Skip to main content

Evolving Concepts of “Hierarchy” in Systems Neuroscience

  • Chapter
  • First Online:
Neural Mechanisms

Part of the book series: Studies in Brain and Mind ((SIBM,volume 17))

Abstract

The notion of “hierarchy” is one of the most commonly posited organizational principles in systems neuroscience. To this date, however, it has received little philosophical analysis. This is unfortunate, because the general concept of hierarchy ranges over two approaches with distinct empirical commitments, and whose conceptual relations remain unclear. We call the first approach the “representational hierarchy” view, which posits that an anatomical hierarchy of feed forward, feed-back, and lateral connections underlies a signal processing hierarchy of input-output relations. Because the representational hierarchy view holds that unimodal sensory representations are subsequently elaborated into more categorical and rule-based ones, it is committed to an increasing degree of abstraction along the hierarchy. The second view, which we call “topological hierarchy,” is not committed to different representational functions or degrees of abstraction at different levels. Topological approaches instead posit that the hierarchical level of a part of the brain depends on how central it is to the pattern of connections in the system. Based on the current evidence, we argue that three conceptual relations between the two approaches are possible: topological hierarchies could substantiate the traditional representational hierarchy, conflict with it, or contribute to a plurality of approaches needed to understand the organization of the brain. By articulating each of these possibilities, our analysis attempts to open a conceptual space in which further neuroscientific and philosophical reasoning about neural hierarchy can proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Hilgetag and Goulas (2020) distinguish four instead of two senses of hierarchy. Although a detailed comparison of both taxonomies is beyond the scope of this chapter, we think that their definitions of hierarchy as laminar projection patterns and as spatial gradients of structural features share the commitments of what we call the “representational” notion of hierarchy (Sect. 6.4.2, Fig. 6.3). Similarly, we think that their definitions of hierarchy in terms of topological projection sequences and as multilevel modular networks share the commitments of what we call the “topological approach” (Sect. 6.3., Fig. 6.4).

  2. 2.

    While we focus on the influence notion of hierarchy, other network investigations employ a more compositional notion of hierarchy as well. For instance, researchers also talk of “hierarchy” if network structure is self-similar, e.g. when smaller modules are nested within larger modules (Hilgetag and Goulas 2020). While it may be interesting to analyze how such “encapsulation hierarchies” relate to compositional hierarchies in the mechanistic literature (Craver 2007, ch. 5), in the following we assume that systems neuroscientists studying encapsulation hierarchies are usually interested in its implications for neural signaling, i.e. on how influential a brain part is within the network (Müller-Linow et al. 2008; Sporns and Betzel 2016).

  3. 3.

    Note that there are methodological issues with identifying functional hubs based on degree alone. In Pearson correlation networks, degree is partially driven by the size and not only the amount of influence a subnetwork has. Thus, nodes in larger brain areas tend to be identified as hubs in because they are part of large physical entities (Power et al. 2013). Yet some areas consistently come out as hubs in functional connectivity studies using different measures, such as anterior and posterior cingulate gyrus of the DMN (van den Heuvel and Sporns 2013).

References

  • Avena-Koenigsberger, A., Misic, B., & Sporns, O. (2017). Communication dynamics in complex brain networks. Nature Reviews Neuroscience, 19(1), 17–33. https://doi.org/10.1038/nrn.2017.149.

    Article  Google Scholar 

  • Badre, D., Kayser, A. S., & D’Esposito, M. (2010). Frontal cortex and the discovery of abstract action rules. Neuron, 66(2), 315–326.

    Article  Google Scholar 

  • Barrett, H. C. (2014). The shape of thought: How mental adaptations evolve. Oxford: Oxford University Press.

    Google Scholar 

  • Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695–671.

    Article  Google Scholar 

  • Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. New York: Routledge.

    Google Scholar 

  • Breakspear, M., & Stam, C. J. (2005). Dynamics of a neural system with a multiscale architecture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1051–1074.

    Article  Google Scholar 

  • Burnston, D. C. (2016a). Computational neuroscience and localized neural function. Synthese, 193(12), 3741–3762.

    Article  Google Scholar 

  • Burnston, D. C. (2016b). A contextualist approach to functional localization in the brain. Biology and Philosophy, 31(4), 527–550.

    Article  Google Scholar 

  • Burnston, D. C. (2019). Getting over atomism: Functional decomposition in complex neural systems. British Journal for the Philosophy of Science. https://doi.org/10.1093/bjps/axz039.

  • Bursten, J. (2016). Smaller than a breadbox: Scale and natural kinds. British Journal for the Philosophy of Science, 69(1), 1–23.

    Article  Google Scholar 

  • Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515.

    Article  Google Scholar 

  • Canolty, R. T., Ganguly, K., Kennerley, S. W., Cadieu, C. F., Koepsell, K., Wallis, J. D., & Carmena, J. M. (2010). Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proceedings of the National Academy of Sciences, 107(40), 17356–17361.

    Article  Google Scholar 

  • Capalbo, M., Postma, E., & Goebel, R. (2008). Combining structural connectivity and response latencies to model the structure of the visual system. PLoS Computational Biology, 4(8), e1000159.

    Article  Google Scholar 

  • Craver, C. F. (2007). Explaining the brain. Mechanistic explanation and the mosaic unity of neuroscience. Oxford: Oxford University Press.

    Google Scholar 

  • da Costa, F. L., & Sporns, O. (2005). Hierarchical features of large-scale cortical connectivity. The European Physical Journal B, 48(4), 567–573.

    Article  Google Scholar 

  • De Domenico, M., Sasai, S., & Arenas, A. (2016). Mapping multiplex hubs in human functional brain networks. Frontiers in Neuroscience, 10, 326. https://doi.org/10.3389/fnins.2016.00326.

    Article  Google Scholar 

  • Deco, G., & Kringelbach, M. L. (2016). Metastability and coherence: Extending the communication through coherence hypothesis using a whole-brain computational perspective. Trends in Neurosciences, 39(3), 125–135. https://doi.org/10.1016/j.tins.2016.01.001.

    Article  Google Scholar 

  • Deco, G., & Kringelbach, M. L. (2017). Hierarchy of information representational in the brain: A novel ‘intrinsic ignition’ framework. Neuron, 94, 961–968.

    Article  Google Scholar 

  • Driver, J., & Spence, C. (2000). Multisensory perception: Beyond modularity and convergence. Current Biology, 10(20), R731–R735.

    Article  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical representational in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.

    Article  Google Scholar 

  • Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Science, 10(6), 278–285.

    Article  Google Scholar 

  • Goulas, A., Uylings, H. B. M., & Stiers, P. (2014). Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex. Cerebral Cortex, 24, 1178–1194.

    Article  Google Scholar 

  • Grafton, S. T., & de Hamilton, A. F. C. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.

    Article  Google Scholar 

  • Green, S., Şerban, M., Scholl, R., Jones, N., Brigandt, I., & Bechtel, W. (2017). Network analyses in systems biology: New strategies for dealing with biological complexity. Synthese, 195(4), 1751–1777.

    Article  Google Scholar 

  • Gross, C. G., Rocha-Miranda, C., & Bender, D. (1972). Visual properties of neurons in inferotemporal cortex of the Macaque. Journal of Neurophysiology, 35(1), 96–111.

    Article  Google Scholar 

  • Haggard, P. (2005). Conscious intention and motor cognition. Trends in Cognitive Sciences, 9(6), 290–295.

    Article  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159–e159. https://doi.org/10.1371/journal.pbio.0060159.

    Article  Google Scholar 

  • Haueis, P. (2012). The fuzzy brain: Vagueness and mapping connectivity in the human cerebral cortex. Frontiers in Neuroanatomy, 6(37). https://doi.org/10.3389/fnana.2012.00037.

  • Haueis, P. (2018). Beyond cognitive myopia: A patchwork approach to the concept of neural function. Synthese, 195(12), 5373–5402. https://doi.org/10.1007/s11229-018-01991-z.

    Article  Google Scholar 

  • Hegdé, J., & Van Essen, D. C. (2007). A comparative study of shape representation in macaque visual areas V2 and V4. Cerebral Cortex, 17(5), 1100–1116. https://doi.org/10.1093/cercor/bhl020.

    Article  Google Scholar 

  • Hilgetag, C. C., & Goulas, A. (2020). ‘Hierarchy’ in the organization of brain networks. Philosophical Transactions of the Royal Society B, 375, 20190319. https://doi.org/10.1098/rstb.2019.0319.

    Article  Google Scholar 

  • Hilgetag, C. C., O’Neill, M., & Young, M. P. (1996). Indeterminate organization of the visual system. Science, 271(5250), 776–777.

    Article  Google Scholar 

  • Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10240–10245.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106.

    Article  Google Scholar 

  • Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177, 213–245.

    Article  Google Scholar 

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.

    Article  Google Scholar 

  • Kostić, D. (2016). The topological realization. Synthese, 195(1), 79–98. https://doi.org/10.1007/s11229-016-1248-0.

    Article  Google Scholar 

  • Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17(1), 26–49.

    Article  Google Scholar 

  • Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus representational in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911.

    Article  Google Scholar 

  • Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent representational. Trends in Neurosciences, 23(11), 571–579.

    Article  Google Scholar 

  • Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewiz, M., Huntenburg, J. M., Langs, M., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., Petrides, M., Jefferies, E., & Smallwood, J. (2016). Situating the default mode network along a gradient of macroscale cortical organization. PNAS, 113(44), 12574–12579.

    Article  Google Scholar 

  • Mesulam, M. (1998). From sensation to cognition. Brain, 121(6), 1013–1052.

    Article  Google Scholar 

  • Meunier, D., Lambiotte, R., & Bullmore, E. T. (2009). Hierarchical modularity in human brain functional networks. Frontiers in Neuroinformatics, 3(37). https://doi.org/10.3389/neuro.11.037.2009.

  • Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200–200.

    Article  Google Scholar 

  • Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architecture for recognition and memory. Trends in Neurosciences, 32(7), 376–382.

    Article  Google Scholar 

  • Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology, 100(3), 1407–1419.

    Article  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Article  Google Scholar 

  • Müller-Linow, M., Hilgetag, C. C., & Hütt, M.-T. (2008). Organization of excitable dynamics in hierarchical biological networks. PLoS One, 4(9), e1000190. https://doi.org/10.1371/journal.pcbi.1000190.

    Article  Google Scholar 

  • Murray, J. D., Jaramillo, J., & Wang, X. J. (2017). Working memory and decision-making in a frontoparietal circuit model. The Journal of Neuroscience, 37(50), 12167–12186.

    Article  Google Scholar 

  • Novick, A. (2018). The fine structure of ‘homology’. Biology and Philosophy, 33(6). https://doi.org/10.1007/s10539-018-9617-3.

  • Orlandi, N. (2010). Are sensory properties represented in perceptual experience? Philosophical Psychology, 23(6), 721–740.

    Article  Google Scholar 

  • Passingham, R. E., Stephan, K. E., & Kötter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3(8), 606–616.

    Article  Google Scholar 

  • Power, J., Schlaggar, B. L., Lessov-Shlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79(4), 798–813.

    Article  Google Scholar 

  • Pylyshyn, Z. W. (2007). Things and places: How the mind connects with the world. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Rathkopf, C. (2018). Network representation and complex systems. Synthese, 195(1), 55–78. https://doi.org/10.1007/s11229-015-0726-0.

    Article  Google Scholar 

  • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.

    Article  Google Scholar 

  • Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., & Fusi, S. (2013). The importance of mixed selectivity in complex cognitive tasks. Nature, 497(7451), 585–590.

    Article  Google Scholar 

  • Roe, A. W., Chelazzi, L., Connor, C. E., Conway, B. R., Fujita, I., Gallant, J. L., et al. (2012). Toward a unified theory of visual area V4. Neuron, 74(1), 12–29.

    Article  Google Scholar 

  • Savic, I., Gulyas, B., Larsson, M., & Roland, P. (2000). Olfactory functions are mediated by parallel and hierarchical representational. Neuron, 26(3), 735–745.

    Article  Google Scholar 

  • Schiller, P. (1993). The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Visual Neuroscience, 10(4), 717–746.

    Article  Google Scholar 

  • Schölvinck, M. L., Leopold, D. A., Brookes, M. J., & Khader, P. H. (2013). The contribution of electrophysiology to functional connectivity mapping. NeuroImage, 80, 297–306.

    Article  Google Scholar 

  • Senden, M., Deco, G., de Reus, M. A., Goebel, R., & van den Heuvel, M. P. (2014). Rich club organization supports a diverse set of functional network configurations. NeuroImage, 96, 174–182.

    Article  Google Scholar 

  • Senden, M., Reuter, M., van den Heuvel, M. P., Goebel, R., & Deco, G. (2017a). Rich club regions can organize state-dependent functional network organization by engaging in oscillatory behavior. NeuroImage, 146, 561–574.

    Article  Google Scholar 

  • Senden, M., Reuter, M., van den Heuvel, M. P., Goebel, R., Deco, G., & Gilson, M. (2017b). Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication. Human Brain Mapping., 39(3), 1246–1262.

    Article  Google Scholar 

  • Sennet, A. (2016). Polysemy. Oxford Handbooks Online. https://doi.org/10.1093/oxfordhb/9780199935314.013.3

  • Shine, J. M., & Poldrack, R. A. (2017). Principles of dynamic network reconfiguration across diverse brain states. NeuroImage, 180(B), 396–405. https://doi.org/10.1016/j.neuroimage.2017.08.010.

    Article  Google Scholar 

  • Silberstein, M., & Chemero, A. (2013). Constraints on localization and decomposition as explanatory strategies in the biological sciences. Philosophy of Science, 80(5), 958–970.

    Article  Google Scholar 

  • Sporns, O. (2011). Networks of the brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sporns, O., & Betzel, R. (2016). Modular brain networks. Annual Review of Psychology, 4(67), 613–640.

    Article  Google Scholar 

  • Sporns, O., Honey, C. J., & Kötter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2(10), e1049–e1049.

    Article  Google Scholar 

  • Stanley, M. L., Gessell, B., & De Brigard, F. (2019). Network modularity as a foundation for neural reuse. Philosophy of Science, 86(1), 23–46.

    Article  Google Scholar 

  • Uithol, S., Burnston, D. C., & Haselager, P. (2014). Why we may not find intentions in the brain. Neuropsychologia, 56, 129–139. https://doi.org/10.1016/j.neuropsychologia.2014.01.010.

    Article  Google Scholar 

  • Ullman, S. (2007). Object recognition and segmentation by a fragment-based hierarchy. Trends in Cognitive Science, 11(2), 58–64. https://doi.org/10.1016/j.tics.2006.11.009.

    Article  Google Scholar 

  • van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 15775–15786. https://doi.org/10.1523/JNEUROSCI.3539-11.2011.

    Article  Google Scholar 

  • van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cogntive Science, 17(12), 683–696.

    Article  Google Scholar 

  • Vetter, P., & Newen, A. (2014). Varieties of cognitive penetration in visual perception. Consciousness and Cognition, 27, 62–75.

    Article  Google Scholar 

  • Wallis, J. D., & Miller, E. K. (2003). From rule to response: Neuronal processes in the premotor and prefrontal cortex. Journal of Neurophysiology, 90(3), 1790–1806.

    Article  Google Scholar 

  • Wessinger, C., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., & Rauschecker, J. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 13(1), 1–7.

    Article  Google Scholar 

  • Wilson, M. (2006). Wandering significance. An essay in conceptual behavior. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Zamora-López, G., Zhou, C., & Kurths, J. (2010). Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Frontiers in Neuroinformatics, 4(March), 1–1. https://doi.org/10.3389/neuro.11.001.2010.

    Article  Google Scholar 

  • Zerilli, J. (2017). Against the “system” module. Philosophical Psychology, 30(3), 235–250.

    Article  Google Scholar 

Download references

Acknowledgments

We thank audiences at the AISC Midterm Conference 2018 (University of Genoa) and at the Neural Mechanisms web conference 2018, as well as four anonymous reviewers for helpful feedback on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Burnston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burnston, D.C., Haueis, P. (2021). Evolving Concepts of “Hierarchy” in Systems Neuroscience. In: Calzavarini, F., Viola, M. (eds) Neural Mechanisms. Studies in Brain and Mind, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-54092-0_6

Download citation

Publish with us

Policies and ethics