Skip to main content

Optimal Task Placement for Energy Minimization in a Parallel Manipulator

  • Conference paper
  • First Online:
New Advances in Mechanisms, Mechanical Transmissions and Robotics (MTM&Robotics 2020)

Abstract

This paper presents the optimization of the task placement to achieve energy efficiency in a parallel manipulator. The proposed approach is based on the parametrization of the task whose position and orientation are varied within the workspace of the robot. The energy consumed by the actuators is considered as the cost function for the optimization problem and is computed on the basis of the dynamic and electro-mechanical models of the manipulator. The method is general and can be used as an off-line tool for the optimal placement of different tasks within the workspace of the parallel manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Merlet, J.P.: Parallel Robots, vol. 128. Springer, Cham (2006)

    MATH  Google Scholar 

  2. Mo, J., Shao, Z.F., Guan, L., Xie, F., Tang, X.: Dynamic performance analysis of the X4 high-speed pick-and-place parallel robot. Robot. Comput. Integr. Manuf. 46, 48–57 (2017)

    Article  Google Scholar 

  3. Vidoni, R., Boscariol, P., Gasparetto, A., Giovagnoni, M.: Kinematic and dynamic analysis of flexible-link parallel robots by means of an ERLS approach. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences, pp. 1449–1458. ASME Digital Collection (2012)

    Google Scholar 

  4. Tang, X.: An overview of the development for cable-driven parallel manipulator. Adv. Mech. Eng. 6, 823028 (2014)

    Article  Google Scholar 

  5. Scalera, L., Gasparetto, A., Zanotto, D.: Design and experimental validation of a 3-DOF underactuated pendulum-like robot. IEEE/ASME Trans. Mechatron. 25(1), 217–228 (2020)

    Article  Google Scholar 

  6. Carabin, G., Wehrle, E., Vidoni, R.: A review on energy-saving optimization methods for robotic and automatic systems. Robotics 6(4), 39 (2017)

    Article  Google Scholar 

  7. Chen, C.T., Liao, T.T.: A hybrid strategy for the time-and energy-efficient trajectory planning of parallel platform manipulators. Robot. Comput. Integr. Manuf. 27(1), 72–81 (2011)

    Article  Google Scholar 

  8. Khoukhi, A., Baron, L., Balazinski, M.: Constrained multi-objective trajectory planning of parallel kinematic machines. Robot. Comput. Integr. Manuf. 25(4–5), 756–769 (2009)

    Article  Google Scholar 

  9. Zhang, X., Ming, Z.: Trajectory planning and optimization for a Par4 parallel robot based on energy consumption. Appl. Sci. 9(13), 2770 (2019)

    Article  MathSciNet  Google Scholar 

  10. Scalera, L., Palomba, I., Wehrle, E., Gasparetto, A., Vidoni, R.: Natural motion for energy saving in robotic and mechatronic systems. Appl. Sci. 9(17), 3516 (2019)

    Article  Google Scholar 

  11. Barreto, J.P., Corves, B.: Resonant delta robot for pick-and-place operations. In: IFToMM World Congress on Mechanism and Machine Science, pp. 2309–2318. Springer (2019)

    Google Scholar 

  12. Scalera, L., Carabin, G., Vidoni, R., Wongratanaphisan, T.: Energy efficiency in a 4-DOF parallel robot featuring compliant elements. Int. J. Mech. Control 20(02) (2019)

    Google Scholar 

  13. Nelson, B., Donath, M.: Optimizing the location of assembly tasks in a manipulator’s workspace. J. Robot. Syst. 7(6), 791–811 (1990)

    Article  Google Scholar 

  14. Pamanes, G.J.A., Zeghloul, S.: Optimal placement of robotic manipulators using multiple kinematic criteria. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 933–938 (1991)

    Google Scholar 

  15. Feddema, J.T.: Kinematically optimal robot placement for minimum time coordinated motion. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3395–3400 (1996)

    Google Scholar 

  16. Aspragathos, N.A., Foussias, S.: Optimal location of a robot path when considering velocity performance. Robotica 20(2), 139–147 (2002)

    Article  Google Scholar 

  17. Kamrani, B., Berbyuk, V., Wäppling, D., Stickelmann, U., Feng, X.: Optimal robot placement using response surface method. Int. J. Adv. Manuf. Technol. 44(1–2), 201–210 (2009)

    Article  Google Scholar 

  18. Ur-Rehman, R., Caro, S., Chablat, D., Wenger, P.: Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: application to the Orthoglide. Mech. Mach. Theory 45, 1125–1141 (2010)

    Article  Google Scholar 

  19. Boschetti, G., Rosa, R., Trevisani, A.: Optimal robot positioning using task-dependent and direction-selective performance indexes: general definitions and application to a parallel robot. Robot. Comput. Integr. Manuf. 29, 431–443 (2013)

    Article  Google Scholar 

  20. Doan, N.C.N., Lin, W.: Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated robots. Robot. Comput. Integr. Manuf. 48, 233–242 (2017)

    Article  Google Scholar 

  21. Hassan, M., Liu, D., Paul, G.: Collaboration of multiple autonomous industrial robots through optimal base placements. J. Intell. Robot. Syst. 90(1–2), 113–132 (2018)

    Article  Google Scholar 

  22. Valsamos, C., Wolniakowski, A., Miatliuk, K., Moulianitis, V.C.: Optimal placement of a kinematic robotic task for the minimization of required joint velocities. Int. J. Mech. Control 20, 3–14 (2019)

    Google Scholar 

  23. Boscariol, P., Scalera, L., Gasparetto, A.: Task-dependent energetic analysis of a 3 DOF industrial manipulator. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 162–169. Springer, Cham (2019)

    Google Scholar 

  24. Scalera, L., Boscariol, P., Carabin, G., Vidoni, R., Gasparetto, A.: Enhancing energy efficiency of a 4-DOF parallel robot through task-related analysis. Machines 8(1), 10 (2020)

    Article  Google Scholar 

  25. Pierrot, F., Nabat, V., Company, O., Krut, S., Poignet, P.: Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Trans. Robot. 25, 213–224 (2009)

    Article  Google Scholar 

  26. Cook, C.C., Ho, C.Y.: The application of spline functions to trajectory generation for computer-controlled manipulators. In: Computing Techniques for Robots, pp. 101–110. Springer, Boston (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Scalera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scalera, L., Boscariol, P., Carabin, G., Vidoni, R., Gasparetto, A. (2021). Optimal Task Placement for Energy Minimization in a Parallel Manipulator. In: Lovasz, EC., Maniu, I., Doroftei, I., Ivanescu, M., Gruescu, CM. (eds) New Advances in Mechanisms, Mechanical Transmissions and Robotics . MTM&Robotics 2020. Mechanisms and Machine Science, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-60076-1_2

Download citation

Publish with us

Policies and ethics