Keywords

1 Problem Statement

Further \(E^n\) is the  Euclidean space of vectors x, (T denotes the transposition) with the norm \(\Vert x\Vert \); Z is the set of integers; \(Z^n\) is the n-dimensional Cartesian product. We consider a problem of numerical solving of finding on \([0,T] \times E^n\) of a system of partial differential equations

$$\begin{aligned} \frac{\partial l^{(k)(t, x)}}{\partial t} + \sum _{i=1}^n f^{(i)} (t, x) \frac{\partial l^{(k)(t, x)}}{\partial x} + \sum _{i=1}^n g_k^{(i)} (t, x) l^{(i)} (t, x) = q^{(k)} (t, x),\quad k = \overline{1, n}. \end{aligned}$$
(1)

With initial conditions

$$\begin{aligned} l^{(k)} (0, x) = r^{(k)},\quad k = \overline{1, n}. \end{aligned}$$
(2)

Further we assume that the following hypotheses be fulfilled.

Assumption 1

The problem (1)–(2) has continuous differentiable on \([0,T] \times E^n\) solution \(l(t, x) \left( l^{(1)}(t, x), \ldots , l^{(n)} (t, x) \right) \) such that partial derivatives \(\frac{\partial ^2 l^{(k)} (t, x)}{\partial t^2}\) and \(\frac{\partial ^2 l^{(k)} (t, x)}{\partial {x_i}^2}, i = 1, \ldots , n, k = 1, \ldots , n\) are continuous and bounded on \([0,T] \times E^n\). Also we assume existence of constants F, G such that

$$\begin{aligned} \Vert f(t, x) \Vert \le F(t, x) \in [0, T]; \end{aligned}$$
(3)
$$\begin{aligned} g_k (t, x) \le G(t, x) \in [0, T] \times E^n,\quad k = \overline{1, n}. \end{aligned}$$
(4)

2 Finite Difference Scheme: Approximation, Stability, Convergence

Let \(\alpha = (\alpha _1, \ldots , \alpha _n) \in E^n ; \bar{e_k}\) be the unite vector of the axis \(0x_k\) and \(\tau = T/M\) (M is a natural). Denote \(t_\nu = \nu \tau \); \(\nu = 0, \ldots , M\); \(x^\alpha = \alpha _1 h \bar{e_1}, \ldots , \alpha _n h \bar{e_n}\); \(f_{\nu , \alpha } = f(t_\nu , x^\alpha )\).

In the region \([0, T]\times E^n\) we construct grids \(\varOmega ^0 _h = {(0, x^\alpha ): \alpha \in Z^n}, \varOmega ^ \nu _h = {(t_ \nu , x^ \alpha ): \nu = 0, \ldots , M}\); \(\varOmega ^{'} _h = \left\{ (t_\nu , x^\alpha ): \nu = 1, \ldots , M; \alpha \in Z^n \right\} .\)

For grid functions \(u_{\nu , \alpha } = \left( u^{(1)} _{\nu , \alpha }, \ldots , u^{(n)} _{\nu , \alpha } \right) \) defined on grids \(\varOmega ^{\nu }_h\) and \(\varOmega ^{'}_h\) we use the corresponding norms

$$ u_{\nu , \alpha } = \sup {\varOmega _h} \Vert u_{\nu , \alpha } \Vert , u_{\nu , \alpha } = \sup {\varOmega ^{'}_h} \Vert u_{\nu , \alpha } \Vert . $$

Let \(n^{+}_{\nu , \alpha } = {j \in {1, \ldots , n}: f ^{(j)} _{\nu , \alpha } > 0}, n^{-}_{\nu , \alpha } = {j \in {1, \ldots , n}: f ^{(j)} _{\nu , \alpha } \le 0}.\)

The difference numerical scheme corresponding to the problem (1)–(2) we construct in the following way.

On the grid \(\varOmega ^{'}_{h}\):

$$\begin{aligned} \begin{aligned}&\frac{u^{(k)}_{\nu , \alpha } - u^{(k)}_{(\nu -1), \alpha }}{\tau } + \sum _{i \in n^{+}_{\nu , \alpha }} f^{(i)}_{(\nu -1), \alpha } \frac{u^{(k)}_{(\nu -1), \alpha } - u^{(k)}_{(\nu -1), \alpha - \bar{e_l}}}{h} + \\&+ \sum _{i \in n^{-}_{\nu , \alpha }} f^{(i)}_{(\nu -1), \alpha } \frac{u^{(k)}_{(\nu -1), \alpha } - u^{(k)}_{(\nu -1), \alpha }}{h} + \sum _{i=1}^n g^{(i)}_{k, (\nu =1), \alpha } u^{(i)}_{(\nu -1), \alpha } = q^{(k)}_{(\nu -1), \alpha },\quad k = \overline{1, n}. \end{aligned} \end{aligned}$$
(5)

On the grid \(\varOmega ^0_h\):

$$\begin{aligned} u^{(k)}_{0, \alpha } = r^{(k)}_\alpha , \quad k = \overline{1, n}. \end{aligned}$$
(6)

From (5)

$$\begin{aligned} \begin{aligned} u^{(k)}_{\nu , \alpha }&= \left( 1 - \frac{\tau }{h} \sum _{i=1}^n \left| f^{(i)}_{\nu -1, \alpha } \right| \right) u^{(k)}_{\nu -1, \alpha } +\\&+ \frac{\tau }{h} \sum _{i \in n^+_{\nu -1, \alpha }} f^{(i)}_{\nu -1, \alpha } \times u^{(k)}_{\nu -1, \alpha - \bar{e_l}} - \frac{\tau }{h} \sum _{i \in n^-_{\nu -1, \alpha }} f^{(i)}_{\nu -1, \alpha } \times u^{(k)}_{\nu -1, \alpha + \bar{e_l}}. \end{aligned} \end{aligned}$$

Solving the Eq. (5) with respect to \(u_{\nu , \alpha }\) obtain

$$\begin{aligned} \begin{aligned} u_{\nu , \alpha }&= \left( 1 - \frac{\tau }{h} \sum _{i=1}^n f^{(i)}_{\nu -1, \alpha } \right) f^{(k)}_{\nu -1, \alpha } + \frac{\tau }{h} \sum _{i \in n} f^{(i)}_{\nu -1, \alpha } \times u^{(k)}_{\nu -1, \alpha - \bar{e_l}} - \frac{\tau }{h} + \\&+ \frac{\tau }{h} \sum _{i \in n_{\nu -1, \alpha }} f^{(i)}_{\nu -1, \alpha } \times u^{(k)}_{\nu -1, \alpha + \bar{e_l}} - \tau \sum _{i=1}^n g^{(i)}_{k, \nu -1, \alpha } u^{(i)}_{\nu -1, \alpha } + \tau q^{(k)}_{\nu -1, \alpha } , k = \overline{1, n} \end{aligned} \end{aligned}$$
(7)

Because \(u^{(k)}_{0, \alpha }\) are known from the initial condition (6) then by the formula (7) one can calculate layer by layer at first \(u_{1, \alpha }, \alpha \in Z_n\), then \(u_{2 \alpha }, \alpha \in Z_n\), and so on.

Let us estimate the approximation order which the scheme (5)–(6) approximates the problem (1)–(2). Due to the Assumption 1 according to the Taylor series we have

$$\begin{aligned} \frac{l^{(k)}(t_\nu , x^\alpha ) - l^{(k)}(t_{\nu -1}, x^\alpha )}{\tau } = \frac{\partial l^{(k)}(t_{\nu -1}, x^\alpha )}{\partial t} + \frac{\tau }{2} \frac{\partial ^2 l^{(k)}(t_\nu , x^\alpha )}{\partial t^2} \end{aligned}$$
(8)
$$ \frac{l^{(k)}(t_{\nu -1}, x^\alpha ) - l^{(k)}(t_{\nu -1}, x^\alpha - h\bar{e_l})}{h} = \frac{\partial l^{(k)}(t_{\nu -1}, x^\alpha )}{\partial x_i} - $$
$$\begin{aligned} - \frac{h}{2} \frac{\partial ^2 l^{(k)}(t_\nu -1, \xi ^{k, \nu , \alpha })}{\partial {x_i}^2}, \quad i = \overline{1, n}, \end{aligned}$$
(9)
$$\begin{aligned} \frac{h}{2} \frac{\partial ^2 l^{(k)}(t_\nu -1, \eta ^{k, \nu , \alpha }_i)}{\partial {x_i}^2}, \quad i = \overline{1, n} \end{aligned}$$
(10)

where

$$\begin{aligned} t_\nu \le \xi ^{k}_{\nu , \alpha } \le t_ {\nu , x^\alpha - h\bar{e_{l}}} \le \xi _{i}^{k, \nu , \alpha } \le x^{\alpha }, \quad x^{\alpha } \le \eta _{i}^{k, \nu , \alpha } \le x^{\alpha } +h\bar{e_l}. \end{aligned}$$
(11)

From (6) follows that the initial condition (2) is approximated at \( \varOmega _h^0 \) exactly. Then due to (9)–(11) the residual between (1) and (5) on the solution l(tx) is equal to

$$\begin{aligned} \begin{aligned} \delta ^{(k)}_{t, h}&= \frac{\tau }{2} \frac{\partial ^2 l^{(k)} \left( \xi ^{(k)}_{\nu , \alpha } , x^\alpha \right) }{\partial {t^2}} - \frac{h}{2} \sum ^+_{i \in n_{\nu -1, \alpha }} f^{(i)}_{\nu -1, \alpha } \frac{\partial ^2 l^{(k)} \left( t_{\nu -1, \alpha } \xi ^{(k)}_{\nu , \alpha }, x_{\alpha } \right) }{\partial {t^2}} \\&+ \frac{h}{2} \sum ^-_{i \in n_{\nu -1, \alpha }} f^{(i)}_{\nu -1, \alpha } \frac{\partial ^2 l^{(k)} \left( t_{\nu -1, \alpha } \eta ^{(k, \nu , \alpha )}_{i} \right) }{\partial {x_i ^2}},\quad k=\overline{1, n} \end{aligned} \end{aligned}$$

Due to the Assumption 1 the estimation \( \Vert \delta \Vert \le c \times (\tau +h)\), \(c = const\) is valid from which follows the following proposition.

Theorem 1

If the Assumption 1 is valid then the difference scheme (5)–(6) approximates the problem (1)–(2) on its solution l(tx) with the first order with respect to \(\tau \) and h.

Let us show the stability of the difference scheme (5)–(6). It will be sufficiently for its convergence, because the initial condition (2) is approximated exactly on \(\varOmega ^0_h\).

Formula (7) shows the solvability of the difference problem (5)–(6). Let us obtain estimation of the solution of (5) corresponding to the zero initial conditions

$$\begin{aligned} u^{(k)}_{0, \alpha } = 0,\quad k = \overline{1, n}. \end{aligned}$$
(12)

If

$$\begin{aligned} 0 < \frac{\tau }{h} \le \frac{1}{nF}, \end{aligned}$$
(13)

then from (3), (4), (7) follows

$$ \sup _\alpha \Vert u_{\nu , \alpha } \Vert \le (1+ \tau Gn) \sup _\alpha \Vert u_{\nu -1, \alpha } \Vert + \tau {\Vert q_{\nu , \alpha }\Vert }^{'}_h. $$

Then taking into account (12), obtain

$$ \sup _{\nu , \alpha } \Vert u_{\nu , \alpha } \Vert \le \frac{T}{M} {\Vert q_{\nu , \alpha }\Vert }^{'}_h \left( 1+ \frac{TGn}{M} \right) ^M \times $$
$$\begin{aligned} \times \left[ \frac{1}{(1+ \tau GM)^M} + \frac{1}{(1+ \tau GM)^{M-1}} + \cdots + \frac{1}{1 + \tau GM} \right] . \end{aligned}$$
(14)

Taking into account that \((1 + \frac{TGn}{M})^M\) tends to \(e^{TGn}\) as \(M \rightarrow \infty \) and therefore is bounded, then from (14) follows that the solution \(u_{\nu , \alpha }\) of the problem (5), (12) satisfies the estimation \(\left\| u_{\nu , \alpha } \right\| _h \le L \left\| q_{\nu , \alpha } \right\| _h, L = const.\) This proves the following proposition.

Theorem 2

If conditions (3), (4) and (8) are fulfilled then the scheme (5)–(6) is stable with respect to the right-hand side. From the stability and the approximation of the difference scheme follows its convergence.

Theorem 3

Let the Assumption 1 and conditions (3), (4) and (8) be fulfilled then the solution of the difference scheme (5)–(6) converges to the solution of the problem (1)–(2) with the first order by \(\tau \) and h.