu, H., Sun, B., Zhang, D., Chen, G., Yang, X., Yao, J.: Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J. Mater. Chem. B. 2, 8479–8489 (2014). https://doi.org/10.1039/C4TB01372G

    Article  CAS  PubMed  Google Scholar 

  69. Li, F., Yu, H.Y., Wang, Y.Y., Zhou, Y., Zhang, H., Yao, J.M., et al.: Natural biodegradable poly(3-hydroxybutyrate- co-3-hydroxyvalerate) nanocomposites with multifunctional cellulose nanocrystals/graphene oxide hybrids for high-performance food packaging. J. Agric. Food Chem. 67, 10954–10967 (2019)

    Article  CAS  PubMed  Google Scholar 

  70. Pandele, A.M., Comanici, F.E., Carp, C.A., Miculescu, F., Voicu, S.I., Thakur, V.K., et al.: Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications. Vacuum. 146, 599–605 (2017)

    Article  CAS  Google Scholar 

  71. Cruz-Tato, P., Ortiz-Quiles, E.O., Vega-Figueroa, K., Santiago-Martoral, L., Flynn, M., Díaz-Vázquez, L.M., et al.: Metalized nanocellulose composites as a feasible material for membrane supports: design and Applications for water treatment. Environ. Sci. Technol. 51, 4585–4595 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. Xu, T., Jiang, Q., Ghim, D., Liu, K.K., Sun, H., Derami, H.G., et al.: Catalytically active bacterial nanocellulose-based ultrafiltration membrane. Small. 14, 1–8 (2018)

    Google Scholar 

  73. Bai, Q., Xiong, Q., Li, C., Shen, Y., Uyama, H.: Hierarchical porous cellulose/activated carbon composite monolith for efficient adsorption of dyes. Cellulose. 24, 4275–4289 (2017)

    Article  CAS  Google Scholar 

  74. Zhu, H., Jia, S., Wan, T., Jia, Y., Yang, H., Li, J., et al.: Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr. Polym. 86, 1558–1564 (2011). https://doi.org/10.1016/j.carbpol.2011.06.061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tabassum Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khan, T., Shaikh, J. (2022). Nanoparticle Decoration of Nanocellulose for Improved Performance. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-62976-2_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62976-2_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62976-2

  • Online ISBN: 978-3-030-62976-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics