Skip to main content

Anti-inflammatory Effects of Different Dietary Antioxidants

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Chronic inflammation and oxidative damage have been proven as fundamental factors associated with many systemic diseases, leading to increased morbidity. To deal with this, formulation of new functional foods, dietary polyphenols, and supplements containing multiple natural antioxidants and/or anti-inflammatory agents is required to reduce oxidative stress and inflammatory cascade. Several studies have shown a positive association between increased intake of dietary antioxidants and reduced risk for chronic inflammatory diseases and oxidative stress. This chapter concentrates on the underlying mechanisms of how different groups of dietary antioxidants, like vitamin C, vitamin E, flavonoids, carotenoids, and plant polyphenols, prevent the processes of inflammation and oxidative stress responses. Oxidative stress and inflammation mechanisms are discussed in the light of critical balance of pro- and anti-inflammatory cytokines. Also, roles of dietary antioxidants were discussed as an adjunctive treatment strategy to COVID-19 patients. Given the convincing evidence for protective as well as curative role of dietary antioxidants in inflammatory processes, more detailed understanding on the effects of nutrients on multiple aspects and development of novel anti-inflammatory agents is required to optimize approaches. To improve the bioavailability and targeted delivery of external antioxidants, nonreactive carriers or vehicles are needed to be designed with more precision and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP-1:

Activator protein 1

DAD:

diffuse alveolar damage

FBG:

Fasting blood glucose

GCSF:

Granulocyte colony-stimulating factor

H2O2:

Hydrogen peroxide

hs-CRP:

high-sensitivity C-reactive protein

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

MAPK:

Mitogen-activated protein kinase

MCP1:

Monocyte chemoattractant protein-1

MIP1:

Macrophage Inflammatory Protein-1

NF-κB:

Nuclear factor kappa B

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

TGFβ:

Transforming growth factor beta

TLR:

Toll-like receptors

TNFR:

Tumor necrosis factor receptors

TNF-α:

Tumor necrosis factor α

References

  1. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Article  Google Scholar 

  2. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh et al (2020) Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol 11:694–715

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162–1190

    Article  PubMed  PubMed Central  Google Scholar 

  4. WHO global report on traditional and complementary medicine (2019) World Health Organization, Geneva. https://www.who.int/traditional-complementary-integrative-medicine/WhoGlobalReportOnTraditionalAndComplementaryMedicine2019.pdf

  5. Liu Z, Ren Z, Zhang J, Chuang C-C, Kandaswamy E, Zhou T, Zuo L (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477–491

    Article  PubMed  PubMed Central  Google Scholar 

  6. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  CAS  PubMed  Google Scholar 

  7. Weiss JF (1997) Pharmacologic approaches to protection against radiation-induced lethality and other damage. Environ Health Perspect 105(suppl 6):1473–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alkadi H (2020) A review on free radicals and antioxidants. Infect Disord Drug Targets 20:16–26

    CAS  PubMed  Google Scholar 

  10. Carocho M, Ferreira I (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  PubMed  Google Scholar 

  11. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev 2016:3164734–3164757

    Article  CAS  Google Scholar 

  12. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rock KL, Kono H (2008) The inflammatory response to cell death. Annu Rev Pathol 3:99–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023–17031

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20:6008–6039

    Article  CAS  PubMed Central  Google Scholar 

  19. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev 8416763:1–13

    Google Scholar 

  20. Pohl D, Benseler S (2013) Systemic inflammatory and autoimmune disorders. Handb Clin Neurol 112:1243–1252

    Article  PubMed  Google Scholar 

  21. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122:877–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Granger DN, Senchenkova E (2010) Inflammation and the microcirculation. San Rafael (CA): Chapter 7, Leukocyte–endothelial cell adhesion, Morgan & Claypool Life Sciences, USA

    Google Scholar 

  23. Muller WA (2013) Getting leukocytes to the site of inflammation. Vet Pathol 50:7–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wajant H, Siegmund D (2019) TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front Cell Dev Biol 7:91–104

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gunaydin C, Bilge SS (2018) Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J Med 50:116–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiwerska K, Szyfter K (2019) DNA repair in cancer initiation, progression, and therapy-a double-edged sword. J Appl Genet 60:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Principe DR, Doll JA, Bauer J et al (2014) TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 106:djt369–djt384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Khan YH, Uttra AM, Qasim S, Mallhi TH, Alotaibi NH, Rasheed M, Alzarea AI, Iqbal MS, Alruwaili NK, Khan S-U-D, Alanazi AS (2021) Potential role of phytochemicals against matrix metalloproteinase induced breast cancer; an explanatory review. Front Chem 8:592152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Rep Reg 16:585–601

    Article  Google Scholar 

  30. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21:559–576

    Article  PubMed Central  CAS  Google Scholar 

  31. Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ, Zhang SF, Tang MK, Sun JN, Ko KM (2014) Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med 2014:525340

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barzegar A, Moosavi-Movahedi AA (2011) Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One 6:e26012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11:982–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paciolla C, Fortunato S, Dipierro N, Paradiso A, Leonardis SD, Mastropasqua L, Concetta de Pinto M (2019) Vitamin C in plants: from functions to biofortification. Antioxidants (Basel) 8:519–545

    Article  CAS  Google Scholar 

  35. Carr AC, Maggini S (2017) Vitamin C and immune function. Nutrients 9:1211–1235

    Article  PubMed Central  CAS  Google Scholar 

  36. Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y (2015) Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther 9:3405–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akbari A, Jelodar G, Nazifi S, Sajedianfard J (2016) An overview of the characteristics and function of vitamin C in various tissues: relying on its antioxidant function. Zahedan J Res Med Sci 18:e4037

    Google Scholar 

  38. Bozonet SM, Carr AC, Pullar JM, Vissers MC (2015) Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients 7:2574–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Rad Biol Med 72:76–90

    Article  CAS  PubMed  Google Scholar 

  40. Jiang Q, Yin X, Lill MA, Danielson ML, Freiser H, Huang J (2008) Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases. Proc Natl Acad Sci U S A 105:20464–20469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013:162750

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ader P, Wessmann A, Wolffram S (2000) Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic Biol Med 28:1056–1067

    Article  CAS  PubMed  Google Scholar 

  44. Huang R, Zhong T, Wu H (2015) Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch Med Sci 11:427–432

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cheng SC, Huang WC, Pang JHS, Wu YH, Cheng CY (2019) Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int J Mol Sci 20:2957

    Article  CAS  PubMed Central  Google Scholar 

  46. Xiao X, Shi D, Liu L, Wang J, Xie X, Kang T, Deng W (2011) Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS One 6:e22934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee KM, Hwang MK, Lee DE, Lee KW, Lee HJ (2010) Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J Agric Food Chem 58:5815–5820

    Article  CAS  PubMed  Google Scholar 

  48. Kim HP, Mani I, Iversen L, Ziboh VA (1998) Effects of naturally-occurring flavonoids and bioflavonoids on epidermal cyclooxygenase and lipoxygenase from Guinea-pigs. Prostaglandins Leukot Essent Fat Acids 58:17–24

    Article  CAS  Google Scholar 

  49. Muthian G, Bright JJ (2004) Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol 24:542–552

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients 15(8):167

    Article  CAS  Google Scholar 

  51. Saeedi-Boroujeni A, Mahmoudian-Sani MR (2021) Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm 18:1–9

    Article  CAS  Google Scholar 

  52. Kadioglu O, Nass J, Saeed ME, Schuler B, Efferth T (2015) Kaempferol is an anti-inflammatory compound with activity towards NF-κB pathway proteins. Anticancer Res 35:2645–2650

    CAS  PubMed  Google Scholar 

  53. Yao K, Chen H, Liu K et al (2014) Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer. Cancer Prev Res 7:958–967

    Article  CAS  Google Scholar 

  54. Kim SH, Park JG, Lee J, Yang WS, Park GW, Kim HG, Yi YS, Baek KS, Sung NY, Hossen MJ, Lee MN, Kim JH, Cho JY (2015) The dietary flavonoid Kaempferol mediates anti-inflammatory responses via the Src, Syk, IRAK1, and IRAK4 molecular targets. Mediat Inflamm 2015:904142

    Article  Google Scholar 

  55. Manchope MF, Casagrande R, Verri WA Jr (2017) Naringenin: an analgesic and anti-inflammatory citrus flavanone. Oncotarget 8:3766–3767

    Article  PubMed  Google Scholar 

  56. Joshi R, Kulkarni YA, Wairkar S (2018) Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: an update. Life Sci 215:43–56

    Article  CAS  PubMed  Google Scholar 

  57. Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, Baracat MM, Casagrande R, Waldiceu AV Jr (2016) Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATP channel signaling pathway. PLoS One 11:e0153015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Andrade Juan E, Burgess JR (2007) Effect of the citrus flavanone naringenin on oxidative stress in rats. J Agric Food Chem 55:2142–2148

    Article  CAS  PubMed  Google Scholar 

  59. Woo ER, Pokharel YR, Yang JW, Lee SY, Kang KW (2006) Inhibition of nuclear factor-kappa B activation by 2′,8″-bi apigenin. Biol Pharm Bull 29:976–980

    Article  CAS  PubMed  Google Scholar 

  60. Seo HS, Sikder MA, Lee HJ, Ryu J, Lee CJ (2014) Apigenin inhibits tumor necrosis factor-α-induced production and gene expression of mucin through regulating nuclear factor-kappa B signaling pathway in airway epithelial cells. Biomol Ther 22:525–531

    Article  CAS  Google Scholar 

  61. Lampropoulos P, Lambropoulou M, Papalois A, Basios N, Manousi M, Simopoulos C, Tsaroucha AK (2013) The role of apigenin in an experimental model of acute pancreatitis. J Surg Res 183:129–137

    Article  CAS  PubMed  Google Scholar 

  62. Browne GW, Pitchumoni CS (2006) Pathophysiology of pulmonary complications of acute pancreatitis. World J Gastroenterol 12:7087–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Charalabopoulos A, Davakis S, Lambropoulou M, Papalois A, Simopoulos C, Tsaroucha A (2019) Apigenin exerts anti-inflammatory effects in an experimental model of acute pancreatitis by Down-regulating TNF-α. In vivo (Athens, Greece) 33:1133–1141

    CAS  Google Scholar 

  64. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr 6:408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li J, Yue Y, Hu Y, Cheng W, Liu R, Pan X et al (2014) Genistein suppresses tumor necrosis factor alpha-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor kappaB and adenosine monophosphateactivated protein kinase signal pathways in human synoviocyte MH7A cells. Drug Des Devel Ther 8:315–323

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jeong JW, Lee HH, Han MH, Kim GY, Kim WJ, Choi YH (2014) Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide stimulated BV2 microglia. Chem Biol Interact 212:30–39

    Article  CAS  PubMed  Google Scholar 

  67. Vanhees K, Van Schooten FJ, Van Waalwijk Van Doorn-Khosrovani SB, Van Helden S, Munnia A, Peluso M et al (2013) Intrauterine exposure to flavonoids modifies antioxidant status at adulthood and decreases oxidative stress-induced DNA damage. Free Radic Biol Med 57:154–161

    Article  CAS  PubMed  Google Scholar 

  68. Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, Sharma U, Jain A, Aggarwal V, Bishayee A (2019) Molecular mechanisms of action of Genistein in cancer: recent advances. Front Pharmacol 10:1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fan FY, Sang LX, Jiang M (2017) Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 22:484–512

    Article  PubMed Central  CAS  Google Scholar 

  70. Reygaert WC (2018) Green tea Catechins: their use in treating and preventing infectious diseases. Biomed Res Int 9105261:1–9

    Article  CAS  Google Scholar 

  71. Almatroodi SA, Almatroodi A, Khan AA, Alhumaydhi FA, Alsahli MA, Rahmani AH (2020) Potential therapeutic targets of epigallocatechin Gallate (EGCG), the Most abundant Catechin in green tea, and its role in the therapy of various types of cancer. Molecules 25:3146

    Article  CAS  PubMed Central  Google Scholar 

  72. Simos YV, Verginadis II, Toliopoulos IK, Velalopoulou AP, Karagounis IV, Karkabounas SC, Evangelou AM (2012) Effects of catechin and epicatechin on superoxide dismutase and glutathione peroxidase activity, in vivo. Redox Rep 17:181–186

    Article  CAS  PubMed  Google Scholar 

  73. Rodriguez SK, Guo W, Liu L, Band MA, Paulson EK, Meydani M (2006) Green tea catechin, epigallocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int J Cancer 118:1635–1644

    Article  CAS  PubMed  Google Scholar 

  74. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Article  PubMed  Google Scholar 

  77. Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr 30:45–51

    Article  CAS  PubMed  Google Scholar 

  78. Makuch S, Więcek K, Woźniak M (2021) The immunomodulatory and anti-inflammatory effect of curcumin on immune cell populations, cytokines, and in vivo models of rheumatoid arthritis. Pharmaceuticals 14:309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang Q, Ye C, Sun S, Li R, Shi X, Wang S, Zeng X, Kuang N, Liu Y, Shi Q et al (2019) Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int Immunopharmacol 72:292–300

    Article  CAS  PubMed  Google Scholar 

  80. Murakami Y, Kawata A, Fujisawa S (2018) Expression of Cyclooxygenase-2, nitric oxide synthase 2 and Heme Oxygenase-1 mRNA induced by Bis-eugenol in RAW264.7 cells and their antioxidant activity determined using the induction period method. In Vivo 31:819–831

    Google Scholar 

  81. Dai Q, Zhou D, Xu L, Song X (2018) Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug Des Dev Ther 12:4095–4105

    Article  CAS  Google Scholar 

  82. Cai H, Zheng Z, Sun Y, Liu Z, Zhang M, Li C (2015) The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des Dev Ther 9:4931–4942

    Article  Google Scholar 

  83. Lucia M (2019) Influence of resveratrol on the immune response. Nutrients 11(5):946

    Article  CAS  Google Scholar 

  84. Pannu N, Bhatnagar A (2019) Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 109:2237–2251

    Article  CAS  PubMed  Google Scholar 

  85. Rahman MH, Akter R, Bhattacharya T, Abdel-Daim MM, Alkahtani S, Arafah MW, Al-Johani NS, Alhoshani NM, Alkeraishan N, Alhenaky A, Abd-Elkader OH, El-Seedi HR, Kaushik D, Mittal V (2020) Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer’s disease. Front Pharmacol 11:619024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Urban Š, Jeras M (2012) Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Inter Rev Immunol 31:202–222

    Article  CAS  Google Scholar 

  87. Capiralla H, Vinhtduex V, Zhao H, Sankowski R, Davies P, Al-Abed Y, Marambaud P (2012) Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 120:461–472

    Article  CAS  PubMed  Google Scholar 

  88. Jiang L, Zhang L, Kang K, Fei D, Gong R, Cao Y, Pan S, Zhao M, Zhao M (2016) Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed Pharmacother 84:130–138

    Article  CAS  PubMed  Google Scholar 

  89. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug discov 5(6):493–506

    Article  CAS  PubMed  Google Scholar 

  90. Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2016) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174:1290–1324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress – implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34:907–929

    Article  CAS  PubMed  Google Scholar 

  92. Mezzomo N, Ferreira SRS (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem 3164312:1–16

    Article  CAS  Google Scholar 

  93. Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF (2010) Revealing the power of the natural red pigment lycopene. Molecules 15:959–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Palozza P, Parrone N, Catalano A, Simone R (2010) Tomato lycopene and inflammatory Cascade: basic interactions and clinical implications. Curr Med Chem 17:2547–2563

    Article  CAS  PubMed  Google Scholar 

  96. Marzocco S, Singla RK, Capasso A (2021) Multifaceted effects of lycopene: a boulevard to the multitarget-based treatment for cancer. Molecules 26:5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Story EN, Kopec RE, Schwartz SJ, Harris GK (2010) An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol 1:189–210

    Article  CAS  PubMed  Google Scholar 

  98. Bacanli M, Başaran N, Başaran AA (2017) Lycopene: is it beneficial to human health as an antioxidant? Turk J Pharm Sci 14:311–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kim YM, Talanian RV, Billiar TR (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem 272:31138–31148

    Article  CAS  PubMed  Google Scholar 

  101. Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54:469–487

    CAS  PubMed  Google Scholar 

  102. Fiedor J, Przetocki M, Siniarski A, Gajos G, Spiridis N, Freindl K, Burda K (2021) β-Carotene-induced alterations in haemoglobin affinity to O2. Antioxidants 10:451–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bai SK, Lee SJ, Na HJ et al (2005) β-Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-κB activation. Exp Mol Med 37:323–334

    Article  CAS  PubMed  Google Scholar 

  104. Das S, Bala A, Mohi IMA, Sabahuddin S, Syed AUR, Samah A, Lateef D, Dan S, Bose A (2018) Comparative study of different phytomolecules acting on hRBC to treat rheumatoid arthritis. Biomed Res 29:3010–3014

    Article  CAS  Google Scholar 

  105. Mares J (2016) Lutein and zeaxanthin isomers in eye health and disease. Annu Rev Nutr 36:571–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Koushan K, Rusovici R, Li W, Ferguson LR, Chalam KV (2013) The role of lutein in eye-related disease. Nutrients 5:1823–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim JH, Na HJ, Kim CK et al (2008) The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: role of H(2)O(2) in NF-kappaB activation. Free Radic Biol Med 45:885–896

    Article  CAS  PubMed  Google Scholar 

  108. Izumi-Nagai K, Nagai N, Ohgami K et al (2007) Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler Thromb Vasc Biol 27:2555–2562

    Article  CAS  PubMed  Google Scholar 

  109. Singh N, Bhalla M, de Jager P, Gilca M (2011) An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 8:208–213

    Article  PubMed  PubMed Central  Google Scholar 

  110. Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B (2021) Withania somnifera (L.) Dunal: opportunity for clinical repurposing in COVID-19 management. Front Pharmacol 12:623795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee IC, Choi BY (2016) Withaferin-A – a natural anticancer agent with pleitropic mechanisms of action. Int J Mol Sci 17:290–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Nagy Z, Cheung BB, Tsang W, Tan O, Herath M, Ciampa OC, Shadma F, Carter DR, Marshall GR (2020) Withaferin A activates TRIM16 for its anti-cancer activity in melanoma. Sci Rep 10:19724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Logie E, Vanden Berghe W (2020) Tackling chronic inflammation with Withanolide phytochemicals-A Withaferin a perspective. Antioxidants (Basel) 9:1107–1123

    Article  CAS  Google Scholar 

  114. Bungau S, Vesa CM, Abid A, Behl T, Tit DM, Purza AL, Pasca B, Todan LM, Endres L (2021) Withaferin A-A promising phytochemical compound with multiple results in dermatological diseases. Molecules 26:2407–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Palliyaguru DL, Singh SV, Kensler TW (2016) Withania somnifera: from prevention to treatment of cancer. Mol Nutr Food Res 60:1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544

    Google Scholar 

  117. Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li N, Shen J, Lv Y, Pan L, Ding P, Wang X, Wang Y, MacIntyre CR, Shi X (2020) Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ Int 144:106039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tabary M, Khanmohammadi S, Araghi F, Dadkhahfar S, Tavangar SM (2020) Pathologic features of COVID-19: a concise review. Pathol Res Pract 216(9):153097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. García LF (2020) Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 11:1441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46:586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Davidson AM, Wysocki J, Batlle D (2020) Interaction of SARS-CoV-2Interaction of SARS-CoV-2 and other coronavirus with ACE (angiotensin-converting enzyme)-2 as their Main receptor. Hypertension 76:1339–1349

    Article  CAS  PubMed  Google Scholar 

  122. Djomkam ALZ, Olwal CO, Sala TB, Paemka L (2020) Commentary: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Front Oncol 10:1448

    Article  PubMed  PubMed Central  Google Scholar 

  123. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L (2020) SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 54:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Samprathi M, Jayashree M (2021) Biomarkers in COVID-19: an up-to-date review. Front Pediatr 8:607647

    Article  PubMed  PubMed Central  Google Scholar 

  125. Burgos-Blasco B, Güemes-Villahoz N, Santiago JL, Fernandez-Vigo JI, Espino-Paisán L, Sarriá B, García-Feijoo J, Martinez-de-la-Casa JM (2020) Hypercytokinemia in COVID-19: tear cytokine profile in hospitalized COVID-19 patients. Exp Eye Res 200:108253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA (2020) COVID-19 and oxidative stress. Biochemistry (Mosc) 85:1543–1553

    Article  CAS  Google Scholar 

  127. Cecchini R, Cecchini AL (2020) SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses 143:110102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Beltrán-García J, Osca-Verdegal R, Pallardó FV, Ferreres J, Rodríguez M, Mulet S, Sanchis-Gomar F, Carbonell N, García-Giménez JL (2020) Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants (Basel) 29(9):936

    Article  CAS  Google Scholar 

  129. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV (2020) Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 11:570122–570132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lammi C, Arnoldi A (2021) Food-derived antioxidants and COVID-19. J Food Biochem 45:e13557

    Article  CAS  PubMed  Google Scholar 

  131. Alkhatib A (2021) Antiviral functional foods and exercise lifestyle prevention of coronavirus. Nutrients 12:2633–2648

    Article  CAS  Google Scholar 

  132. Kumar P, Kumar M, Bedi O, Gupta M, Kumar S, Jaiswal G, Rahi V, Yedke NG, Bijalwan A, Sharma S, Jamwal S (2021) Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacol 29:1001–1016

    Article  CAS  Google Scholar 

  133. Calder PC (2020) Nutrition, immunity and COVID-19. BMJ Nutr Prev Health 3:e000085

    Article  Google Scholar 

  134. Wessels I, Maywald M, Rink L (2017) Zinc as a gatekeeper of immune function. Nutrients 9:1286–1329

    Article  PubMed Central  CAS  Google Scholar 

  135. Wessels I, Rolles B, Rink L (2020) The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol 11:1712–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko S, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Aaseth J et al (2020) Zinc and respiratory tract infections: perspectives for COVID-19 (review). Int J Mol Med 46:17–26

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pal A, Squitti R, Picozza M, Pawar A, Rongioletti M, Dutta AK, Sahoo S, Goswami K, Sharma P, Prasad R (2021) Zinc and COVID-19: basis of current clinical trials. Biol Trace Elem Res 199:2882–2892

    Article  CAS  PubMed  Google Scholar 

  138. Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM (2020) Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomol Ther 10:1211–1238

    CAS  Google Scholar 

  139. Jena AB, Kanungo N, Nayak V, Chainy GBN, Dandapat J (2021) Catechin and curcumin interact with S protein of SARS-CoV2 andACE2 of human cell membrane: insights from computational studies. Sci Rep 11:2043–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE (2020) Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 11:1451–1461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Abulmeaty MMA, Aljuraiban GS, Shaikh SM, ALEid NE, Mazrou LRA, Turjoman AA, Aldosari MS, Razak S, El-Sayed MM, Areabi TM et al (2021) The efficacy of antioxidant oral supplements on the progression of COVID-19 in non-critically ill patients: a randomized controlled trial. Antioxidants 10:804–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Muhammad Y, Kani YA, Iliya S, Muhammad JB, Binji A, El-Fulaty Ahmad A, Kabir MB, Bindawa KU, Ahmed AY (2021) Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: a cross-sectional comparative study in Jigawa, Northwestern Nigeria. Sage Open Med 9:1–8

    Article  CAS  Google Scholar 

  143. Yin R, Kuo HC, Hudlikar R, Sargsyan D, Li S, Wang L, Wu R, Kong AN (2019) Gut microbiota, dietary phytochemicals and benefits to human health. Curr Pharmacol Rep 5:332–344

    Article  PubMed  PubMed Central  Google Scholar 

  144. Roy A, Chatterjee S, Nandi S, Sarkar T, Chakraborty R (2019) Nutraceuticals in human diseases: therapeutic and prophylactic potentials. Indian J Nutr 6:203

    Google Scholar 

  145. Roy A, Ghosh S, Chakraborty R (2019) Comparative research of anti-inflammatory effects of different dietary antioxidants on alcohol-induced damage in gastric cells. Free Rad Antioxidants 9:16–21

    Article  CAS  Google Scholar 

  146. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  147. Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E (2020) Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds. Molecules 25:5545–5567

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roy, A., Das, S., Chatterjee, I., Roy, S., Chakraborty, R. (2022). Anti-inflammatory Effects of Different Dietary Antioxidants. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics