Skip to main content

Precision Weed Management

  • Chapter
  • First Online:
Women in Precision Agriculture

Part of the book series: Women in Engineering and Science ((WES))

Abstract

Weeds occur in patches across landscapes and vary in species, density, time of emergence, and growth rate depending on location. Precision weed management accounts for natural and management-induced variation to optimize inputs (control methodology) to reduce weed presence and improve crop yields across an area. When Anita and I started research on precision weed management, there were few options on data collection and fewer methods to change techniques on-the-go. Today, there are multiple methods to collect and process information and use these data to determine appropriate actions. In some cases, maps are made and utilized to direct herbicide type and appropriate rate. If autonomous weeders are used, data imagery collected by on-board sensors immediately signal an actuator for control placement. No matter the method, understanding which weeds are present, location, density, and the appropriate control and timing are critical for success. In the future, agronomists will be expected to have knowledge, skills, and abilities that range from traditional weed science (weed species identification, herbicide and other control information, potential crop loss) to today’s less common competencies, such as understanding robotics and manipulating and managing big data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas, H. K., & Duke, S. O. (2000). Phytotoxins from plant pathogens as potential herbicides. Journal of Toxicology - Toxin Reviews, 14, 523–543.

    Article  Google Scholar 

  • Abbas, H. K., Duke, S. O., Merrill, A. H., et al. (1998). Phytotoxicity of australifungin, AAL-toxins and fumonisin B 1to Lemna pausicostata. Phytochemistry, 47, 1509–1514.

    Article  Google Scholar 

  • Afifi, M., Lee, E., Lukens, L., & Swanton, C. (2015a). Maize (Zea mays) seeds can detect above-ground weeds: Thiamethoxam alters the view. Pest Management Science, 71, 1335–1345.

    Article  Google Scholar 

  • Afifi, M., Lee, E., Lukens, L., & Swanton, C. (2015b). Thiamethoxam as a seed treatment alters the physiological response of maize (Zea mays) seedlings to neighbouring weeds. Pest Management Science, 71, 505–524.

    Article  Google Scholar 

  • Ahmad, M. T., Tang, L., & Steward, B. L. (2014). Automated mechanical weeding. In S. L. Young & F. J. Pierce (Eds.), Automation: The future of weed control in cropping systems (pp. 125–138). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ali, A., Streibig, J. C., & Andreasen, C. (2013). Yield loss prediction models based on early estimation of weed pressure. Crop Protection, 53, 125–131.

    Article  Google Scholar 

  • Barnett, D. T., Stohlgren, T. J., Jarnevich, C. S., et al. (2007). The art and science of weed mapping. Environmental Monitoring and Assessment, 132, 235–252.

    Article  Google Scholar 

  • Blatchley, W. S. (1912). Indian weed book (p. 191). Indianapolis: Nature Pub. Co.

    Book  Google Scholar 

  • Blumhorst, M. R., Weber, J. B., & Swain, L. R. (1990). Efficacy of selected herbicides as influenced by soil properties. Weed Technology, 4, 279–283.

    Article  Google Scholar 

  • Bridges, D. C. (2000). Implications of pest-resistant/herbicide tolerant plants for IPM. In G. G. Kennedy & T. B. Sutton (Eds.), Emerging technologies for integrated pest management: Concepts, research, and implementation (pp. 141–153). St Paul: APS Press. ISBN:0–89054–246-5.

    Google Scholar 

  • Buhler, D. D., Hartzler, R. G., & Forcella, F. (1997). Weed seed bank dynamics. Journal of Crop Production, 1, 145–168.

    Article  Google Scholar 

  • Busi, R., Vila-Aiub, M. M., Beckie, H. J., et al. (2013). Herbicide-resistant weeds: From research and knowledge to future needs. Evolutionary Applications, 6, 1218–1211.

    Article  Google Scholar 

  • Cardina, J., & Doohan D. J. (n.d.). SSMG-25. Weed biology and precision farming. In: Site specific management guidelines (pp. 4). IPNI http://www.ipni.net/ssmg. Archival copy managed by International Fertilizer Association. Accessed Jan 2020.

  • Cardina, J., Sparrow, D. H., & McCoy, E. L. (1996). Analysis of spatial distribution of common lambsquarters (Chenopodium album) in no-till soybean (Glycine max). Weed Science, 43, 258–268.

    Article  Google Scholar 

  • Clay, S. A. (2011). GIS applications in agriculture. Volume three: Invasive species (p. 428). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Clay S. A., & Johnson, G. A. (n.d.). SSMG-15 Scouting for weeds. 4 pg. In: Site-Specific management guidelines. IPNI http://www.ipni.net/ssmg. Archival copy managed by International Fertilizer Association. Accessed Jan 2020.

  • Clay, S. A., Lems, G. J., Clay, D. E., et al. (1999). Sampling weed spatial variability on a fieldwide scale. Weed Science, 47, 674–681.

    Article  Google Scholar 

  • Clay, S. A., Chang, J., Clay, D. E., Reese, C. L., & Dalsted, K. (2004). SSMG 42 Using remote sensing to develop weed management zones in soybeans. 4 pg. In: Site-Specific management guidelines. IPNI http://www.ipni.net/ssmg. Archival copy managed by International Fertilizer Association. Accessed Jan 2020.

  • Clay, S. A., Kleinjan, J., Clay, D. E., et al. (2005). Growth and fecundity of several weed species in corn and soybean. Agronomy Journal, 97, 294–302.

    Article  Google Scholar 

  • Clay, S. A., Kreutner, B., Clay, D. E., et al. (2006). Spatial distribution, temporal stability, and yield loss estimates for annual grasses and common ragweed (Ambrosia artemisiifolia) in a corn/soybean production field over nine years. Weed Science, 54, 380–390.

    Article  Google Scholar 

  • Clay, D. E., Carlson, C. G., Clay, S. A., & Murrell, T. S. (Eds.). (2012a). Mathematics and calculations for agronomists and soil scientists. Internl Plant Nutrition Instit Norcross GA 238 pp.

    Google Scholar 

  • Clay, D. E., Carlson, C. G., Clay, S. A., & Murrell, T. S. (Eds.), (2012b). Chapter 21. Using the hyperbolic model as a tool to predict yield losses due to weeds. In: Mathematics and calculations for agronomists and soil scientists. Internl Plant Nutrition Instit Norcross GA 238 pp.

    Google Scholar 

  • Clay, D. E., Clay, S. A., & Bruggeman, S. A. (2017a). Practical mathematics for precision farming. ASA/CSSA/SSSA Madison WI 272 pp.

    Google Scholar 

  • Clay, D. E., Clay, S. A., DeSutter, T., & Reese, C. (2017b). From plows, horses, and harnesses to precision technologies in the North American great plains. In Oxford Research Encyclopedia of Environment Science. Oxford: Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.196.

    Chapter  Google Scholar 

  • Clay, S. A., French, B. W., & Mathew, F. M. (2018). Pest measurement and management. In D. K. Shannon, D. E. Clay, N. R. Kitchen (Eds.), Precision agriculture basics (pp. 93–102). Wiley Press.

    Google Scholar 

  • Colbach, N., & Forcella, F. F. (2011). Adapting geostatistics to analyze spatial and temporal trends in weed populations. In S. A. Clay (Ed.), GIS applications in agriculture (Invasive species) (Vol. 3, pp. 320–371). Boca Raton: CRC-Press.

    Google Scholar 

  • Cordeau, S., Guillemin, J. P., Reibel, C., & Chauvel, B. (2015). Weed species differ in their ability to emerge in no-till systems that include cover crops. The Annals of Applied Biology, 3, 444–455.

    Article  Google Scholar 

  • Cordeau, S., Smith, R. G., Gallandt, E. R., et al. (2017). Timing of tillage as a driver of weed communities. Weed Science, 65, 504–514.

    Article  Google Scholar 

  • Cordeau, S., Wayman, S., Reibel, C., et al. (2018). Effects of drought on weed emergence and growth vary with the seed burial depth and presence of a cover crop. Weed Biology and Management, 18, 12–25.

    Article  Google Scholar 

  • Dalsted, K. (2011). Introduction: Remote sensing and GIS techniques for the detections, surveillance, and management of invasive species. In S. A. Clay (Ed.), GIS applications in agriculture (Invasive species) (Vol. 3, pp. 1–8). Boca Raton: CRC-Press.

    Google Scholar 

  • Dammer, K.-H., & Wartenberg, G. (2007). Sensor-based weed detection and application of variable herbicide rates in real time. Crop Protection, 26, 270–277.

    Article  Google Scholar 

  • Das, S. K., & Mondal, T. (2014). Mode of action of herbicides and recent trends in development: A reappraisal. International Inv Journal Agricultural and Soil Science, 2, 27–32.

    Google Scholar 

  • Davis, A. S., Clay, S. A., Cardina, J., et al. (2013). Seed burial physical environment explains departures from regional hydrothermal model of giant ragweed (Ambrosia trifida) seedling emergence in U.S. Midwest. Weed Science, 61, 415–421.

    Article  Google Scholar 

  • Dieleman, J. A., & Mortensen, D. A. (1999). Characterizing the spatial pattern of Abutilon theophrasti seedling patches. Weed Research, 39, 455–468.

    Article  Google Scholar 

  • Dieleman, J. A., Mortensen, D. A., Buhler, D. D., Cambardella, C. A., & Moorman, T. B. (2000a). Identifying associations among site properties and weed species abundance. I. Multivariate analysis. Weed Science, 48, 567–575.

    Article  Google Scholar 

  • Dieleman, J. A., Mortensen, D. A., Buhler, D. D., & Ferguson, R. B. (2000b). Identifying associations among site properties and weed species abundance. II. Hypothesis generation. Weed Science, 48, 576–587.

    Article  Google Scholar 

  • Dille, J. A. (2014). Plant morphology and the critical period of weed control. In S. L. Young & F. J. Pierce (Eds.), Automation: The future of weed control in cropping systems (pp. 51–70). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Dille, J. A., Milner, M., Groeteke, J. J., Mortensen, D. A., & Williams, M. M., II. (2002). How good is your weed map? A comparison of spatial interpolators. Weed Science, 51, 44–55.

    Article  Google Scholar 

  • Dille, J. A., Vogel, J. W., Rider, T. W., et al. (2011). Creating and using weed maps for site-specific management. In S. A. Clay (Ed.), GIS applications in agriculture (Invasive species) (Vol. 3, pp. 405–418). Boca Raton: CRC-Press.

    Google Scholar 

  • Duke, S. O. (1986). Microbially produced phytotoxins as herbicides – A perspective. Review Weed Science, 2, 15–44.

    Google Scholar 

  • Emerson, R. W. (1876). Fortune of the republic. In: Miscellanies. The complete works of Ralph Waldo Emerson (Vol. XI, pp. 509–544). Boston: Houghton Mifflin.

    Google Scholar 

  • Emmi, L., Gonzalez-de-Soto, M., Pajares, G., & Gonzalez-de Santos, P. (2014). Integrating sensory/actuation systems in agricultural vehicles. Sensors, 14, 4014–4049.

    Article  Google Scholar 

  • Erickson, B., & Widmar, D. (2015). Precision agricultural services: Dealership survey results. West Lafayette: The Center for Food and Agricultural Business/Department of Agricultural Economics and the Department of Agronomy/Perdue University.

    Google Scholar 

  • Erickson, B., Fausti, S., Clay, D., & Clay, S. (2018). Knowledge, skills, and abilities in the precision agriculture workforce: An industry perspective. Natural Sciences Education, 47, 1–11.

    Article  Google Scholar 

  • Fausti, S., Erickson, B., Clay, S., et al. (2018). Educator survey: Do institutions provide the PA education needed by agribusiness? Journal of Agribusiness, 36, 41–63.

    Google Scholar 

  • Fennimore, S. A., Slaughter, D. C., Siemens, M. C., et al. (2016). Technology for automation of weed control in specialty crops. Weed Technology, 30, 823–837. https://doi.org/10.1614/WT-D-16-00070.1.

    Article  Google Scholar 

  • Fernandez-Quintanilla, C., Pena-Barragan, J. M., Andujar, D., et al. (2018). Is the current state-of-the-art of weed monitoring suitable for site-specific weed management in arable crops? Weed Research, 58, 259–272.

    Article  Google Scholar 

  • Forcella, F. (n.d.). SSMG 20. Estimating the timing of weed emergence. In: Site specific management guidelines (p. 4). IPNI http://www.ipni.net/ssmg. Archival copy managed by International Fertilizer Association. Accessed Jan 2020.

  • Forcella, F., Wilson, R. G., Dekker, J., et al. (1997). Weed seed bank emergence across the Corn Belt. Weed Science, 45, 67–76.

    Article  Google Scholar 

  • Franco, C., Pedersen, S. M., Papaharalampos, H., et al. (2017). The value of precision for image-based decision support in weed management. Precision Agriculture, 18, 366–382.

    Article  Google Scholar 

  • Gardarin, A., Durr, C., & Colbach, N. (2009). Which model species for weed seedbank and emergence studies? A review. Weed Research, 49, 117–130.

    Article  Google Scholar 

  • Goudy, H. J., Bennett, K. A., Brown, R. B., & Tardif, F. J. (2001). Evaluation of site-specific management using a direct-injection sprayer. Weed Science, 49, 359–366.

    Article  Google Scholar 

  • Green, J. M. (2014). Current state of herbicides in herbicide-resistant crops. Pest Management Science, 70, 1351–1357.

    Article  Google Scholar 

  • Grisso, R. D., Alley, M. M., Thomason, W., et al. (2010). Precision farming tools: Variable-rate application. Virginia Cooperative Extension Publication, 442–505, 16.

    Google Scholar 

  • Guo, L., Qui, J., Li, L.-F., et al. (2018). Genomic clues for crop-weed interactions and evolution. Trends in Plant Science, 23, 1102–1115.

    Article  Google Scholar 

  • Hansen, S., Clay, S. A., Clay, D. E., et al. (2013). Landscape features impact on soil available water, corn biomass, and gene expression during the late vegetative stage. Plant Genome, 6, 2. https://doi.org/10.3835/plantgenome2012.11.0029.

    Article  Google Scholar 

  • Hassanein, M., & El-Sheimy, N. (2018). An efficient weed detection procedure using low-cost UAV imagery system for precision agriculture application (pp. 181–187). International Arch Photogrammetry, Remote Sensing and Spatial Inform Sci XLII-1, 2018 Symposium paper Oct 2018 Karlsruhe, Germany.

    Google Scholar 

  • Haung, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2018). UAV low-altitude remote sensing for precision weed management. Weed Technology, 32, 2–6.

    Article  Google Scholar 

  • Haung, J., Deng, J., Lan, Y., et al. (2018a). A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS One, 13(4), e0196302. https://doi.org/10.1371/journal.pone.0196302.

    Article  Google Scholar 

  • Haung, J., Deng, J., Lan, Y., et al. (2018b). Accurate weed mapping and prescription may generation based on fully convolutional networks using UAV imagery. Sensors, 18, E3299. https://doi.org/10.3390/s18103299.

    Article  Google Scholar 

  • He, H., Wang, H., Fang, C., et al. (2012). Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. Journal of Plant Physiology, 169, 1747–1753.

    Article  Google Scholar 

  • Heap, I. (2014). Herbicide resistant weeds. Integrated Pest Management Reviews, 3, 281–301.

    Article  Google Scholar 

  • Heap, I. (2020). The international survey of herbicide resistant weeds. Online. Internet. Available at www.weedscience.org. Accessed 14 Jan 2020.

  • Heap, I., & Duke, S. O. (2018). Overview of glyphosate-resistant weeds worldwide. Pest Management Science, 74, 1040–1049.

    Article  Google Scholar 

  • Horvath, D. P., Llewellyn, D., & Clay, S. A. (2007). Heterologous hybridization of cotton microarrays with velvetleaf (Abutilon theophrasti) reveals physiological responses due to corn competition. Weed Science, 55, 546–557. https://doi.org/10.1614/WS-07-008.1.

    Article  Google Scholar 

  • Horvath, D. P., Hansen, S., Moriles-Miller, J. P., et al. (2015). RNA seq reveals weed-induced PIF 3-like as a candidate target to manipulate weed stress response in soybean. New Phytologist, 207, 196–210.

    Article  Google Scholar 

  • Horvath, D. P., Bruggeman, S., Moriles-Miller, J., et al. (2018). Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period. Plant Direct, 2(4), e00057. https://doi.org/10.1002/pld3.57.

    Article  Google Scholar 

  • Horvath, D. P., Clay, S. A., Bruggeman, S. A., et al. (2019). Varying weed densities alter the corn transcriptome, highlighting a core set of weed-induced genes and processes with potential for manipulating weed tolerance. Plant Genome, 12, 190035. https://doi.org/10.3835/plantgenome2019.05.0035.

    Article  Google Scholar 

  • Huiting, J., Rotteveel, T., Spoorenberg, P., & van der Weide, R. (2014, March 11–13). Distribution, significance and control of foxtail, Setaria spp. and crabgrass, Digitaria spp. in the Netherlands, and the situation within Europe. Julius-Kuhn-Archiv 443 pg 671–681 ref 33 In Proceedings 26th German conference on weed biology and weed control, Braunschweig, Germany.

    Google Scholar 

  • Humburg, D. (2003). Site-specific management guidelines: Variable rate equipment technology for weed control (SSMG-7). In D. Clay et al. (Ed.), Site specific management guidelines.

    Google Scholar 

  • Jain, M., Nijhawan, A., Arora, R., et al. (2007). F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology, 143, 1467–1483. https://doi.org/10.1104/pp.106.091900.

    Article  Google Scholar 

  • Johnson, G. A., & Huggins, D. R. (1999). Knowledge-based decision support strategies. Journal of Crop Production, 2, 225–238.

    Article  Google Scholar 

  • Johnson, G. A., Mortensen, D. A., & Martin, A. R. (1995). A simulation of herbicide use based on weed spatial distribution. Weed Research, 35, 197–205.

    Article  Google Scholar 

  • Johnson, G. A., Breitenbach, F., Behnken, L., et al. (2012). Comparison of herbicide tactics to minimize species shifts and selection pressure in glyphosate-resistant soybean. Weed Technology, 26, 189–194.

    Article  Google Scholar 

  • Kalivas, D. P., Vlachos, C. E., Economou, G., & Dimou, P. (2012). Regional mapping of perennial weeds in cotton with the use of geostatistics. Weed Science, 60, 233–243.

    Article  Google Scholar 

  • Kitchen, N. R., & Clay, S. A. (2018). Understanding and identifying variability. In: D. K. Shannon, D. E. Clay, & N. R. Kitchen (Eds.), Precision agriculture basics (pp 13–24). Wiley Press.

    Google Scholar 

  • Lambert, D., & Lowenberg-DeBoer, J. (2000). Precision agriculture profitability review. Site-Specific Management Center, School of Agriculture, Purdue University. www.agriculture.purdue.edu/ssmc/Frames/newsoilsX.pdf. Accessed Jan 2020.

  • Lati, R. N., Siemens, M. C., Rachuy, J. S., & Fennimore, S. A. (2016). Intrarow weed removal in broccoli and transplanted lettuce with an intelligent cultivator. Weed Technology, 30, 655–663. https://doi.org/10.1614/WT-D-15-00179.1.

    Article  Google Scholar 

  • Lopez-Granados, F. (2011). Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Research, 51, 1–11.

    Article  Google Scholar 

  • Maxwell, B. D., & Luschei, E. C. (2005). Justification for site-specific weed management based on ecology and economics. Weed Science, 53, 221–227.

    Article  Google Scholar 

  • Metcalfe, H., Milne, A. E., Webster, R., et al. (2015). Designing a sampling scheme to reveal correlations between weeds and soil properties at multiple spatial scales. Weed Research, 56, 1–15.

    Article  Google Scholar 

  • Metzenbacher, F. O., Kalsing, A., Dalazen, G., Markus, C., & Merotto, A., Jr. (2015). Antagonism is the predominant effect of herbicide mixtures used for imidazolinone-resistant barnyardgrass (Echinochloa crus-galli) control. Planta Daninha, 33, 587–597. https://doi.org/10.1590/SO100-83582015000300021.

    Article  Google Scholar 

  • Moriles, J., Hansen, S., Horvath, D. P., et al. (2012). Microarray and growth analyses identify differences and similarities of early corn response to weeds, shade, and nitrogen stress. Weed Science, 60, 158–166.

    Article  Google Scholar 

  • Mosueda, E., Smith, R., Goorahoo, D., & Shrestha, A. (2017). Automated lettuce thinners reduce labor requirements and increase speed of thinning. California Agriculture. https://doi.org/10.1733/ca.2-17a0018.

  • Norris, R. F. (1999). Ecological implications of using thresholds for weed management. Journal of Crop Production, 2, 31–58.

    Article  Google Scholar 

  • O’Neill, M., & Dalsted, K. (2011). Obtaining spatial data. In S. A. Clay (Ed.), GIS applications in agriculture (Invasive species) (Vol. 3, pp. 9–27). Boca Raton: CRC-Press.

    Google Scholar 

  • Ollila, D. G., Schumacher, J. A., & Frochlich, D. P. (1990). Integrating field grid sense system with direct injection technology. ASAE paper no. 90-1628. St. Joseph, Mich: ASAE.

    Google Scholar 

  • Owen, D. K. K., & Zelaya, A. I. (2005). Herbicide resistant crops and weed resistance to herbicides. Pest Management Science, 61, 301–305.

    Article  Google Scholar 

  • Page, E. R., Tollenaar, M., Lee, E. A., et al. (2009). Does shade avoidance contribute to the critical period for weed control in maize (Zea mays L.)? Weed Research, 49, 563–571. https://doi.org/10.1111/j.13653180.2009.00735.x.

    Article  Google Scholar 

  • Page, E. R., Cerrudo, D., Westra, P., et al. (2012). Why early season weed control is important in maize. Weed Science, 60, 423–430. https://doi.org/10.1614/WS-D-11-00183.1.

    Article  Google Scholar 

  • Parnell, D. J., & Bennett, A. L. (1999). Economic feasibility of precision weed management: Is it worth the investment? In R. W. Medd & J. E. Prateley (Eds.), Precision weed management in crops and pastures, CRC for Weed Management systems Adelaide (SEA Working Paper 99/02) (pp. 138–148). Adelaide: Agricultural and Resource Economics University of Western Australia.

    Google Scholar 

  • Partel, V., Kakarla, C., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture, 157, 339–350.

    Article  Google Scholar 

  • Perez-Ruiz, M., Slaughter, D. C., Fathallah, F. A., et al. (2014). Co-robotic intra-row weed control system. Biosystems Engineering, 126, 45–55. http://www.sciencedirect.com/science/article/pii/S1537511014001214.

    Article  Google Scholar 

  • Pester, T. A., Burnside, O. C., & Orf, J. H. (1999). Increasing crop competitiveness to weeds through crop breeding. Journal of Crop Production, 2, 59–76.

    Article  Google Scholar 

  • Pratley, J., Urwin, N., Stanton, R., et al. (1999). Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Science, 47, 405–411.

    Article  Google Scholar 

  • Qiu, W., Watkins, G. A., Sobolik, C. J., & Shearer, S. A. (1994a). A feasibility study of direct injection variable-rate herbicide application. Transactions of ASAE, 41, 291–299.

    Article  Google Scholar 

  • Qiu, W., Shearer, S. A., & Watkins, G. A. (1994b). Modeling of variable-rate herbicide application using GIS (ASAE Paper No 94-3522). St. Joseph: ASAE.

    Google Scholar 

  • Rahman, A., & Matthews, L. J. (1979). Effect of soil organic matter on the phytotoxicity of thirteen s-triazine herbicides. Weed Science, 27, 158–161.

    Article  Google Scholar 

  • Rashidi, M., & Mohammadzamani, D. (2011). Variable rate herbicide application using GPS and generating a digital management map. In M. Larramendy (Ed.), Herbicides, theory and applications (pp. 127–144). Rijeka: InTech Rijeka. ISBN: 978-953-307-975-2.

    Google Scholar 

  • Reetz, H. F. Jr, & Fixen, P. E. (n.d.). SSMG-28. Strategic approach to site-specific systems. 4 pg. In: Site-Specific management guidelines. IPNI http://www.ipni.net/ssmg. Archival copy managed by International Fertilizer Association. Accessed Jan 2020.

  • Reisinger, P., Lehoczky, E., Nagy, et al. (2004). Database-based precision weed management. The Journal of Plant Diseases and Protection Sonderheft, XIX, 467–472.

    Google Scholar 

  • Reitsma, K., & Clay, S. A. (2011). Using GIS to investigate weed shifts after two cycles of corn/soybean rotation. In S. A. Clay (Ed.), GIS applications in agriculture (Invasive species) (Vol. 3, pp. 374–403). Boca Raton: CRC-Press.

    Google Scholar 

  • Rocha, F. C., Oliveira Neto, A. M., Bottega, E. L., et al. (2015). Weed mapping using techniques of precision agriculture. Planta daninha, 33, 157–164. https://doi.org/10.1590/S0100-83582015000100018. Accessed Dec 2019.

    Article  Google Scholar 

  • Romeo, J., Guerrero, J. M., Montalvo, M., et al. (2013). Camera sensor arrangement for crop/weed detection accuracy in agronomic images. Sensors, 13, 4348–4366.

    Article  Google Scholar 

  • Ruegg, W. T., Quadranti, M., & Zoschke, A. (2007). Herbicide research and development: Challenges and opportunities. Weed Research, 47, 271–275.

    Article  Google Scholar 

  • Ryan, C. A. (2000). The systemin signaling pathway: Differential activation of plant defensive genes. Biochimica et Biophysica Acta, 1477, 112–121. https://doi.org/10.1016/S0167-4838(99)00269-1.

    Article  Google Scholar 

  • Schlemmer, M., Hatfield, J., & Rundquist, D. (n.d.). SSMG-16. Remote sensing: Photographic vs non-photographic systems. 4 pg. In: Site-specific management guidelines. IPNI http://www.ipni.net/ssmg. Archival copy managed by International Fertilizer Association. Accessed Jan 2020.

  • Shahbandeh, M. (2019). Growth of organic food and non-food sales in the U.S. 2008–2018. https://www.statista.com/statistics/244409/organic-sales-growth-in-the-united-states/. Accessed Jan 2020.

  • Shaner, D. L. (2004). Precision weed management: The wave of the future or just a passing fad? Phytoparasitica, 32, 107–110.

    Article  Google Scholar 

  • Shannon, D. K., Clay, D. E., & Sudduth, K. A. (2018). An introduction to precision agriculture. In: D. E. ShannonClay & N. R. Kitchen (Eds.), Precision agriculture basics (pp. 1–12). Wiley Press.

    Google Scholar 

  • Shockley, J. M., Dillon, C. R., & Stombaugh, T. S. (2011). Whole farm analysis of the influence of autosteer navigation on net returns, risk, and production practices. Journal of Agricultural and Applied Economics, 431, 57–75.

    Article  Google Scholar 

  • Singh, V., Rana, A., Bishop, M., et al. (2020). Chapter three – Unmanned aircraft systems for precision weed detection and management: Prospects and challenges. Advances in Agronomy, 159, 93–134.

    Article  Google Scholar 

  • Site-Specific Management Guidelines. (n.d.). http://www.ipni.net/ssmg. Archival copy managed by International Fertilizer Association. Accessed Jan 2020.

  • Stewart, C. L., Nurse, R. N., Hamill, A. S., & Sikkema, P. H. (2010). Environment and soil conditions influence pre-and postemergence herbicide efficacy in soybean. Weed Technology, 24, 234–243.

    Article  Google Scholar 

  • Subrahmaniam, H. J., Libourel, C., Journet, E.-P., et al. (2018). The genetics underlying natural variation of plant-plant interactions, a beloved but forgotten member of the family of biotic interactions. The Plant Journal, 93, 747–770.

    Article  Google Scholar 

  • Tian, L., Reid, J. F., & Hummel, J. (1999). Development of a precision sprayer for site specific weed management. Transactions of ASAE, 42, 893–900.

    Article  Google Scholar 

  • Timmermann, C., Gerhards, R., & Kuhbauch, W. (2003). The economic impact of site-specific weed control. Precision Agriculture, 4, 249–260.

    Article  Google Scholar 

  • USDA Forest Service Remote Sensing Applications Center. (n.d.). A weed manager’s guide to remote sensing and GIS – Mapping and monitoring. RSAC Internet. http://www.fs.fed.us/eng/rsac. 20 Dec 2019.

  • USDA-ERS. (2019). Risk in agriculture. https://www.ers.usda.gov/topics/farm-practices-management/risk-management/risk-in-agriculture.aspx. Accessed Jan 2020.

  • Valliyodan, B., & Nguyen, H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9, 1–7. https://doi.org/10.1016/j.pbi.2006.01.019.

    Article  Google Scholar 

  • Vleeshouwers, L. M., & Kropff, M. J. (2000). Modelling field emergence patterns in arable weeds. The New Phytologist, 148, 445–457.

    Article  Google Scholar 

  • Vondricka, J. (2007). Study on the response time of direct injection systems for variable rate application of Herbicides. PhD thesis. University of Bonn.

    Google Scholar 

  • Weber, J. B., Tucker, M. R., & Isaac, R. A. (1987). Making herbicide rate recommendations based on soil tests. Weed Technology, 1, 41–45.

    Article  Google Scholar 

  • Weis, M., Gutjahr, C., Ayala, V. R., et al. (2008). Precision farming for weed management: Techniques. Gesunde Pflanzen, 60, 171–181.

    Article  Google Scholar 

  • Werle, R., Bernards, M. L., Arkebauer, T. J., & Lindquist, J. L. (2014a). Environmental triggers of winter annual weed emergence in the midwestern United States. Weed Science, 62, 83–96.

    Article  Google Scholar 

  • Werle, R., Sandell, L. D., Buhler, D. D., Hartzler, R. G., & Lindquist, J. L. (2014b). Predicting emergence of 23 summer annual weed species. Weed Science, 62, 267–279.

    Article  Google Scholar 

  • Westwood, J. H., Charudattan, R., Duke, S. O., et al. (2018). Weed management in 2050: Perspectives on the future of weed science. Weed Science, 66, 275–285.

    Article  Google Scholar 

  • Wiles, L. J., Bobbitt, R., & Westra, P. (2007). Site-specific weed management in growers’ fields: Predictions from hand-drawn maps. In F. Pierce & D. E. Clay (Eds.), (pp. 81–103). Boca Raton: GIS Applications in Agriculture CRC-Press.

    Google Scholar 

  • Young, S. L., & Giles, D. K. (2014). Targeted and microdose chemical applications. In S. L. Young & F. J. Pierce (Eds.), Automation: The future of weed control in cropping systems (pp. 139–149). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Young, S. L., Meyer, G. E., & Woldt, W. E. (2014). Future directions for automated weed management in precision agriculture. In S. L. Young & F. J. Pierce (Eds.), Automation: The future of weed control in cropping systems (pp. 249–259). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Zimdahl, R. L. (1988). The concept and application of the critical weed-free period. In M. A. Altieri & M. Liebman (Eds.), Weed management in agroecosystems: Ecological approaches (pp. 145–155). Boca Raton: CRC Press.

    Google Scholar 

  • Zimdahl, R. L. (2010). Chapter 10 the consequences of weed science’s pattern of development. In: A history of weed science in the United States (pp. 189–207). Elsevier Inc. https://doi.org/10.1016/C2009-0-63984-2.

  • Zimdahl, R. L. (2011). Weed science: A Plea for thought – Revisited springer briefs in agriculture (pp. 73)

    Google Scholar 

  • Zollinger, R., Howatt, K., & Jenks, B., et al (2014). Avoiding antagonism between grass and broadleaf control herbicides. In: ND weed control guide. North Dakota State University W253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon A. Clay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clay, S.A., Dille, J.A. (2021). Precision Weed Management. In: Hamrita, T. (eds) Women in Precision Agriculture. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-49244-1_5

Download citation

Publish with us

Policies and ethics