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Preface

This volume is the proceedings of the conference dedicated to 90th anniversary of
Prof. Constantin Corduneanu (1928–2018). Professor Corduneanu participated in
the conference. Unfortunately, Prof. Corduneanu passed away at the end of 2018
and this edition is our tribute and gratitude to the great mathematician.

Professor Corduneanu with students
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The conference was organized by the Ural Federal University where Prof.
Corduneanu was awarded an honorary doctorate in 2010 and the Ural State
Agrarian University.

For the proceedings we have used the same autobiography prepared by Prof.
Corduneanu in 2010 when he was elected to receive the honorary doctorate at the
Ural Federal University. We did not edit the autobiography to preserve the author’s
spirit and style.

Amadora, Portugal Sandra Pinelas
Yekaterinburg, Russia Arkadii Kim
Moscow, Russia Victor Vlasov
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Autobiography

Constantin Corduneanu

The autobiography was written for the award of the honorary doctor
by the Ural State University, 2010

I was born on July 26, 1928, in the City of Iasi, Province of Moldova, Romania,
from the parents Costache and Aglaia Corduneanu. At that time, my parents were
teachers in the village Potangeni, commune Movileni in the District of Iasi. This
was also the place where my paternal grandparents were living, situated at a dis-
tance of about 25 km of the City of Iasi (also known as Jassy). I did get the
elementary education at the school in the village where my parents were living,
having as teachers my own parents and some other teachers who taught at the
school (including some uncles).

At the age of 12, in 1940, I had to go to the City of Iasi for getting my secondary
education. I did not want to take the advice of my parents or my grandfather, I took
instead the idea of one of my uncles, who during the WW1 was a sergeant in the
Romanian Cavalry and participated at the war against Austro-Hungary and
Germany. Also he was very proud of having taken part in the campaign against the
Communist Republic of Kuhn Bela that had been established immediately after
WW1. So, I decided to participate in the competition for a place at the Military
Lyceum of Iasi, and I have been admitted there, as the 10th, from 400 competitors.
Four years later, in 1944, when the capacity exam had to be taken for promotion to
the second stage of secondary education, I had been classified the first among my
peers, with a special mention for good answers in Mathematics.

In 1945 I have been transferred from office to the National Military College
“Nicolae Filipescu” in Predeal (in the Carpathian Mountains). There I finished my
secondary education in 1947, under the guidance of very well trained teachers (most
of them were hired in the institutions of higher education, in 1948, when this elite
school had been closed by the goverment). In particular, my Mathematics teacher in
Predeal was a former Assistant of Dimitrie Pompeiu, a well-known name in Complex
Analysis. I have participated inwhat is nowadays called “Mathematical Olympiad”, in
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the years 1946 and 1947, winning a prize in each case, the first in 1947. That success
convinced me to become a mathematician, and in the Fall of 1947 I registered as a
student at the Faculty of Science, Division Mathematics, with the University of Iasi.
This was possible because the Ministry of Defense had voided the contract signed by
my parents, according to which I was supposed to attend a military academy.

The Mathematical Divison at the University of Iasi was, until 1947, under the
guidance (scientifically) of Prof. Alexandru Myller, a person with Romanian and
German ancestry, and a student of David Hilbert at the University of Goettingen,
where he obtained his doctoral degree in front of the committee headed by Hilbert,
and the other two members were Felix Klein and K. Schwartzschild. Minlowski
was also one of the professors with whom Myller had collaborated. In Goettingen,
Myller had as colleague Vera Lebedeva, from the women's university of Sankt
Petersburg, and after they both obtained their degrees, they married and settled in
Iasi, as professors of Mathematics. The students of Myller and Mrs. Vera
Myller-Lebedev, were my professors in the period 1947–1951. But the founders of
what is nowadays called The Mathematical Seminar “A. Myller” were still present
among us, the youngest students in Mathematics. Some of my professors at Iasi
have been sent by Myller to obtain Ph.D. degrees abroad, or to spend time under the
guidance of various professors in Western Europe, including, Levi-Civita and
Bompiani in Rome, Elie Cartan in Paris, W. Blasche in Hamburg, and other places.

I did not realize, at the time I became a student, that I am entering a new world, of
Science, Discipline, and Competence. But this was my great chance for my future.
During the period 1948–1956, due to the changes brought by the new regime, our
connection with the Western world was abolished. We did not get publications
coming from the Western world; the student changes that were common until the
WW2 have been suspended and a period of isolation was started. Fortunately, under
the new circumstances, for us in Mathematics the flourishing of the domain had
continued, due to the fact that the material received from the former Soviet Union,
regarding mathematical research as well as teaching, had been of highest quality.
I have used in my training as a mathematician, books or other publications authored
by such professors as I. G. Petrovski, I. V. Smirnov, A. N. Kolmogorov,
S. L. Sobolev, Stepanov and Niemytskii, A. N. Tychonoff, and others of the same
caliber. The first mathematical book I have studied entirely was Pontryagin’s famous
book on Topological Groups (1949–1950). It may appear somewhat awkward, but
even books authored by Western mathematicians have been accessible in Russian
translation. So I could read books on Differential Equations by G. Sansone,
Lamberto Cesari, E. A. Coddington and N. Levinson, E. Kamke, and others.

My association with the University of Iasi had lasted until the year 1977, the
period in which I held positions of Assistant, Lecturer, Associate Professor,
Professor, Dean of Mathematics, Vice-Rector for Research and Graduate Studies, as
well as some research positions with the Mathematical Insitute of the Romanian
Academy. I have also served, on different occasions, the Iasi Polytechnic Institute
and for 3 years the newly created institution which is known today as the University
of Suceava (where I have also served as Rector during the period 1966–1967).

(I have to stop here, because I have a meeting in 10 minutes.)
I will continue tomorrow. I will concentrate on my professional connections with

mathematicians from USSR or Russia.

x Autobiography



Constantin Corduneanu

1928 – 2018
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A Memorial Tribute to Professor Constantin
Corduneanu, The Outstanding Mathematician

Mehran Mahdavi

This paper contains the biographical sketch and reviews the scientific
contributions of Prof. Constantin Corduneanu, the outstanding
researcher in Stability and Control Theory, and Oscillations.

Corduneanu’s Life

Constantin Corduneanu was born on July 26, 1928, in the city of Iaşi, province of
Moldova, Romania, to the parents Costache and Aglaia Corduneanu. He completed
his elementary education in the village of Potangeni, Movileni commune in the
District of Iaşi, located at a distance of about 25 km from the City of Iaşi, having as
teachers his parents and some other teachers including some uncles. This village
was also the place where his paternal grandparents were living. At the age of 12, he
had to go to the City of Iaşi for getting his secondary education. He did not want to
take the advice of his parents or his grandfather. Instead, he chose the idea of one of
his uncles, who during the First World War was a sergeant in the Romanian
Cavalry. He participated in the competition for a place at the Military Lyceum of
Iaşi and was admitted, the 10th, from some 400 competitors. He completed his
secondary education in 1947. Corduneanu had great Mathematics teachers during
his secondary education like Nicolae Donciu who was serving as an assistant to
Dimitrie Pompeiu, well known in Complex Analysis at the time. These teachers
encouraged and supported him to participate in the activities at Gazeta Matematica,
including participation at the competitions organized yearly by this publication and
its supporters. He obtained the fifth prize in 1946 and the first prize in 1947.
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Corduneanu, 1936

These teachers and his growing interest and knowledge in Mathematics con-
vinced him to dedicate his career to this discipline. In the Fall of 1947, Corduneanu
became a student at the Alexandru Ioan Cuza University (AICU) in Iaşi (today
known as University of Iaşi), taking Mathematics as the subject of his studies. He
obtained his Ph.D. in Mathematics from AICU in 1956 under the supervision of
Prof. Ilie Popa; his dissertation titled “global problems for first- and second-order
nonlinear ordinary differential equations”. From 1947 until 1977, Corduneanu was
a student, teaching assistant, Assistant, Lecturer, Associate Professor, Professor,
Dean, and Vice-Rector for research and graduate studies at AICU in Iaşi, and had
some research positions with the Mathematical Institute of the Romanian Academy.
He served the Iaşi Polytechnic Institute occasionally. He also served the newly
created institution which is known today as the University of Suceava (Stefan cel
Mare University) for three years. Corduneanu had very well-educated professors,
with Ph.D. degrees or postdoctoral periods in Romania, Italy, France, and Germany.
The courses he took covered a vast area of Mathematics, at the level achieved by
this science before the Second World War (WW2). They included abstract algebra,
real analysis, differential geometry (classic and Riemann spaces), mechanics,
complex variables, and many special topics (Fourier series, relativity, minimal
surfaces, number theory, amd probability theory).

A final year course on topological groups (following Pontryagin’s book—the
English edition) prompted him to write his thesis, required for obtaining the
Diploma of Licentiate in Mathematics (something between a Bachelor’s and a
Master’s degree), on “the group of automorphisms of a topological group”. He
defined a topology on the group of automorphisms in the case of a bounded
topological group (i.e., all Markov’s seminorms are bounded on this topological
group); his first results published were part of his thesis in 1950. In 1951, when
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preparing his thesis for the degree of Licentiate, he discovered an error in a paper
published in Portugaliae Mathematica due to the University of California Los
Angeles Prof. SzeTsen Hu. The error could not be repaired under accepted
hypotheses. In 1953, Corduneanu changed his field of research to differential and
related equations. Corduneanu’s research activities began 68 years ago.

During the period 1948–1956, due to the changes brought by the new regime in
Romania, the Romanian connections with the Western world were abolished. They
did not get publications coming from the Western world, the student exchanges that
were common until the WW2 were suspended, and a period of isolation began.
Fortunately, under the new circumstances, for mathematicians, the flourishing
of the domain had continued, because the material received from the former Soviet
Union, regarding mathematical research as well as teaching, were of the highest
quality. Corduneanu used in his training as mathematician books or other publi-
cations authored by such professors as I. G. Petrovski, I. V. Smirnov,
A. N. Kolmogorov, S. L. Sobolev, V. V. Stepanov and V. V. Niemytskii,
A. N. Tychonoff, and others of the same caliber. The first mathematical book he
studied in entirety, was Pontryagin’s famous book on Topological Groups
(1949–1950). Corduneanu even had access to publications authored by Western
mathematicians which were translated to Russian. He could read books on differ-
ential equations by G. Sasone, Lamberto Cesari, E. A. Coddington and
N. Levinson, E. Kamke, and others.

Corduneanu with his father, 1938
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Corduneanu in military uniform, 1941

Corduneanu, 1968
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In 1957, he organized, with the help of his colleagues at AICU, a seminar on
“Qualitative Theory of Differential Equations”. In 1961, he participated at the
Congress of the International Union of Mechanical Sciences, organized by Iurii
Mitroploskii in Kiev. In that meeting, he met for the first time several well-known
mathematicians from various countries; Solomon Lefschetz, Jack Hale, and L.
Cesari all from the United States of America (the US), and V. V. Niemytskii from
the U.S.S.R.

In 1977 Corduneanu decided to expatriate from Romania, and reside in the US.
He went to Italy and taught some courses at the International Center for Theoretical
Physics (UNESCO) in Trieste. The Romanian authorities only allowed him to travel
to Italy. In January 1978, Corduneanu moved to the US and had a teaching position
at the University of Rhode Island. He was a visiting professor there in 1967–1968
and 1973–1974 academic years; hence familiar with the place and colleagues.
During the academic years 1978–1979, he was a visiting professor at the University
of Tennessee at Knoxville. Corduneanu obtained a tenured position as a Professor
in the Fall of 1979 at the University of Texas at Arlington (UTA).
V. Lakshmikantham was the Chair of the Mathematics department at the UTA. He
brought Corduneanu to strengthen the Mathematics doctoral program. At UTA,
Corduneanu made significant contributions to the rise of the department’s doctoral
program, which had been created in 1974. By 1987, the American Mathematical
Society ranked UTA’s Department of Mathematics 89th out of 620 Mathematics
doctoral-granting institutions in the US. Corduneanu organized a research seminar
during the period September 1990 to May 1994, in the department. All of his
students attended the seminar and presented their research work. Faculty members
were also attending the seminar. Visitors occasionally participated and presented
their research results, including V. Barbu, Y. Hamaya, M. Kwapisz, I. Gyori, and
Cz. Olech.

Corduneanu was well-liked and respected by all faculty members in the
department. They called him affectionately C. Corduneanu always assisted every-
body, students, faculty members, and mathematicians he met for the first time. He
was intellectually generous to all. Late Prof. Bernfeld whose specialty was also
differential equations always said that he was so amazed by Corduneanu’s vastness
of knowledge in differential equations. He mentioned that anytime he asked
Corduneanu a question, Corduneanu sent him to a specific paper in a particular
journal which would provide the answer to his question.

Corduneanu taught numerous courses, and his classes were always fully atten-
ded, including many engineering students. He was very popular and respected
among students, and they all wanted to take his classes. Doctoral students desired to
have Corduneanu as a member of their oral comprehensive examinations committee
or as a member of their dissertation defense committee because he genuinely
wished that students succeed in their academic endeavors. Corduneanu did his
utmost to help the students answering their questions, guiding them, and advising
them on what books or papers to read.

In May 1990, Corduneanu, along with faculty members from the engineering
department, organized the Integral Methods in Science and Engineering conference
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at the UTA. In May 1996, Corduneanu along with several faculty members,
including faculty from engineering, organized the Volterra Centennial Symposium,
at the UTA. About 100 mathematicians and engineers from 15 countries attended
the conference and presented their results. In January 2000, Corduneanu and
Mahdavi organized a special session on Integral Equations and Applications for the
American Mathematical Society at the Joint Mathematics Meetings. The meeting
was in Washington, D. C. They invited 25 mathematicians from various countries
and the US to present talks. Corduneanu retired in September 1996, after 47 years
in higher education in Romania and the US, holding the title of Emeritus Professor
of Mathematics. Corduneanu was very active after his retirement. He published
three research monographs and attended numerous conferences and meetings in the
US and around the world.

Corduneanu lecturing

The Russian School influenced most of Corduneanu’s research in differential
equations and related fields, given the abundance of publications in Russian largely
available to him during the years of his formation as a researcher, as well as the
long tradition of excellence established by Lyapunov, Chetaev, and Persidskii. He
made constant use of the literature in Russian concerning differential equations and
their applications.

In the next few paragraphs, Corduneanu’s encounters and connections with his
Russian colleagues are presented more or less in chronological order, sometimes
just casual encounters with I. G. Petrovski, N. K. Bary, B. Gnedenko, A. P. Norden,
and N. Efimov or with mathematical interest with M. A. Krasnoselskii, V. A. Pliss,
N. N. Krasovskii, N. V. Azbelev, V. M. Alekseev, V. V. Rumiantsev, and
V. V. Niemytskii.

It was the year 1959, Prof. Ivan G. Petrovski went to Bucharest, Romania, to
receive his Honorary membership in the Romanian Academy. Corduneanu could
easily recognize him from photos of him that he had seen before. He served as a
translator from Romanian to French. He was impressed with Petrovski’s modesty
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and kindness. He told Petrovski that he had used his textbooks on ordinary differ-
ential equations, partial differential equations, and integral equations when teaching
his courses. These books were all translated into Romanian. Later on, Corduneanu
was glad to read Petrovski’s remarks about Applied Mathematics, at one of the
meetings of the Moscow Mathematical Society. When one of the participants
mentioned that Russian or Soviet mathematicians were mostly producing valuable
work in pure mathematics and that they should consider also applied problems,
Petrovski commented: “If we were going to be mostly concerned with applications
of Mathematics, in short time, we would not have anything to be applied”.

He had known Prof. Nina Karlovna Bary, the spouse of Prof. V. V. Niemytskii
from the monumental volume she had authored about trigonometric series. With his
early interest in almost periodic functions, that volume was a comprehensive source
of facts and inspirations to him.

Professor B. Gnedenko visited AICU, in the years 1950s, and presented some
lectures in probability theory. Professors Efimov and Norden, both specialists in
Geometry, visited AICU, where most of Corduneanu’s professors were known for
their research work in geometry (Integral, Differential, Riemannian, etc.).

Corduneanu had mathematical interactions with V. V. Niemytskii, whom he met
several times in Moscow and Kiev, starting in 1961. They had been in corre-
spondence. Niemytskii was the editor of Referativnyi Zhurnal and knew about
Corduneanu’s research from that journal. They had fruitful (for him) discussion,
and when Niemytskii asked him about his current study, he answered in Russian
“Ja vrashchayu vokrug nepodvizhnoi tochki”. That was the method he was using,
for obtaining global existence of solutions and studying the existence of almost
periodic or just bounded solutions to nonlinear differential equations (ordinary
differential equations, sometimes partial differential equations). Corduneanu was
applying Banach, Schauder, and Tychonoff fixed point theorems to obtain those
results. Niemytskii visited AICU for at least one week and gave two or three
lectures, participated in a seminar meeting, and interacted with some of the faculty
there. Corduneanu had more opportunities to talk to him because he accompanied
Niemytskii in a two-day excursion in the Carpathian Mountains. Moreover, before
he had met him, he translated to Romanian Niemytskii’s book Topological Methods
in the Theory of Integral Equations.

In the early 1960s, Corduneanu decided to shift his interest from ordinary differ-
ential equations or delay equations to integral equations. This shift was mainly due to
his encounter with Krasnoselskii, after reading his book. Professor V. V. Rumiantsev
had known about Corduneanu’s work on comparison method and partial stability,
and guided Laszlo Hatvani, from the University of Szeged, to write his dissertation
atMoscowUniversity, based on that research (1975). Rumiantsev visited the UTA on
the occasion of an International Conference on Differential Equations organized by
the school.

Professor V. A. Pliss from Sankt-Petersburg studied boundedness problem of
solutions of ordinary differential equations and included Corduneanu’s results in a
book he published in 1964. The book was later translated to English. Corduneanu
met Prof. V. M. Alekseev at the International Congress of Mathematicians in
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Moscow, in August 1966. Before, they had met in publications. Alekseev cited
Corduneanu’s work regarding the comparison method in his papers. Corduneanu
used Alekseev’s book on control theory when teaching his graduate students at the
UTA.

Professor N. V. Azbelev had founded a school dealing with functional equations,
in Perm, Russia. Azbelev visited the UTA in 1996. Corduneanu was in commu-
nication with some of Azbelev’s former students and collaborators who were spread
around the world in various countries. Azbelev and Corduneanu had somewhat
different approaches to the study of functional differential equations, but comple-
mentary to each other.

Professor N. N. Krasovskii and Corduneanu met in Athens (Greece) in 1966, and
in Moscow in 1992. Corduneanu was aware of Krasovkii’s work and had read and
used his results since 1956. In 1956, Profs. Krasovskii and Germaidze published a
paper on the stability of general ordinary differential equations, with respect to
perturbations bounded in the mean. The underlying assumption on the ordinary
differential equation system was its uniform asymptotic stability. In January 1957,
at a session of the Romanian Academy, Corduneanu presented a similar paper,
without having seen before the article of Krasovskii-Germaidze. His underlying
assumption was the exponential asymptotic stability of the zero solution of the
nonlinear system (unperturbed). The way he had measured the perturbation was the
same that the Krasovskii-Germaidze paper was using. However, at that time, he did
not know that the integral norm he was using is equivalent to the supremum norm
used by Krasovskii-Germaidze. One year later, Corduneanu found the equivalence
of the norms in papers by Massera and Schaffer. The result established by
Krasovskii-Germaidze was better, because of the weaker assumption on the
unperturbed system. In 1960, Corduneanu used his comparison method that he
developed and proved more results on the preservation of stability under pertur-
bations, including nonlinear perturbations and the result of Krasovskii-Germaidze.

Corduneanu’s Research Work

Global Problems in the Theory of Ordinary Differential
Equations

This type of problems kept Corduneanu’s attention at the beginning of his career.
His doctoral thesis which he defended in 1956 at the University of Iaşi contained
problems of that type. Professors Miron Nicolescu, then President of the Romanian
Academy, Grigore Moisil, and Nicolae Teodorescu from Bucharest, a former stu-
dent of J. Hadamard at Sorbonne were members of his thesis defense committee.
Corduneanu continued research work in this field for several years, studying global
existence, stability problems, oscillation theory, with particular regard to the almost
periodic behavior of solutions to various classes of nonlinear equations.
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Qualitative Theory of Differential Equations, with Special
Regard to Stability Theory

His work in this category was mainly directed to ordinary differential equations and
equations with causal operators. Corduneanu published his seminal paper in
Russian in 1960 titled “Application of differential inequalities to stability theory”.
In that paper, he made one of the first steps in applying the so-called Comparison
Method and proving in a single theorem all basic results on Lyapunov stability,
based on using the Chaplyguine—Wazewski approach to differential inequalities,
and the Lyapunov’s function in general form simultaneously. This method had been
widely applied by the School of Academician V. M. Matrosov, Russia; and in
Ukraine by Academician A. A. Martynyuk and his followers. The result
Corduneanu published in 1960, was included in several monographs and treatises,
by authors like V. Lakshmikantham and S. Leela, W. Hahn, T. Yoshizawa,
A. Halanay, G. Sansone and R. Conti, and others.

Theory of Integral Equations

In this domain, Corduneanu contributed to generalizing the method due to Massera
and Schaffer, from differential equations to integral equations. His book Integral
Equations and Applications published by Cambridge University Press in 1991
contains the basic results he had obtained until 1987. This book became one of the
most often quoted references in the literature. In this book, Corduneanu illustrated
that integral equations constitute a very useful and successful tool in contemporary
research, unifying many particular results available for other classes of functional
equations (differential, integrodifferential, delayed argument). Also, his book
Integral Equations and Stability of Feedback Systems published by Academic Press
in 1973 contains qualitative results with applications to the stability of systems of
automatic control.

Equations with Causal Operators

Corduneanu aimed to present, as much as possible, a unified theory of equations
with causal operators (according to Volterra—Tonelli—Tychonoff), that can cover
the classical types of ordinary differential equations, equations with delay, inte-
grodifferential equations with Volterra type integral, and some discrete evolution
equations. The book Functional Equations with Causal Operators published by
Taylor and Francis in 2002 contains these topics. This book covers research con-
ducted by Corduneanu and a group of his students as well as joint projects with
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Mehran Mahdavi and Yizeng Li. The book by Corduneanu, Li, and Mahdavi titled
Functional Differential Equations: Advances and Applications, published by Wiley
in 2016, also is dedicated to this type of equations and their connection with the
classical kinds of equations.

Fourier Analysis (Generalized)

For over half a century, a wide range of problems has been investigated in this field.
Corduneanu made significant contributions to oscillation theory and oscillation
theory with particular regard to the almost periodic behavior of solutions to various
classes of nonlinear equations. His books Almost Periodic Oscillations and Waves
published by Springer in 2009, and Almost Periodic Functions published by John
Wiley in 1968 are concerned with this subject.

Corduneanu presented over 140 papers at various meetings and conferences on
mathematical topics, held in Romania, Hungary, Czechoslovakia, Bulgaria, Soviet
Union, Russia, Ukraine, Germany, Belgium, Italy, the US, the Netherlands,
England, Scotland, Japan, Canada, France, Morocco, Greece, Poland, China,
Portugal, and Chile. He was invited to present his research work at over 31 national
and international conferences. He was an invited lecturer at 53 Colloquium and
Exchange Programs in various countries outside of the US. From 1968 till 2017, he
was an invited lecturer at 36 universities in the US. Corduneanu was the founding
editor of the journal Libertas Mathematica, a publication of the American
Romanian Academy of Arts and Sciences. He published the first volume in 1981
and continued this task until 2011. Authors around the world have quoted
Corduneanu’s work in over 110 books, monographs, and textbooks.

Corduneanu at Mahdavi’s residence, Maryland.
We were working on our book, 2011
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Corduneanu attended more than 100 national and international conferences, had
short visits and gave talks about his research work in over 60 universities or
institutes, in over 20 countries including Russia, Ukraine, Germany, England,
France, Italy, China, Japan, Hungary, Poland, Portugal, and Chile.

Teaching Activities

Aug 1996–2018 Emeritus Professor, University of Texas at Arlington;
1979–1996 Professor, University of Texas at Arlington;
1978–1979 Visiting Professor, University of Tennessee;
Spring 1978 Visiting Professor, University of Rhode Island;
1968–1977 Professor, University of Iaşi;
1973–1974 Visiting Professor, University of Rhode Island;
1967–1968 Visiting Professor, University of Rhode Island;
1962–1967 Associate Professor, University of Iaşi;
1955–1962 Lecturer, University of Iaşi;
1950–1955 Assistant, University of Iaşi;
1949–1950 Teaching Assistant, University of Iaşi.

Administrative

1998–2018 Emeritus President, American Romanian Academy of Arts and
Sciences;

1995–1998 President, American Romanian Academy of Arts and Sciences;
1982–1995 Counselor and member of the Executive Committee, American

Romanian Academy of Arts and Sciences;
1972–1977 Vice-Rector, University of Iaşi, 1972–1977 (on leave, 1973–1974).

In charge of research and graduate studies;
1968–1972 Dean of the Mathematics Faculty, University of Iaşi;
1966–1967 Rector (President) of the Teachers Training College in Suceava

(today the Stefan cel Mare University, Suceava);
1964–1967 Head (Chairman) of the Mathematical Division at the Teachers

Training College in Suceava.
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Editorial Activities

Editor

1981–2011 Libertas Mathematica, the Mathematical Journal of the American
Romanian Academy of Arts and Sciences.

Associate Editor

2001–2018 Nonlinear Dynamics and Systems Theory, Kiev, Ukraine;
2001–2018 Nonlinear Functional Analysis and Applications, Korea;
1996–2018 Annals of Ovidius University, Constanta, Romania;
1996–2018 Analele Stiintifice University Iaşi, Romania;
1995–2018 Functional Differential Equations, Israel;
1994–2018 Communications on Applied Nonlinear Analysis, USA;
1979–1995 Journal of Integral Equations and Applications, USA;
1988–1992 Differential and Integral Equations, USA;
1977–1985 Nonlinear Analysis: Theory, Methods, and Applications, UK;
1973–1978 Revue Roumaine de Math. Pures Appl., Romania;
1969–1977 Analele Stiintifice ale Universitatii Iaşi, Romania;
1967–1975 Mathematical Systems Theory, Germany.

Awards

2010 Honorary Doctor, University of Ekaterinburg, Russia;
2005 Honorary member of the Mathematical Institute of the Romanian Academy,

Bucharest;
2003 Doctor Honorius Causa, Stefan cel Mare University, Suceava, Romania;
2003 Best paper award, CASYS’03, Liege, Belgium;
2002 “V. Pogor” Prize of the Municipality of Iaşi;
2001 Medal of Merit in Mathematics from the Union of Czech Mathematicians;
1999 Doctor Honorius Causa, Transylvania University, Brasov, Romania;
1994 Doctor Honorius Causa, University of Iaşi, Romania;
1994 Doctor Honorius Causa, Ovidius University, Constanta, Romania;
1991 Distinguished Research Award, University of Texas at Arlington, USA.;
1974 Elected Correspondent Member of the Romanian Academy of Sciences in

Bucharest, Division of Mathematical Sciences;
1963 The Research Award of the Romanian Academy of Sciences, for research

work in “Stability Theory of Automatic Control Systems”;
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1961 The Research Award of the Department of Education in Bucharest, for
research conducted in regard to “Comparison Method in Stability Theory”.

Invited Lectures (Colloquium Programs, Exchange Programs)

1. Czechoslovakia: The Mathematical Institutes of the Academies of Sciences,
and the Universities in Prague, Brunno, and Bratislava (1962, 1966, 1971).

2. Belgium: The University of Louvain (1971, 1976).
3. United Kingdom: The Universities of Warwick, Durham, and Sussex (1971,

1973); The University of Wales (1989); The University of Dundee (1992);
University of Strathclyde (1994).

4. Canada: The University of Montreal (1973); McGill University (1987);
Montreal Polytechnic (1989); University of Victoria (1993); University of
Waterloo (1994).

5. Italy: The Universities in Milano, Florence, Perugia, Naples, and Politecnico in
Torino (1965–1993); Instituto di Alta Mathematica in Rome (1971).

6. Morocco: The University of Marrakech (1994, 1995).
7. Japan: Okayama University of Science, Okayama; Gunma University, Kiryu;

Shizuoka University, Hamamatsu (2004); the University of Electro-
Communications, Chofu (2001).

8. West Germany: Free University of Berlin (2001); Technical University in
Aachen (1986).

9. Chile: The University of Osorno (2002).
10. China: Tianjin University (1998); Normal University, Beijing; Harbin

University, Harbin (2009).
11. USA: Arizona State, Brown, Case Western Reserve, Cornell, Drexel, Florida

State, Southern Methodist, Texas Christian, and Wichita State Universities; the
Universities of Rhode Island, Florida at Gainesville, Georgia at Athens,
Colorado at Boulder, Colorado at Colorado Springs, Tennessee at Knoxville,
Maryland at College Park, South Florida, Arizona at Tucson, Southern
California, Wisconsin at Madison, Texas at Arlington, Dallas at Irving, New
Mexico at Albuquerque, California at Los Angeles, Utah at Salt Lake City,
Miami at Coral Gables; Bishop College in Dallas, Pomona Colleges,
Rensselaer Polytechnic Institute, Georgia Institute of Technology, Virginia
Polytechnic Institute and State University; Ohio University, University of
Pittsburgh, University of Houston (Downtown); Virginia State University,
Petersburg; Howard University, Washington, D.C. (1968–2017).
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Memberships

American Mathematical Society, Society for Industrial and Applied Mathematics,
Mathematical Association of America, American Romanian Academy of Arts and
Sciences, Romanian Academy, Honor Society for International Scholars,
PHI BETA DELTA, International Federation of Nonlinear Analysts.

Corduneanu guided and assisted the research work of the following students:
Viorel Barbu, Marica Lewin, C. P. Tsokos, A. N. V. Rao, S. Travis, D-Ph.
K. Hsing, Reza Aftabizadeh, and William J. Layton.

Corduneanu was the Ph.D. advisor of the following students: Nicolai Pavel (Ph.
D., 1972, University of Iaşi), Sergiu Aizicovici (Ph.D., 1977, University of Iaşi),
Hushang Poorkarimi (Ph.D., 1984, UTA), Mohammad Hadi Moadab (Ph.D., 1988,
UTA), Ali Ansari (Ph.D. 1990, UTA), Mehran Mahdavi (Ph.D., 1992, UTA),
Yizeng Li (Ph.D., 1993, UTA), and Zephirinus Okonkwo (Ph.D., 1994, UTA).

In 2017 Corduneanu fell ill. He was in and out of nursing facilities and hospitals
frequently. However, he continued his schedule of traveling to conferences and
meetings. He visited Romania several times. In August 2018, he attended a con-
ference that was held in honor of his 90th birthday, at Ural State University in
Ekaterinburg, Russia. On December 10, 2018, I received a phone call from a
Corduneanu’s friend who was taking care of him at his home in Arlington, Texas,
that he was very ill and about to pass away. He was taken to the Intensive Care Unit
at a hospital in Arlington. On December 14, I flew to Arlington and stayed there
until December 20, visiting Corduneanu every day at the hospital. On December 27,
I received a text message from Corduneanu’s friend that he had passed away the
night before, December 26, at 10:30 pm. I was so saddened, and my heart ached.
I have known Constantin Corduneanu for 30 years. He was an exemplary mathe-
matician and more importantly, a decent, kind, generous, and honorable man.
Corduneanu did not have any children and was preceded in death by his wife,
Alice, in 2005. Corduneanu’s body was taken to Iaşi, and he was buried there, next
to his wife, Alice.

List of Books and Monographs by C. Corduneanu

1. Functii Aproape Periodice, Editura Academiei, Bucharest, 1961.
2. Almost Periodic Functions, John Wiley & Sons, New York, 1968 (translation

of no. 1 above, enlarged: with the cooperation of N. Gheorghiu and V. Barbu).
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Corduneanu and Mahdavi at Baltimore Washington International Airport, 2011

3. Principles of Differential and Integral Equations, Allyn & Bacon, Inc., Boston,
1971.

4. Differential and Integral Equations (Romanian), University of Iaşi Press, 1971
(Romanian version of no. 3).

5. Integral Equations and Stability of Feedback Systems, Academic Press, Inc.,
New York, 1973.

6. Differential and Integral Equations (Romanian), University of Iaşi Press, 1977
(with an Appendix by N. Pavel).

7. Principles of Differential and Integral Equations, Chelsea Publishing Company,
The Bronx, New York, 1977.

8. Principles of Differential and Integral Equations (Stereotype edition of no. 7)
(this edition is currently distributed by the American Mathematical Society and
Oxford University Press).

9. Almost Periodic Functions (second English edition, enlarged), Chelsea
Publishing Company, The Bronx, New York, 1989 (this edition is currently
distributed by the American Mathematical Society and Oxford University
Press).

10. Integral Equations and Applications, Cambridge University Press, 1991.
11. Functional Equations with Causal Operators, Taylor and Francis, London,

2002.
12. Integral Equations and Applications (a paperback edition), Cambridge

University Press, 2008.
13. Almost Periodic Oscillations and Waves, Springer, New York, 2009.
14. Integral Equations and Applications (a paperback edition), Cambridge

University Press, New Delhi, India, 2014.
15. Functional Differential Equations: Advances and Applications, John Wiley &

Sons, Hoboken, New Jersey, 2016 (with Yizeng Li and Mehran Mahdavi).
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List of C. Corduneanu’s Selected Papers

1. Approximation and stability of solutions of hyperbolic equations with char-
acteristic data, Comm. Acad. R. P. R. V, 21–26, 1955. (Romanian).

2. On a boundary value problem for second order nonlinear differential equations,
Analele Stiintifice University Iaşi, N. S. 1, 11–16, 1955. (Romanian)

3. Differential systems with bounded solutions, Comptes Rendus Acad. Sci., Paris
245, 21–24, 1957. (French)

4. Differential equations in Banach spaces: Theorems of existence and continua-
bility, Rendiconti Accad. Naz. Lincei XXIII, 226–230, 1957. (Italian)

5. On the existence of bounded solutions for nonlinear differential systems,
Annales Polonici Math., V, 103–106, 1958. (French)

6. On conditional stability under constantly acting disturbances, Acta Scientiarum
Math. Szeged XIX, 229–237, 1958. (French)

7. On boundary value problems for differential systems, Rendiconti Mat. Napoli,
XXV, 98–106, 1958. (Italian)

8. On asymptotic stability I, Analele Stiintifice University Iaşi, V, 37–40, 1959.
(French)

9. On asymptotic stability II, Revue Roumaine Math., V, 209–213, 1960. (French)
10. On the existence of bounded solutions to some classes of nonlinear differential

systems, Doklady Akad. Nauk SSSR, 131, 735–737, 1960. (Russian)
11. Application of differential inequalities to stability theory, Analele Stiintifice

University Iaşi, VI, 47–58, 1960. (Russian)
12. On some nonlinear differential systems, Ibidem, 257–260. (French)
13. Global existence theorems for differential systems with delayed argument,

Studii Cercetari Mat. Iaşi, XII, 249–258, 1961. (Romanian) (Russian version in
the Proceedings of ICNO Symp. Kiev, 1961)

14. An integral equation from the theory of automatic control, Comptes Rendus
Acad. Sci. Paris 256, 3564–3567, 1963. (French)

15. On partial stability, Revue Roumaine Math., IX, 229–236, 1964. (French)
16. Some problems concerning stability theory, Abhandl. Deutsch. Akad.

Wissensch. zu Berlin (Math-Physik Klasse) (1), 143–156, 1965. (French)
17. Global problems in the theory of Volterra integral equations, Annali Mat. Pura

Appl., 67, 349–363, 1965. (French)
18. On certain Volterra functional equations, Funk Ekvacioj, 9, 119–127, 1966.

(French)
19. Some qualitative problems in the theory of integro-differential equations,

Colloquium Mathematicum, 18, 77–87, 1967. (French)
20. Some perturbation problems in the theory of integral equations, Mathematical

Systems Theory I, 143–153, 1967.
21. Stability of linear time-varying systems, Math. Systems Theory, 3, 151–155,

1969.
22. Periodic and almost periodic solutions of some convolution equations, Trudy

Fifth Int. Conf. Nonlinear Osc., Kiev III, 311–320, 1970.
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23. Some problems concerning partial stability (�), In Symp. Math., 6, 141–154,
Academic Press, 1971.

24. Stability problems for some classes of feedback systems, In the volume
“Eq. Diff. Fonct. non lineaires”, Herman, Paris, 398–405, 1973.

25. On partial stability for delay systems, Annales Polonici Math., XXIX, 357–
362, 1974–1975.

26. Functional equations with infinite delay, Bolletino Unione Mat. Italiana 11
(suppl.), 173–181, 1975.

27. The stability of some feedback systems with delay, J. Math. An. Appl., 51,
377–393, 1975. (with N. Luca)

28. Equations with unbounded delay: A survey, Nonlinear Analysis, TMA, 4, 831–
877, 1980. (with V. Lakshmikantham)

29. Bounded and almost periodic solutions of certain nonlinear elliptic equations,
Tohoku Math. J., 32, 265–278, 1980.

30. Recent contributions to the theory of differential systems with infinite delay,
Libertas Mathematica, I, 91–116, 1981.

31. Almost periodic discrete processes, Libertas Mathematica, II, 159–169, 1982.
32. Bielecki’s method in the theory of integral equations, Annales Univ.

Mariae-Curie Skladowska, Lublin, 38 (2), 23–40, 1984.
33. Two qualitative inequalities, J. Differential Equations, 61, 16–25, 1985.
34. A singular perturbation approach to abstract Volterra equations, In Nonlinear

Analysis and Applications, M. Dekker, 133–138, 1987.
35. Perturbation of linear abstract Volterra equations, J. Integral Equations and

Appl., 2, 393–401, 1990.
36. LQ-Optimal control problems for systems with abstract Volterra operators,

Tekhn. Kibernetika (1), 132–136, 1993. (Russian)(English version in Libertas
Mathematica)

37. Discrete qualitative inequalities and applications, Nonlinear Analysis, TMA,
25, 933–939, 1995.

38. Asymptotic behavior of systems with abstract Volterra operators. In (C.
Corduneanu, Editor) Qualitative Problems for Differential Equations and
Control Theory, World Scientific, Singapore, 113–120, 1995. (with M.
Mahdavi)

39. Neutral functional differential equations with abstract Volterra operators. In
Advances in Nonlinear Dynamics, 5, Gordon & Breach, 229–235, 1997.

40. On neutral functional differential equations with causal operators, Proceedings
of the Third Workshop of the Inter. Inst. General Systems Science: Systems
Science and Its Applications, Tianjin People’s Publishing House, Tianjin, 43–
48, 1998. (with M. Mahdavi)

41. Abstract Volterra equations: A survy, Mathematical and Computer Modeling,
32 (11), 1503–1528, 2000.

42. Existence of solutions for neutral functional differential equations with causal
operators, Journal of Differential Equations, 168, 93–101, 2000.
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43. On neutral functional differential equations with causal operators, II. Integral
Methods in Science and Engineering, Chapman & Hall/CRC, London, 102–
106, 2000. (with M. Mahdavi)

44. Discrete dynamical systems described by neutral equations. In Differential
Equations and Nonlinear Mechanics (K. Vajravelu, Editor), 69–74, Kluwer
Academic, Dordrecht, 2001.

45. Some existence results for functional equations with causal operators,
Nonlinear Analysis, TMA, 47, 709–716, 2001.

46. Absolute stability for neutral differential equations, European Journal of
Control, 209–212, 2002.

47. Neutral functional equations in discrete time. In Proceedings of the Inter. Conf.
on Nonlinear Operators, Differential Equations and Applications, Babes-Bolyai
Univ. of Cluj-Napoca, Romania, III, Cluj-Napoca, Romania, 33–40, 2002.
(with M. Mahdavi)

48. A class of second order functional differential equations of neutral type,
Mathematical Reports, Romanian Academy, 5 (55) (4), 293–299, 2003. (with
M. Mahdavi)

49. On exponential asymptotic stability for functional differential equations with
causal operators. In Advances in Stability Theory at the end of 20th Century (A.
A. Martynyuk, Editor), 15–23, Taylor & Francis, London, 2003. (with Y. Li)

50. A modified LQ-Optimal control problem for causal functional differential
equations, Nonlinear Dynamics and Systems Theory, 4, 139–144, 2004.

51. Some remarks on functional equations with advanced-delayed operators. In
American Institute of Physics Conf. Proceedings, 718, Liege, Belgium, 204–
209, 2004.

52. Second order functional equations of neutral type, Dynamic Systems and
Applications, 14, 83–89, 2005.

53. Stability of invariant sets of functional differential equations with delay,
Nonlinear Functional Analysis and Applications, 10, 11–24, 2005. (with A.
O. Ignatyev)

54. A duality principle in the theory of dynamical systems, Nonlinear Dynamics
and Systems Theory, 5, 135–140, 2005. (with Y. Li)

55. Some function spaces on R, Libertas Mathematica, XXVI, 79–82, 2006. (with
M. Mahdavi)

56. New examples for a duality principle in the theory of dynamical systems. In
Proceedings of CASYS’05, American Institute of Physics, 839, Liege,
Belgium, 340–343, 2006. (with Y. Li and M. Mahdavi)

57. Almost periodicity in functional equations. In: Progress in Nonlinear
Differential Equations and Their Applications (V. Staicu, Editor), 75,
Birkhauser, 157–163, 2007.

58. Neutral functional equations with causal operators on a semi-axis, Nonlinear
Dynamics and Systems Theory, 8, 339–348, 2008. (with M. Mahdavi)

59. Neutral functional equations of the second order, Functional Differential
Equations, 16, 263–271, 2009. (with M. Mahdavi)
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60. Some classes of second order functional differential equations, Nonlinear
Analysis TMA, 71, e865–e871, 2009.

61. Some comments on almost periodicity and related topics, Communications in
Mathematical Analysis, 8, 5–15, 2010.

62. Almost periodicity in semilinear systems. In Integral Methods in Science and
Engineering (C. Constanda and P. J. Harris, Editors), Birkhauser, Boston,
141–146, 2011.

63. Boundedness of solutions for a second order differential equation with causal
operators, Nonlinear Studies, 18, 135–139, 2011.

64. A scale of almost periodic function spaces, Differential and Integral Equations,
24, 1–27, 2011.

65. A neutral-convolution type functional equation, Libertas Mathematica, 31,
87–92, 2011 (with Y. Li).

66. APr-almost periodic solutions to functional differential equations with deviated
argument, Functional Differential Equations, 19, 59–69, 2012.

67. Elements of an axiomatic construction of the theory of almost periodic
functions, Libertas Mathematica, 32, 5–18, 2012. (French).

68. Almost periodicity: a new approach. In VII-th International Congress of
Romanian Mathematicians/Editura Academiei, 121–129, Bucharest, 2013.

69. Formal trigonometric series, almost periodicity and oscillatory functions,
Nonlinear Dynamics and Systems Theory, 13, 367–388, 2013.

70. Existence of APr-almost periodic solutions for some classes of functional dif-
ferential equations, African Diaspora Journal of Mathematics, 15, 47–55, 2013
(with M. Mahdavi).

71. Searching exponents for generalized trigonometric series, Nonlinear Dynamics
and Systems Theory, 16, 298–319, 2016.

72. A glimpse on Fourier Analysis: Third Stage, International Journal of Numerical
Analysis and Modeling, Institute for Scientific Computing and Information, 15,
520–523, 2018.

Mehran Mahdavi
Department of Mathematics

Bowie State University
Bowie, Maryland, USA

e-mail: mmahdavi@bowiestate.edu
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Memorial Notes to Professor Constantin
Corduneanu

Professor Corduneanu’s Friends and Students

In Memory of Professor Constantin Corduneanu

Olusola Akinyele
Department of Mathematics
Bowie State University
Bowie, Maryland, USA
e-mail: oakinyel@bowiestate.edu

Professor Corduneanu had a large impact on my work in the stability theory of
ordinary and functional differential equations. While I was a faculty in the late
1970s, at the University of Ibadan, Nigeria, I had correspondences with him on the
state of research in stability theory particularly partial stability on which he had
done a lot of research. He kindly sent to me several articles containing his research,
and encouraged me to pursue further research on the subject. My work on partial
stability was a testimony to his efforts in this direction. I later met him at a con-
ference at the University of Texas, Arlington, in 1982 during my sabbatical year at
Iowa State University, Ames. At that conference we had very useful discussions on
my presentation and as usual he was companionate, kind, and always willing to
help and encourage. He will be missed by the academic community, friends,
students, and associates.
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Professor Constantin Corduneanu

I first met Dr. Corduneanu when I was a graduate electrical engineering student at
the University of Texas at Arlington. I decided to take his graduate Applied
Differential Equations class, and at the time, I would have not imagined the impact
this decision would have on my future. Meeting Dr. Corduneanu changed the way I
viewed math and engineering. His deep understanding of the history and marriage
of Mathematics and engineering inspired me to study under his supervision and
switch my area of interest from electrical engineering to Mathematics. He was not
only passionate about his area of research but also cared deeply about his students,
and his mentorship often extended beyond academic studies. His presence in my
life helped shaped who I am today. Moreover, his mentorship has guided, and will
always continue to guide, the mentorships I have with my own students. My time
with Dr. Corduneanu was nothing short of inspiring and played a significant role in
my life, and I truly thank him for his mentorship. He will be missed.

Ali Ansari
Department of Engineering and Computer Science

Virginia State University
Petersburg, Virginia, USA
e-mail: aansari@vsu.edu
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My Memories of Professor Constantin
Corduneanu

I have been fortunate to have had teachers who instructed by their good example.
I met Prof. Corduneanu attending his seminar on Applied Nonlinear Analysis when
he visited the University of Tennessee in the 1970s. In the seminar, he would
present a problem, describe the people who brought the theory to that problem, then
begin its analysis. Sometimes he would finish the analysis that period, but often he
would get to a sticking point and say that he hoped to have a resolution by the next
seminar. He always ended by giving similar and interesting open problems within
reach of those near the start of their careers. I attended, listened to the conversation
of the professors, and kept quiet. One seminar, after a surprising twist in an exis-
tence proof where the disconnected pieces fell into place in a figure drawn at the last
step, I made the simple comment “that was a beautiful proof”. He invited me to his
office, where we discussed an open problem. I searched for its solution (which he
led me to without me seeing it), he helped me write it up into a paper (without being
coauthor) and submitted it to a journal for me (that had an editor whom he knew
would be interested in the result). It was my first publication, in an area distant from
my eventual thesis.

A few years later, we met again at a conference at the University of Texas at
Arlington. I gave a talk that I very much wanted to be excellent and, of course,
turned out to be the worst talk I have ever given. But it was no problem. Professor
Corduneanu invited my wife and me to dinner at his house that evening. I have
three memories from that dinner. First, except for us two, everyone at the table was
a famous analyst. My second memory was of the delicious food and the volume of
wine that crossed from the kitchen to the table. But my strongest memory was the
warmth of the home, the good humor of he and his wife affected us all and the pure
pleasure we all felt for being there with him.

In that seminar, and subsequently, I learned much from Prof. Corduneanu.
I learned the theory of almost periodic functions and nonlinear analysis. I learned
that the reward of research is the joy in the “doing of the thing” (rather than honors,
status, etc.). I learned to be generous in helping students and to take pleasure in their
success. I learned that our most important duty is to nurture the next generation of
mathematicians so Mathematics can progress.
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The last time we met was in 2015. He gave a talk at a conference on the next 100
years of harmonic analysis. He outlined a theory needed to allow the analysis of
signals that are beyond the Fourier theory of periodic functions, quasi-periodicity
and that of almost periodic functions. In the course of his presentation, he also
looked out and talked about why it was important that the generation there listening
surpass their teachers.

I have been fortunate to have had Prof. Corduneanu as a teacher who instructed
by his example. These and other lessons he taught are now passed on to my students
and their students, most recently, the students of the students of my students.

William Layton
Department of Mathematics

University of Pittsburgh
Pittsburgh, Pennsylvania, USA

e-mail: wjl@pitt.edu
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On Abstract Volterra Equations
in Partially Ordered Spaces
and Their Applications

E. O. Burlakov and E. S. Zhukovskiy

Abstract We introduce the notion of abstract Volterra mapping acting in a partially
ordered set. For an equation with such mapping, we define the notions of local,
global, and maximally extended solutions and prove a theorem on its solvability. We
apply this result to a discontinuous Uryson-type integral equation with respect to a
spatiotemporal-dependent phase variable. In particular, such equations generalize a
class of “switching” models of the electrical activity in the cerebral cortex.

Keywords Partially ordered spaces · Abstract Volterra mappings ·
Uryson integral equations

1 Introduction

Since the seminal papers by L. Tonelli, D. Graffi, and A. Tikhonov (see [13], [7], and
[12], respectively) on the Volterra property of an operator in a functional space there
have appeared many works using various definitions of abstract Volterra property
(see [4, 6, 11, 16] to name but a few). A detailed review on the results on solvability
and unique solvability of abstract Volterra equations in functional spaces is given
in [5]. Most of the works deal with linear abstract Volterra mappings of normed
spaces defining themasmappings possessing series of embedded invariant subspaces;
another typical way of definition of the abstract Volterra property uses the notion of
projections (These two definitions are equivalent in the case of linear mappings).
Both these ways of definition of the abstract Volterra property restrict the choice of
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basic spaces to the spaces possessing a linear structure. Existence and uniqueness of
fixed points of nonlinear abstractVolterramappings acting inmetric spaces have been
investigated in [15] using the definition of the abstract Volerra property via a system
of equivalence relations. Solvability of nonlinear equations with abstract Volterra
mappings is usually proved by using fixed point theorems assuming continuity of
the these mappings (such as e.g. Banach and Schauder fixed point theorems). The
present work employs an analogue of the definition of the Volterra property from [14]
and [15] to establish the solvability of operator equations in partially ordered sets.
The results obtained are applied in Sect. 4 to a discontinuous Uryson-type integral
equation, where the state variable is both time- and space-dependent. Such equations
arise e.g. in the neural field modeling, where the neurons are assumed to “switch”
between the “rest state” and the “active state” (see, e.g. [3] for more details). The
results of Sect. 4 provide the approach for solving the aforementioned “switching”
neural field equations, which is alternative to the the apptoach based on the theory
of inclusions (see e.g. [2]).

2 Preliminaries

Let (U,≤) be a partially ordered set and M ∈ U be a nonempty subset. Recall that
an upper (respectively lower) bound for M is an element b ∈ U such that m ≤ b
(respectively b ≤ m) for each m ∈ M ; the supremum of M , if it exists, is an upper
bound for M that is a lower bound for the set of all upper bounds of M . Recall also
that a set C ⊂ U is called a chain, if for any u, v ∈ C, it holds true that u ≤ v or
v ≤ u. A map Φ : U → U is isotone if the relation u ≤ v implies Φu ≤ Φv.

Lemma 1 Let (U,≤) be a partially ordered set andΦ : U → U be isotone. Assume
that

(a) there is û ∈ U such that û ≤ Φû,
(b) any chain C ∈ U such that any u ∈ C satisfies the relation u ≤ Φu has an

upper bound b ∈ U such that b ≤ Φb.
Then there exists a fixed point u of Φ : U → U such that û ≤ u.

Lemma 1 is a direct implication of a more general Theorem 1 of the work [1].

Remark 1 If we replace the condition (b) in Lemma 1 by the following condition:
(b′) any chain in {u ∈ U, û ≤ u} has a supremum̂b ∈ U , we obtain the well-known
result by B. Knaster and A. Tarski (see e.g. [8], Sect. 2, Theorem 1.1). Moreover, (b′)
implies (b). Indeed, by the virtue of isotonicity of Φ : U → U , we have u ≤ Φu ≤
Φ̂b for any u ∈ C, which by the definition of supremum implieŝb ≤ Φ̂b.
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3 Main Results

Let (U,≤) be a partially ordered set. For any γ ∈ [0, 1] we put into the correspon-
dence the equivalence relation E(γ) on the elements of the set U . Suppose that the
family E = {E(γ), γ ∈ [0, 1]} of equivalence relations E(γ), γ ∈ [0, 1], satisfies the
following conditions:

(e1) the valueγ = 1 corresponds to the equality relation (any two distinct elements
are not E(1)-equivalent);

(e) if γ1 > γ2, then E(γ1) ⊂ E(γ2) (any E(γ1)-equivalent elements are E(γ2)-
equivalent).

Definition 1 Amapping Φ : U → U is said to be a Volterra mapping on the family
E of equivalence relations if for any γ ∈ [0, 1] and any u, v ∈ U such that (u, v) ∈
E(γ), it holds true that (Φu, Φv) ∈ E(γ).

In other words, Volterra (on the family E) mappings keep the equivalence relation
E(γ) at any γ ∈ [0, 1] mapping E(γ)-equivalent elements of U to E(γ)-equivalent
elements. Further, we refer to such mappings as Volterra mappings understanding
the Volterra property in the sense of Definition 1.

We denote by uγ the E(γ)-equivalence class of the element u ∈ U and by
U/E(γ)—the quotient set of U with respect to the equivalence relation E(γ).

We assume that the partially ordered set (U,≤) and the system of relations E
satisfy the following property:

(e≤) for any u, v ∈ U , u ≤ v, and all γ ∈ [0, 1]
− for any û ∈ uγ , there exists v̂ ∈ vγ such that û ≤ v̂;
− if for any v̂ ∈ vγ there exist û ∈ uγ such that v̂ ≤ û, then uγ = vγ .

Now we can define the relation ≤ on the elements of U/E(γ), γ ∈ [0, 1]. We do
it as follows: for each γ ∈ [0, 1] and any uγ, vγ ∈ U/E(γ)

uγ ≤ vγ ⇐⇒ ∀u ∈ uγ ∃v ∈ vγ u ≤ v.

For any γ ∈ (0, 1], we define a canonical projection Πγ : U → U/E(γ) as a
mapping that puts into the correspondence to each u ∈ U its equivalence class uγ .
Identifying each class u1 = {u} ∈ U/E(1) to its unique element u ∈ U we consider
Π1 to be the identity mapping. By the definition of the relation ≤ on the setU/E(γ),
the mapping Πγ : U → U/E(γ) is isotone for all γ ∈ (0, 1].

For a Volterra mapping Φ : U → U , at each γ ∈ [0, 1], we define the mapping
Φγ : U/E(γ) → U/E(γ) as follows:Φγuγ = ΠγΦu, where u is an arbitrary element
of uγ . This definition is correct, as due to the Volterra property of Φ : U → U the
arbitrary choice of u ∈ uγ does not affect the value of Φγuγ .

Note that if Φ : U → U is isotone, then for any γ ∈ (0, 1], the operator Φγ :
U/E(γ) → U/E(γ) is obviously isotone as well.
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Consider the equation
u = Φu (1)

with a Volterra mapping Φ : U → U .

Definition 2 Wedefine aγ-local solution to theEq. (1), γ ∈ (0, 1), to be a fixed point
of themappingΦγ : U/E(γ) → U/E(γ), i.e. an equivalence class uγ ∈ U/E(γ) such
that uγ = Φγuγ . Identifying the element u ∈ U satisfying the Eq. (1) to its class of
E(1)-equivalence u1 we consider it a global solution (1-local solution) to the Eq. (1).
If uη and uξ are η- and ξ-local solutions of the Eq. (1), 0 < η < ξ ≤ 1, satisfying
the relation uξ ⊂ uη, then we call uη a restriction of the solution uξ , and uξ—an
extension of the solution uη.We define aγ-maximally extended solution of theEq. (1),
γ ∈ (0, 1], to be a mapping ũγ that puts in the correspondence to each ξ ∈ (0, γ) a
ξ-local solution uξ and satisfies the following two conditions:

– for any η, ξ, 0 < η < ξ < γ, it holds true that uξ ⊂ uη;
– for any v ∈ U there exists ξ ∈ (0, γ) such that v /∈ uξ .

In this case, the γ-maximally extended solution ũγ is called an extension of uξ , and
the class uξ is referred to as a restriction of ũγ .

Definition 3 Choose arbitrary γ ∈ (0, 1). Let Φ : U → U be a Volterra mapping
and M be a subset of U/E(γ) such that ΦγM ⊂ M . The pair (Φγ, M) is said to
possess S-property, if

– there exists m ∈ M such that m ≤ Φγm,
– any chain C ⊂ M such that any uγ ∈ C satisfies the relation uγ ≤ Φγuγ has an
upper bound b ∈ M such that b ≤ Φγb.

We also define the following properties of a Volterra mapping Φ : U → U :
(P1) there exist δ > 0 and Uδ ⊂ U/E(δ) such that the pair (Φδ,Uδ) possesses

S-property;
(P2) for any γ ∈ (0, 1) and any fixed point uγ of the mapping Φγ : U/E(γ) →

U/E(γ), there exist δ > 0 andU
uγ

γ+δ ⊂ uγ/E(γ + δ) such that the pair (Φγ+δ,U
uγ

γ+δ)

possesses S-property;
(P3) for any u ∈ U , if for some γ ∈ (0, 1] and any ξ ∈ (0, γ), the equivalence

class uξ ∈ U/E(ξ) is a fixed point of Φξ : U/E(ξ) → U/E(ξ), then there exists

U
ũγ
γ ⊂ ⋂

ξ∈(0,γ)

uξ/E(γ) such that the pair (Φγ,U
ũγ
γ ) possesses S-property.

Theorem 1 Let a Volterra mapping Φ : U → U be isotone. If the mapping Φ :
U → U satisfies (P1), then the Eq. (1) has a local solution. If the mapping Φ :
U → U satisfies (P2), then any ξ-local solution uξ to (1) can be extended to some
γ-local solution uγ such that ξ < γ. If the mapping Φ : U → U satisfies (P2) and
(P3), then any local solution to (1) can be extended to a global solution or to a
maximally extended solution to (1).
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Proof Assume that the isotone Volterra mapping Φ : U → U satisfies (P1). Then
there exist δ > 0 and Uδ ⊂ U/E(δ) such that there exists ûδ ∈ Uδ such that ûδ ≤
Φδ ûδ and any chain C ⊂ Uδ has an upper bound bδ ∈ U/E(δ) such that bδ ≤ Φδbδ .
Thus, an isotone operator Φδ : U/E(δ) → U/E(δ) and the set Uδ ⊂ U/E(δ) satisfy
the conditions of Lemma 1, and the local solvability of (1) is shown. Note, that due
to the Volterra property of Φ : U → U , any restriction of any local solution to (1) is
a local solution to (1) as well.

Assume that the isotone Volterra mapping Φ : U → U satisfies (P2). Choose
some ξ-local solution uξ to (1). Using the property (P2), we find δ > 0 and U

uξ

ξ+δ ⊂
uξ/E(ξ + δ) such that the pair (Φξ+δ,U

uξ

ξ+δ) satisfies the conditions of Lemma 1. By
Lemma 1 we prove the existence of a fixed point, say uξ+δ , ofΦξ+δ : U/E(ξ + δ) →
U/E(ξ + δ) such that uξ+δ ⊂ uξ .

Assume that the isotone Volterra mapping Φ : U → U satisfies (P2) and (P3).
Let the set of all local solutions to (1) be ordered by inclusion, i.e. uξ ⊂ uη (η ≤
ξ). Due to the Hausdorff maximality principle (see e.g. [9], Theorem 3.4.2), any
local solution to (1), say uξ , is contained in some maximal chain ̂C (i.e. there is no
other chain containing ̂C). Find γ = sup{ξ, uξ ∈ ̂C}. There are the following two
possibilities:

1. There is some uγ ∈ ̂C, which implies γ = 1 and means that a global solution
u1 is obtained (The relation γ < 1 allows to use the property (P2) with Lemma 1 to
extend the γ-local solution uγ , which contradicts with the maximality of the chain
̂C).

2. For any uξ ∈ ̂C, it holds true that ξ < γ. There is no u ∈ U such that u ∈
⋂

ξ∈(0,γ)

uξ . Indeed, if there is some u ∈ U such that u ∈ ⋂

ξ∈(0,γ)

uξ , then using the

property (P3) with Lemma 1 we obtain uγ ∈ ̂C. Thus, the γ-maximally extended
solution ũγ is obtained.

4 Applications to Volterra Integral Equations

Let Rk be the space of vectors u = (u1, . . . , uk) with real components equipped
with the norm |u| = max

i=1,...,k
|ui |. For a compact Ω ⊂ Rm and any T > 0, we

conventionally define L∞([0, T ] × Ω, Rn) to be the space of all Lebesgue
measurable essentially bounded functions uT : [0, T ] × Ω → Rn with the norm
‖u‖L∞([0,T ]×Ω,Rn) = vraisup

(t,x)∈[0,T ]×Ω

uT (t, x). We define L∞([0,∞) × Ω, Rn) to be a

space of all functions u : [0,∞) × Ω → Rn such that for any T > 0, the restriction
uT : [a, b] × Ω → Rn ofu : [a, b] × Ω → Rn belongs to L∞([0, T ] × Ω, Rn).We
introduce the following order on the set L∞([0,∞) × Ω, Rn): For any u1, u2 ∈
L∞([0,∞) × Ω, Rn) we say that u1 ≤ u2, if u1i (t, x) ≤ u2i (t, x) for almost all
(t, x) ∈ [0,∞) × Ω and all i = 1, . . . , n (For any T > 0, the definition of the order
on the set L∞([0, T ] × Ω, Rn) is analogous).
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We consider the following integral equation

u(t, x) =
t

∫

0

∫

Ω

f (t, s, x, y, u(s, y))dyds, t ≥ 0, x ∈ Ω. (2)

Let the following assumptions hold true for any T > 0:

(A1) For any u ∈ Rn , the function f (·, ·, ·, ·, u) is Lebesgue measurable on the
set [0, T ] × [0, T ] × Ω × Ω .

(A2) For almost all (t, s, x, y) ∈ [0, T ] × [0, T ] × Ω × Ω , any j ∈ {1, . . . , n},
and any ui ∈ R (i ∈ {1, . . . , n} \ { j}), the kernel f (t, s, x, y, . . . , u j−1, (·),
u j+1, . . .) : R → Rn is non-decreasing and left-continuous.

(A3) For any r > 0, there exists a Lebesgue integrable function gr : [0, T ] ×
Ω → [0,∞) such that for any u, |u| ≤ r , and almost all (t, s, x, y) ∈ [0, T ] ×
[0, T ] × Ω × Ω , it holds true that | f (t, s, x, y, u)| ≤ gr (s, y).

By the virtue of the assumptions (A1) and (A2), for any T > 0, almost all
(t, x) ∈ [0, T ] × Ω , and any uT ∈ L∞([0, T ] × Ω, Rn), the mapping [0, T ] × Ω �
(s, y) �→ f (t, s, x, y, uT (s, y)) ∈ Rn is measurable (see e.g. [10]). Taking into
account (A3), we get that the mapping

(ΦT uT )(t, x) =
t

∫

0

∫

Ω

f (t, s, x, y, uT (s, y))dyds, t ∈ [0, T ], x ∈ Ω,

is an isotone mapping from L∞([0, T ] × Ω, Rn) to L∞([0, T ] × Ω, Rn) for any
T > 0. This implies that the mapping

(Φu)(t, x) =
t

∫

0

∫

Ω

f (t, s, x, y, u(s, y))dyds, t ∈ [0,∞), x ∈ Ω,

is an isotone mapping from L∞([0,∞) × Ω, Rn) to L∞([0,∞) × Ω, Rn).
For any γ ∈ [0, 1), we consider u1, u2 ∈ L∞([0,∞) × Ω, Rn) to be E(γ)-equi-

valent, if for almost all (t, x) ∈ [0, tan πγ
2 ] × Ω , it holds true that u1(t, x) = u2(t, x).

For γ = 1, we say that u1, u2 ∈ L∞([0,∞) × Ω, Rn) are E(1)-equivalent, if
u1 = u2. The space L∞([0,∞) × Ω, Rn) with the system E = {E(γ), γ ∈ [0, 1]}
of equivalence relations that is defined above obviously satisfies the conditions
(e1), (e), and the condition (e≤) and the mapping Φ : L∞([0,∞) × Ω, Rn) →
L∞([0,∞) × Ω, Rn) is a Volterra mapping in the sense of Definition 1. These facts
open the possibility to apply the results of Sect. 3 to the investigation of solvability
of the Eq. (2).

The notions of local, global, and maximally extended solutions to the operator
Eq. (1) applied to the integral Eq. (2) take the following forms.
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Definition 4 Wedefine a T -local solution to theEq. (2), T > 0, to be a function uT ∈
L∞([0, T ] × Ω, Rn) satisfying the Eq. (2) almost everywhere on the set [0, T ] × Ω .
We consider an element u∞ ∈ L∞([0,∞) × Ω, Rn) satisfying the Eq. (2) almost
everywhere on [0,∞) × Ω a global solution to the Eq. (2).We define a ˜T -maximally
extended solution of the Eq. (2), ˜T > 0, to be a measurable function ũ

˜T : [0, ˜T ) ×
Ω → Rn that satisfies the following two conditions:

– for any T ∈ (0, ˜T ), the restriction uT of ũ
˜T on [0, T ] × Ω is a T -local solution to

(2);
– for any r > 0, there exists T ∈ (0, ˜T ) such that ‖uT ‖L∞([0,T ]×Ω,Rn) > r .

Theorem 2 Let the assumptions (A1)–(A3) hold true, then the Eq. (2) has a local
solution, any local solution can be extended to a global solution or to a maximally
extended solution to (2).

Proof Choose an arbitrary r > 0. Find the corresponding T > 0 such that

T
∫

0

∫

Ω

gr (s, y)dyds < r.

We define

G(t) =
t

∫

0

∫

Ω

gr (s, y)dyds, m(t, x) = −G(t), b(t, x) = G(t), t ∈ [0, T ], x ∈ Ω,

and consider the set

UT = {u ∈ L∞([0, T ] × Ω, Rn), m ≤ u ≤ b}.

Note that any chain inUT has its supremum inUT . Taking into account Remark 1 we
conclude that the pair (ΦT ,UT ) satisfies S-property, which verifies (P1). According
to Theorem 1, the existence of T -local solution to the Eq. (2) is established.

Choose now some T ′-local solution uT ′ defined on the set [0, T ′] × Ω , take r ′ =
r + ‖uT ′ ‖L∞([0,T ′]×Ω,Rn), and find T ′′ > T ′ such that

T ′′
∫

T ′

∫

Ω

gr ′(s, y)dyds < r.

Define the operator Φ
uT ′
T ′′ : L∞([0, T ′′] × Ω, Rn) → L∞([0, T ′′] × Ω, Rn) as fol-

lows:
(Φ

uT ′
T ′′ u)(t, x) = uT ′(t, x)
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for (t, x) ∈ [0, T ′] × Ω and

(Φ
uT ′
T ′′ u)(t, x) =

T ′
∫

0

∫

Ω

f (t, s, x, y, uT ′(s, y))dyds +
t

∫

T ′

∫

Ω

f (t, s, x, y, u(s, y))dyds

for (t, x) ∈ [T ′, T ′′] × Ω .
For the functions

m′(t, x)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uT ′(t, x), (t, x)∈[0, T ′] × Ω,

T ′
∫

0

∫

Ω

f (t, s, x, y, uT ′(s, y))dyds −
t

∫

T ′

∫

Ω

gr ′(s, y)dyds, (t, x)∈[T ′, T ′′] × Ω,

b′(t, x)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uT ′(t, x), (t, x)∈[0, T ′] × Ω,

T ′
∫

0

∫

Ω

f (t, s, x, y, uT ′(s, y))dyds +
t

∫

T ′

∫

Ω

gr ′ (s, y)dyds, (t, x)∈[T ′, T ′′] × Ω,

we define the set

U uT ′
T ′′ = {u ∈ L∞([0, T ′′] × Ω, Rn), m ′ ≤ u ≤ b′}.

By the definition of U uT ′
T ′′ , any chain that in U uT ′

T ′′ has its supremum in U uT ′
T ′′ . By

Remark 1, the pair (Φ
uT ′
T ′′ ,U

uT ′
T ′′ ) possess S-property, which verifies (P2). Thus,

according to Theorem 1, any T ′-local solution can be extended to a T ′′-local solution
(T ′′ > T ′).

Assume now that for some u ∈ L∞([0,∞) × Ω, Rn) and ̂T > 0 and any T ∈
(0, ̂T ), the restriction uT ∈ L∞([0, T ] × Ω, Rn) is a T -local solution to (2). The pair
(Φ

̂T , {u
̂T }), where u

̂T ∈ L∞([0, ̂T ] × Ω, Rn) is a restriction of u ∈ L∞([0,∞) ×
Ω, Rn), obviously possesses S-property, which verifies (P3). Thus, according to
Theorem 1, any local solution to (2) can be extended to a global solution or to a
maximally extended solution to (2).

Acknowledgment Theworkwas supportedby theRussianFoundation forBasicResearch (projects
no. 17-41-680975, 17-51-12064, 18-31-00227).
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On Implicit Abstract Volterra Equations
in Metric Spaces

E. O. Burlakov and E. A. Pluzhnikova

Abstract We consider an equation with an abstract Volterra mapping of metric
spaces. For this equation, we define the notions of local, global, and maximally
extended solutions and prove statements on its local solvability and on the extendibil-
ity of the solutions. We apply these results to the investigation of an initial value
problem for an implicit differential equation with deviating argument.

Keywords Equations in metric spaces · Abstract volterra mappings · Implicit
differential equations with deviating argument · Solvability

1 Introduction

Many real-world phenomena and processes possess the property that their present
state depend only on the “past”, but not on the “future”. The dynamics of such systems
is described by mathematical models involving Volterra operators. The definition of
a Volterra operator given by Tikhonov in [11] reads as “A functional operator V (t,φ)

is called an operator of the Volterra type, if its value is defined by the values of φ(τ )

for 0 ≤ τ < t”. The most frequently used and the most well-studied representatives
of such operators are integral operators. Generalizations of the Volterra property of
mappings both in functional spaces and in more abstract sets have been suggested
in the works by C. Corduneanu, A. Feintuch, S. A. Gusarenko, M. G. Krein, R.
Saeks, V. I. Sumin, M. Väth, P. P. Zabreiko, E. S. Zhukovskiy and others. A review
on abstract Volterra operators acting in functional spaces can be found in [8]. A
definition of an abstract Volterra operator in a Banach space was suggested in the
work [12] and then extended to the operators in metric spaces in [7]. In the present
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research, we use an analog of the definition of abstract Volterra property from [7].
We assume that the abstract Volterra mapping, say Ψ , can be represented in the
following way Ψ (·) = Υ (·, ·), where the mapping Υ : X × X → Y possesses the
abstract Volterra property with respect to each argument and also Lipschitz with
respect to one argument and covering (regular) with respect to the other argument.
The formulation Υ (x, x) = y is used e.g. in the problems of solvability of implicit
equations in metric spaces, in the problems of finding the coincidence points of
mappings in linear spaces, in the studies of differential and functional differential
equations unsolved with respect to the derivatives and integral equations unsolved
with respect to the unknown function (see e.g. [2, 3, 5, 14, 15]). Localwell-posedness
of implicit equations in metric spaces involving Volterra mappings (in the sense of
A. N. Tikhonov) has been studied in [4]. In the present research, we investigate the
local solvability and the extendibility of solutions to operator equations in metric
spaces with the mappings possessing the abstract Volterra property (see Sect. 3).
These results allow to suggest an alternative approach to investigation of implicit
differential equations with deviating argument, where the typical assumptions of
Lipschitz continuity of the right-hand side with respect to the derivative has been
replaced by the property of coveringwith respect to this argument. The corresponding
theorem on solvability and extendibility of the solutions to an initial value problem
for an implicit differential equationwith deviating argument is formulated and proved
in Sect. 4.

2 Preliminaries

Let (X, ρX ) and (Y, ρY ) be metric spaces. We denote by BX (x, r) (BY (y, r)) the
closed ball in X (Y ) of the radius r > 0 centered at x ∈ X (y ∈ Y ).

Definition 1 A mapping Ψ : X → Y is said to be α-covering if for some α > 0,
for any x ∈ X and r > 0, the inclusion Ψ

(
BX (x, r)

) ⊃ BY (Ψ (x),αr) holds true
(see [2]).

Investigating the issues of solvability of operator equations, the property of α-
covering of the mapping involved often turns out to be redundant. We give here a less
restrictive assumption suggested by E. S. Zhukovskiy that we use for establishing
the solvability of such equations.

Definition 2 For anyα > 0, we define the set of α-covering of a mappingΨ : X →
Y as the setBα(Ψ ) of pairs (x ′, y) ∈ X × Y such that one can find x ∈ X such that
Ψ (x) = y and ρX (x ′, x) ≤ 1

α
ρY (Ψ (x ′), y).

Definition 3 A mapping Ψ : X → Y is said to be a β-Lipschitz on the set U ⊂ X
if for some β ≥ 0, the inequality ρY (Ψ (x), Ψ (x ′)) ≤ βρX (x, x ′) holds true for any
x, x ′ ∈ U .
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Below we give a statement on solvability of the following equation:

Υ (x, x) = y (1)

with respect to the unknown x ∈ X , where the mapping Υ : X × X → Y and the
element y ∈ Y are given, under the assumption that (X, ρX ) is complete.

The following statement formulated using the concept of the set of covering is
analogous to Theorem 1 of the paper [4].

Lemma 1 Assume that for the given y ∈ Y , some x0 ∈ X and some α > β ≥ 0, and
for any x ∈ BX (x0,R), where R = 1

α−β
ρY (Υ (x0, x0), y), it holds true that:

– the inclusion (x, y) ∈ Bα(Υ (·, x)) takes place;
– for any sequence {xi } ⊂ BX (x0,R), the conditions xi → x and Υ (xi , x) → y

imply the relation Υ (x, x) = y;
– the mapping Υ (x, ·) : X → Y is β-Lipschitz on the set BX (x0,R).

Then the Eq. (1) has a solution and for any x̂ ∈ BX (x0,R), one can find a solution
x ∈ BX (x0,R) to (1).

3 Main Results

Let (X, ρX ) and (Y, ρY ) be metric spaces. We denote by BX (x, r) the closed ball of
the radius r > 0 centered at x ∈ X .

Let an equivalence relation ∼ be defined on X and Y . For any two equivalence
classes x1, x2 ⊂ X , we put

dX (x1, x2) = inf
x1∈x1, x2∈x2

ρX (x1, x2). (2)

We assume that the following two conditions hold true:

– for any x ∈ X and y ∈ Y the equivalence classes x and y are closed;
– for any ε > 0, any x1, x2 ∈ X/ ∼ and x1 ∈ x1, one can find x2 ∈ x2 such that the
relation (1 + ε)dX (x1, x2) ≥ ρX (x1, x2) holds true.

Then the expression (2) defines a metric in X/ ∼, and the completeness of X
implies the completeness of the quotient space X/ ∼ (see [13]).

We put in correspondence to each γ ∈ [0, 1] the equivalence relation E(γ). We
assume that the family of equivalence relations E = {E(γ), γ ∈ [0, 1]} satisfy the
following conditions:

(e1) γ = 1 corresponds to equality relation (any two distinct elements are not
E(1)-equivalent);

(e) if γ1 > γ2, then E(γ1) ⊂ E(γ2) (any E(γ1)-equivalent elements are E(γ2)-
equivalent).
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Definition 4 A mapping Ψ : X → Y is said to be a Volterra mapping on the family
E if for any γ ∈ [0, 1] and any x1, x2 ∈ X the fact that (x1, x2) ∈ E(γ) implies
(Ψ x1, Ψ x2) ∈ E(γ).

We denote by xγ the E(γ)-equivalence class of the element x ∈ X and by
X/E(γ)—the quotient set of X with respect to the equivalence relation E(γ). In
the analogous way we define the sets yγ and Y/E(γ).

Hereinafter we assume that (X, ρX ) and (Y, ρY ) are metric spaces and the equiv-
alence relation E is defined on (X, ρX ) and (Y, ρY ) and satisfy the conditions (e1),
(e). Moreover, we assume that for each γ ∈ (0, 1), the corresponding equivalence
classes in (X, ρX ) and (Y, ρY ) are closed, the space (X, ρX ) is complete, and the
quotient set X/E(γ) is a complete metric quotient space with the distance

ρX/E(γ)(x1, x2) = inf
x1∈x1

γ , x2∈x2
γ

ρX (x1, x2) (3)

(For any y1, y2 ∈ Y , γ ∈ (0, 1), we define the distance ρY/E(γ)(y1, y2) in the analo-
gous way).

For any γ ∈ (0, 1], we define a canonical projectionΠγ : X → X/E(γ) as a map-
ping that puts into the correspondence to each x ∈ X its equivalence class xγ . Due
to (e1), dentifying each class x1 = {x} ∈ X/E(1) to its unique element x ∈ U , we
consider Π1 to be the identity mapping.

For a Volterra mapping Ψ : X → X , for each γ ∈ (0, 1], we define the mapping
Ψγ : X/E(γ) → X/E(γ) as follows:

Ψγxγ = ΠγΨ x, (4)

where u is an arbitrary element of xγ . Note that, due to the Volterra property of
Ψ : X → X , the value of Ψγuγ is independent of the choice of x ∈ xγ .

We consider the equation
Ψ x = y (5)

with respect to the unknown x ∈ X , where Ψ : X → Y is a Volterra mapping on the
family E of equivalence relations, y ∈ Y .

Definition 5 Wedefine aγ-local solution to theEq. (5), γ ∈ (0, 1), to be a fixed point
of themappingΨγ : X/E(γ) → X/E(γ), i.e. an equivalence class xγ ∈ X/E(γ) such
that xγ = Ψγxγ . Identifying the element x ∈ X satisfying the Eq. (5) to its class of
E(1)-equivalence x1 we consider it a global solution (1-local solution) to the Eq. (5).
If xη and xξ are η- and ξ-local solutions of the Eq. (5), 0 < η < ξ ≤ 1, satisfying
the relation xξ ⊂ xη, then we call xη a restriction of the solution xξ , and xξ—an
extension of the solution xη.We define aγ-maximally extended solution of theEq. (5),
γ ∈ (0, 1], to be a mapping x̃γ that puts in the correspondence to each ξ ∈ (0, γ) a
ξ-local solution xξ and satisfies the following two conditions:
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– for any η, ξ, 0 < η < ξ < γ, it holds true that xξ ⊂ xη;
– for any x0 ∈ X it holds lim

ξ→γ−0
ρX (xξ,Πξx0) = ∞.

In this case, the γ-maximally extended solution x̃γ is called an extension of xξ , and
the class xξ is referred to as a restriction of x̃γ .

In the present research, we investigate the solvability (in the sense of Definition 5)
of the Eq. (1), where y ∈ Y is given and the mapping Υ : X × X → Y is a given
Volterra mapping with respect to each argument.

For any γ ∈ (0, 1), we define the mapping Υγ : X/E(γ) × X/E(γ) → Y/E(γ) in
the way analogous to (4).

Theorem 1 Let a mapping Υ : X × X → Y be a Volterra mapping with respect to
each argument. Let there exist x0

δ ∈ X/E(δ), α > β ≥ 0, and δ > 0 such that for any
xδ ∈ BX/E(δ)(x0

δ ,Rδ), where Rδ = 1
α−β

ρY/E(δ)(Υδ(x0
δ , x0

δ ),Πδ y), it holds true that:

– for any sequence {xi
δ} ⊂ BX/E(δ)(x0

δ ,Rδ), if xi
δ → xδ and Υδ(xi

δ, xδ) → Πδ y, then
Υδ(xδ, xδ) = Πδ y;

– the inclusion (xδ,Πδ y) ∈ Bα(Υδ(·, xδ)) takes place;
– the mapping Υδ(xδ, ·) : X/E(δ) → Y/E(δ) is β-Lipschitz on BX/E(δ)(x0

δ ,Rδ).

Then the Eq. (1) has a local solution in BX/E(δ)(x0
δ ,Rδ).

The proof of Theorem 1 follows directly from Lemma 1 applied to the mapping
Υδ : X/E(δ) × X/E(δ) → Y/E(δ).

Let θ ∈ X be fixed.

Theorem 2 Let a mapping Υ : X × X → Y be a Volterra mapping with respect
to each argument. Let for any γ ∈ (0, 1), r > 0, one can find δ > 0 such that
for any local solution xγ ∈ BX/E(γ)(Πγθ, r) there exist its extension x0

γ+δ ∈ xγ

and constants α > β ≥ 0 such that for any xγ+δ ∈ Bxγ/E(γ+δ)(x0
γ+δ,Rγ+δ), where

Rγ+δ = 1
α−β

ρY/E(γ+δ)(Υγ+δ(x0
γ+δ, x0

γ+δ),Πδ y), it holds true that

– for any sequence {xi
γ+δ} ⊂ Bxγ/E(γ+δ)(x0

γ+δ,Rγ+δ), if x i
γ+δ → xγ+δ and

Υγ+δ(xi
γ+δ, xγ+δ) → Πγ+δ y, then Υγ+δ(xγ+δ, xγ+δ) = Πγ+δ y;

– the inclusion (xγ+δ,Πγ+δ y) ∈ Bα(Υγ+δ(·, xγ+δ)) takes place;
– the mapping Υγ+δ(xγ+δ, ·) : xγ/E(γ + δ) → Y/E(γ + δ) is β-Lipschitz on

Bxγ/E(γ+δ)(x0
γ+δ,Rγ+δ).

Then any local solution to the Eq. (1) (if it exists) can be extended to a global
solution or to a maximally extended solution to (1).

Proof Assume that for some γ ∈ (0, 1), there exists a γ-local solution xγ ∈ X/E(γ)

to the Eq. (1). Applying Lemma 1 we prove the existence of solution xγ+δ ∈
xγ/E(γ + δ)

⋂
BX/E(γ+δ)(Πγ+δθ, r) to the equationΥγ+δ(xγ+δ, xγ+δ) = Πγ+δ y, i.e.

a γ + δ-local solution to (1) extending the γ-local solution xγ .
Let the set of all local solutions to (1) be ordered by inclusion, i.e. uξ ⊂ uη (η ≤ ξ).

Due to the Hausdorff maximality principle (see e.g. [9], Theorem 3.4.2), any local
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solution to (1), say xξ , is contained in somemaximal chain, say C, i.e. there is no other
chain containing C (A chain is conventionally understood here as a set, where any
two elements are comparable). Denoting γ = sup{ξ, xξ ∈ C}, we get the following
two possibilities:

1. There is some r > 0 such that ρX/E(ξ)(xξ,Πξθ) ≤ r for any xξ ∈ Ĉ, which
implies γ = 1 and means that a global solution x1 to (1) is obtained (The relation
γ < 1 allows to apply Lemma 1 to the mapping Υγ+δ : Bxγ/E(γ+δ)(Πγ+δθ,Rγ+δ) ×
Bxγ/E(γ+δ)(Πγ+δθ,Rγ+δ) → Y/E(γ + δ), where the constants δ > 0 and Rγ+δ are
specified in Theorem 2, and, thus, extend the γ-local solution xγ , which contradicts
with the maximality of the chain C).

2. For any r > 0, one can find xξ ∈ C such that ρX/E(ξ)(xξ,Πξθ) > r , which
means that we obtained a γ-maximally extended solution x̃γ to (1) (as for any ξ < γ,
there is a ξ-local solution xξ ∈ C).

4 Applications to Implicit Differential Equations with
Deviating Argument

Let Rn be the space of vectors having real components equipped with the norm | · |.
For any T > 0, we define L∞([−T, T ], Rn) to be the space of all Lebesgue measur-
able essentially bounded functions v : [−T, T ] → Rn with the norm
‖v‖L∞([−T,T ],Rn) = vraisup

t∈[−T,T ]
v(t). We define L([−T, T ], Rn) to be the space of all

Lebesgue integrable functions z : [−T, T ] → Rn with the norm ‖z‖L([−T,T ],Rn) =
T∫

−T
|z(t)|dt . We define AC([−T, T ], Rn) to be the space of all absolutely contin-

uous functions x : [−T, T ] → Rn such that ẋ ∈ L([−T, T ], Rn) with the norm
‖x‖AC([−T,T ],Rn) = |x(0)| + ‖ẋ‖L([−T,T ],Rn).

We consider the following initial value problem

ẋ(t) = f
(
t, x(h(t)), ẋ(t)

)
, t ∈ [−T, T ], (6)

x(0) = x0, (7)

where x0 ∈ Rn .
Let the following assumptions be imposed on the functions involved in (6):
(f1) For any x, u ∈ Rn , the function f (·, x, u) is Lebesgue measurable on the set

[−T, T ].
(f2) For almost all t ∈ [−T, T ], the function f (t, ·, ·) is continuous.
(f3) For any r > 0, there exist c > 0 and a Lebesgue integrable function g :

[−T, T ] → [0,∞) such that for any x ∈ BRn (0, r), u ∈ Rn , and almost all t ∈
[−T, T ], it holds true that | f (t, x, u)| ≤ g(t) + c|u|.
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(h) The function h : [−T, T ] → [−T, T ] is Lebesgue measurable and satisfies
the condition |h(t)| ≤ |t |.
Definition 6 We define a γ-local solution to the problem (6), (7), γ ∈ (0, 1), to be
a function xγ ∈ AC([−γT, γT ], Rn) satisfying the Eq. (6) on [−γT, γT ] and the
initial condition (7). We consider an element x ∈ AC([−T, T ], Rn) satisfying the
Eq. (6) almost everywhere on [−T, T ] and the initial condition (7) a global solution
to the problem (6), (7). We define a γ̃-maximally extended solution to the problem
(6), (7), γ̃ ∈ (0, 1], to be a continuous function x̃γ̃ : (−γ̃T , γ̃T ) → Rn that satisfies
the following two conditions:

– for any γ ∈ (0, γ̃), the restriction xγ of x̃γ̃ on [−γT , γT ] × Ω is a γ-local solution
to (6), (7);

– lim
γ→γ̃−0

‖ẋγ‖L([−γT,γT ],Rn) = ∞.

For any ε > 0, we define the setHε = {t ∈ [−T, T ], |t | − |h(t)| < ε}.
Theorem 3 Let the following conditions be satisfied:

– there exists α > 1 such that for almost all t ∈ [−T, T ] and any z ∈ Rn, the function
f (t, z, ·) : Rn → Rn is α-covering;

– there exists ε > 0 such that for any r > 0 there exists lr ∈ L(Hε, [0,∞)) such
that for almost all t ∈ Hε and any z ∈ Rn, the function f (t, ·, z) : Rn → Rn is
lr (t)-Lipschitz on the set BRn (0, r).

Then the problem (6), (7) has a local solution, any local solution can be extended
to a global solution or to a maximally extended solution to (6), (7).

Proof For any τ > 0, we make use of the isomorphism between the spaces
AC([−τ , τ ], Rn) and L([−τ , τ ], Rn) × Rn defined by the equality

x(·) = x(0) +
(·)∫

0

z(s)ds, (8)

where x ∈ AC([−τ , τ ], Rn), z ∈ L([−τ , τ ], Rn), and x(0) ∈ Rn , to translate the
problem (6), (7) from the space AC([−T, T ], Rn) to the space L([−T, T ], Rn) in
the following way:

z(t) = f
(
t, x0 +

t∫

0

z(h(s))ds, z(t)
)
, t ∈ [−T, T ]. (9)

Equation (9) can be rewritten in the form:

(Υ (z, z))(t) = 0, t ∈ [T, T ], (10)
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where the mapping Υ : L([−T, T ], Rn) × L([−T, T ], Rn) → L([−T, T ], Rn) is
given by the equality

Υ (z1, z2) = z2 − N (SI z2, z1).

Here

I : L([−T, T ], Rn) → AC([−T, T ], Rn), (I z)(t) = x0 +
t∫

0

z(s)ds, t ∈ [−T, T ],

S : AC([−T, T ], Rn) → L∞([−T, T ], Rn), (Sx)(t) = x(h(t)), t ∈ [−T, T ],

N : L∞([−T, T ], Rn) × L([−T, T ], Rn) → L([−T, T ], Rn),

(N (v, z)) = f (t, v(t), z(t)), t ∈ [−T, T ].

For any γ ∈ (0, 1], we consider z1, z2 ∈ L([−T, T ], Rn) to be E(γ)-equivalent if
z1(t) = z2(t) for almost all t ∈ [−γT, γT ]. Thequotient space L([−T, T ], Rn)/E(γ)

can be then understood as the space of Lebesgue integrable functions acting from
[−γT, γT ] to Rn with the metric

ρL([−T,T ],Rn)/E(γ)(z
1
γ, z2γ) = ρL([−γT,γT ],Rn)(z

1
γ, z2γ),

which implies the fulfillment of the condition (3). We will standardly refer to the
space L([−T, T ], Rn)/E(γ) as L([−γT, γT ], Rn). The space L([−T, T ], Rn) with
the defined above system E = {E(γ), γ ∈ [0, 1]} of equivalence relations obviously
satisfies the conditions (e1), (e). It is also easy to see that for any γ ∈ (0, 1] and
z1γ, z2γ ∈ L([−γT, γT ], Rn), one can find z1, z2 ∈ L([−T, T ], Rn) such that

ρL([−γT,γT ],Rn)(z
1
γ, z2γ) = ρL([−T,T ],Rn)(z

1, z2) (11)

The isomorphism (8) gives one-to-one correspondence between the solutions to
(10) and (6), (7), i.e.

– any local solution (in the sense of Definition 5) to (10) is a local solution (in the
sense of Definition 6) to the problem (6), (7);

– any global solution (in the sense of Definition 5) to the Eq. (10) is a global solution
(in the sense of Definition 6) to (6), (7);

– any maximally extended solution (in the sense of Definition 5) to (10) is a maxi-
mally extended solution (in the sense of Definition 6) to (6), (7).

The relation (11) implies that for any γ ∈ (0, 1), z ∈ L([−γT, γT ], Rn), and
r > 0, it holds true that BL([−γT,γT ],Rn)(Πγz, r) = Πγ BL([−T,T ],Rn)(z, r). From the
latter factwehave that for any coveringmappingΨ : L([−T, T ], Rn) → L([−T, T ],
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Rn), the mapping Ψγ : L([−γT, γT ], Rn) → L([−γT, γT ], Rn) defined as Ψγ =
ΠγΨ is covering for any γ ∈ (0, 1) with the same constant of covering (see [4],
Propositions 1 and 2).

For any v ∈ Rn , the mapping N (v, ·) : L([−T, T ], Rn) → L([−T, T ], Rn) is α-
coveringprovided that the conditions (f1)– (f3) and the conditions of the theoremhold
true (see e.g. [10]). Thus, for any z ∈ Rn , the mapping Υ (·, z) : L([−T, T ], Rn) →
L([−T, T ], Rn), Υ (·, z) = z − N (Sz, (·)), is α-covering and, hence, for any γ ∈
(0, 1), the mapping Υγ(·, z) : L([−γT, γT ], Rn) → L([−γT, γT ], Rn) is
α-covering as well.

The continuity of Υ : L([−T, T ], Rn) × L([−T, T ], Rn) → L([−T, T ], Rn)

follows from the assumptions made and yields its closedness. As the relation (11)
is valid in the space L([−T, T ], Rn), for any γ ∈ (0, 1), the defined above map-
ping Υγ : L([−γT, γT ], Rn) × L([−γT, γT ], Rn) → L([−γT, γT ], Rn) is closed
as well.

We now put β = 1
2 (α − 1), find R = 2

α−1

T∫

−T
| f (t, x0, 0)|dt and δ such that

δT∫

−δT

lx0+R(t)dt ≤ β and δ ≤ ε

T
.

For the obtained δ, themappingΥδ(Πδz, ·) : L([−δT, δT ], Rn)→ L([−δT, δT ], Rn)

is (1 + β)-Lipschitz on the set BL([−δT,δT ],Rn)(Πδ0,R) for any z ∈ L([−T, T ], Rn),
as

‖Υ (z, u1
δ) − Υ (z, u2

δ)‖L([−δT,δT ],Rn) = ‖u1
δ − u2

δ‖L([−δT,δT ],Rn)+
δT∫

−δT

∣∣∣∣ f (t, x0 +
h(t)∫

0

u1(s)ds, z(t)) − f (t, x0 +
h(t)∫

0

u2(s)ds, z(t))

∣∣∣∣dt ≤

(
1 +

δT∫

−δT

lx0+R(t)dt

)
‖u1

δ − u2
δ‖L([−δT,δT ],Rn).

Thus, the mapping Υ : L([−T, T ], Rn) × L([−T, T ], Rn) → L([−T, T ], Rn)

given by (10) satisfies the conditions of Theorem 1 with x0
δ = Πδ0, Rδ = R, and

the local solvability of the problem (6), (7) is showed.
Let for some γ ∈ (0, 1), there exists a γ-local solution xγ ∈ AC([−γT, γT ], Rn).

For Rγ+δ = ‖xγ‖AC([−γT,γT ],Rn) + R, we find δ such that

(γ+δ)T∫

−(γ+δ)T

lRγ+δ
(t)dt ≤ β and δ ≤ ε

T
.
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For the obtained δ and any z ∈ Rn , the mapping Υγ+δ(z, ·) acting from the space
L([−(γ + δ)T, (γ + δ)T ], Rn) to itself is obviously (1 + β)-Lipschitz on the set

BL([−(γ+δ)T,(γ+δ)T ],Rn)(z0γ+δ,R), where z0γ+δ(t) =
{
ẋγ(t), |t | ≤ γT,

0, γT < |t | ≤ (γ + δ)T .

Thus, the mapping Υ : L([−T, T ], Rn) × L([−T, T ], Rn) → L([−T, T ], Rn)

given by (10) satisfies the conditions of Theorem 2, and the possibility to extend any
local solution of the problem (6), (7) to a global, or to a maximally extended solution
is proved.

We point out that the standard methods of investigation of the problem (6), (7)
make use of the assumption that the right-hand side f : [−T, T ] × Rn × Rn satisfies
the Lipschitz condition with respect to the third variable (see e.g. [1, 6]). The appli-
cation of the theory of covering mappings allowed to replace this assumption by the
covering property of the right-hand side of (6) with respect to the corresponding argu-
ment. The problem that the argument deviation h : [−T, T ] → [−T, T ] imposed on
the second argument of the function f : [−T, T ] × Rn × Rn breaks the Volterra
property of the right-hand side of (6) in the most common sense of A.N. Tikhonov
was handled by assigning an appropriate system of equivalence relations on the ele-
ments of the basic space L([−T, T ], Rn), i.e. by defining the corresponding abstract
Volterra property of mappings in L([−T, T ], Rn) in the sense of Definition 1.
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On the Choice of Parameters of the
Method of Dynamic Regularization
for the Problem of Differentiation

A. Yu. Vdovin and S. S. Rubleva

Abstract The method of dynamic regularization is considered on the example of
the problem of numerical differentiation. A modification of the original approach is
proposed, which leads to a different choice of parameters and allows improving the
characteristics of the method.

Keywords Dynamic regularization · The problem of numerical differentiation ·
Estimates of the accuracy of numerical algorithm

1 Introduction

The dynamic system described by the ordinary differential equation is considered

x ′(t) = g(t, x(t)) + f (t, x(t))u(t). (1)

Here t ∈ [a, b] = T—time, x(t) ∈ Rm is the phase state of the system. Function
u(·) from a subspace L∞

q (T ) with values from a convex compact Q ⊂ Rq is called
admissible control. Functions g(t, x) : T × Rm → Rm and f (t, x) : T × Rm →
Rm×q satisfy Lipschitz condition for a set of variables. Thus, solution to the Cauchy
problem for the (1) system with the initial condition x(a) = x0 exists and is unique.

Let x(t) = x(t, u)—the solution generated by the admissible control. The prob-
lem is posed of determining this control from the results of inexact measurements of
the xh(ti ) phase states of x(ti ):

∣
∣x(ti ) − xh(ti )

∣
∣ ≤ h (2)
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at the nodes a = t0 < . . . < ti < . . . < tn = b of the time interval T, Δ =
max

i
(ti+1 − ti ).

In works [1, 2] the new approach called dynamic regularization has been offered
and developed. The solution uses the method of constructing controlled models with
feedback from the theory of positional differential games [3] in combination with the
approaches of the theory of ill-posed problems. It is important that required approx-
imation can be constructed in real time, synchronously with the arriving information
of xh(ti ).

The state of the mentioned controlled model for the system (1) with the initial
condition wh(t0) = xh(t0) at t ∈ (ti , ti+1]) is determined by the rules:

wh(t) = wh(ti ) +
(

g(ti , xh(ti )) + f (ti , xh(ti ))uh(t)
)

(t − ti ), (3)

uh(t) − is a projection on Q of the vector f T (ti , xh(ti ))
xh(ti ) − wh(ti )

α(h)
. (4)

Method parameters are consistent with h, further α = α(h), Δ = Δ(h).

Theorem 1 [4] Let the approximations for the phase states of the (1) system at
times ti satisfy (2), the parameters α, Δ are positive and consistent with h, so that

lim
h→0

(h + Δ

α
+ α

)

= 0. Then the functions wh(·), uh(·), defined on T by the rules

(3,4) are such that ‖wh(·) − x(·)‖Cm [T ] → 0, ‖w′
h(·) − x ′(·)‖L2

m (T ) → 0, ‖uh(·) −
u∗(·)‖L2

q (T ) → 0 for h → 0, where u∗(·) – is an admissible control possessing the

minimal norm in L2
q(T ) among all admissible controls generating x(·).

Note that the problem of numerical differentiation of a function with a bounded
derivative, according to inexact information on values of the function at the nodes of
the partition T, is a special case of the problem considered above.

In [5], in case of refusal to design in (4) onQ, containing0, and apriori information
about the boundedness of the variation of x ′(·) on T , an estimate of the norm uh(·) −
u∗(·) in the space L(T ) is received. It is established that its asymptotic order with
respect to h when choosing parameters Δ = h, α = √

h is equal to 1
2 .

In article the modification of a method for a problem of differentiation improving
his characteristics is offered.

2 Building a Modification of the Method, Obtaining Its
Accuracy Estimates

For the problem of numerical differentiation, the system (1) takes the form

x ′(t) = u(t), x(a) = x0. (5)
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Let a partition with a constant step Δ be given on T . Consider a continuous
controllable model

w′(t) = x(t) − w(t)

α
, w(a) = x0. (6)

It can be considered as an equation with a small parameter at the derivative. Equation
(6) is a classic example of the so-called rigid systems. For their numerical solution,
implicit methods are recommended for use. Using the implicit Euler method, we
pass from (6) to the difference model

wh(ti+1) = wh(ti ) + xh(ti+1) − wh(ti+1)

α
Δ. (7)

Lemma 1 Let u(·) have bounded variation on T, lim
h→0

(

Δ + α

Δ

)

= 0, Compact Q

contains 0. Then there are positive constants C1,C2, h∗ such that for all h ∈ (0, h∗),
t ∈ T

|wh(t) − xh(t)| ≤ α h

Δ
C1 + αC2.

Proof Transform Eq. (7)

wh(ti+1)
(

1 + Δ

α

)

= wh(ti ) − xh(ti+1) + xh(ti+1) + xh(ti+1)
Δ

α
;

(

wh(ti+1) − xh(ti+1)
)(

1 + Δ

α

)

= wh(ti ) − xh(ti ) + xh(ti ) − xh(ti+1).

Then

wh(ti+1) − xh(ti+1) = α

α + Δ

(

wh(ti ) − xh(ti )
) + α

α + Δ

(

xh(ti ) − xh(ti+1)
)

, (8)

and, passing to estimate of the norm of a difference:

∣
∣wh(ti+1) − xh(ti+1)

∣
∣ ≤ α

α + Δ

[∣
∣wh(ti ) − xh(ti )

∣
∣ + ∣

∣xh(ti ) − xh(ti+1)
∣
∣

]

. (9)

Since for all t ∈ [a, b] values u(t) ∈ Q, there is a positive constant Mu > 0 such
that |u(t)| ≤ Mu at t ∈ [a, b], therefore

∣
∣xh(ti ) − xh(ti+1)

∣
∣ = ∣

∣xh(ti ) ± x(ti ) ± x(ti+1) − xh(ti+1)
∣
∣ ≤ (10)

≤ 2h + ∣
∣

∫ ti+1

ti

u(τ )dτ
∣
∣ ≤ 2h + ΔMu,
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and from (9) it follows:

∣
∣wh(ti+1) − xh(ti+1)

∣
∣ ≤ α

α + Δ

∣
∣wh(ti ) − xh(ti )

∣
∣ + 2αh

α + Δ
+ αΔ

α + Δ
Mu .

Taking into account the fact that |wh(t0) − xh(t0)| ≤ h, we have:

|wh(t1) − xh(t1)| ≤ α

α + Δ
h + 2αh

α + Δ
+ αΔ

α + Δ
Mu;

|wh(t2) − xh(t2)| ≤
( α

α + Δ

)2
h + α

α + Δ

( 2αh

α + Δ
+ αΔ

α + Δ
Mu

)

+ 2αh

α + Δ
+

+ αΔ

α + Δ
Mu =

( α

α + Δ

)2
h +

1
∑

i=0

( α

α + Δ

)i( 2αh

α + Δ
+ αΔ

α + Δ
Mu

)

. . .

|wh(tn) − xh(tn)| ≤
( α

α + Δ

)n
h +

n−1
∑

i=0

( α

α + Δ

)i( 2αh

α + Δ
+ αΔ

α + Δ
Mu

)

There is
n−1
∑

i=0

( α

α + Δ

)i ≤ 1

1 − α
α+Δ

= α + Δ

Δ
for positive α and Δ, so the next

estimate is correct for all nodes of the partition

|wh(ti ) − xh(ti )| ≤
(

α
α + Δ

)n
h + α + Δ

Δ

(
2αh

α +Δ
+ αΔ

α +Δ
Mu

)

≤

≤
( α

α + Δ

)n
h + 2

αh

Δ
+ αMu .

Since lim
h→0

( α

Δ

) = 0, there is h∗ > 0 such that for all h ∈ (0, h∗)

( α

α + Δ

)n ≤
( α

Δ

)n ≤ α

Δ
,

then:
∣
∣wh(ti ) − xh(ti )

∣
∣ ≤ 3

α

Δ
h + αMu

The lemma is proved.

We begin to consider the rule (7) as a model

wh(ti+1) = wh(ti ) + uh(ti+1)Δ. (11)
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with control uh(t) = uh(ti+1) on [ti , ti+1]

uh(ti+1) = xh(ti+1) − wh(ti+1)

α
(12)

We obtain the upper estimate u(t) − uh(t) for t ∈ T .

Lemma 2 Let the conditions of the Lemma 1 are hold. Then there are positive
constants C3,C4 such that for all t ∈ [a, b]

∣
∣uh(t) − u(t)

∣
∣ ≤ C3

h

Δ
+ C4

α

α + Δ
+ Var[ti ,ti+1]u(·), (13)

where Var[ti ,ti+1]u(·)— variation of u(·) on the interval [ti , ti+1].
Proof Transform (8) as follows:

wh(ti+1) = ±wh(ti )+ xh(ti+1) ± xh(ti ) + α
α + Δ

(

wh(ti ) − xh(ti )
) +

+ α

α + Δ

(

xh(ti ) − xh(ti+1)
)

.

Therefore,

wh(ti+1) = wh(ti ) + (

1 − α

α + Δ

)(

xh(ti+1) − xh(ti )
) + (

1 − α

α + Δ

)(

xh(ti ) − wh(ti )
)

,

finally

wh(ti+1) = wh(ti ) + Δ

α + Δ

(

xh(ti ) − wh(ti )
) + Δ

α + Δ

(

xh(ti+1) − xh(ti )
)

. (14)

Thence

wh(ti+1) − wh(ti )

Δ
= xh(ti ) − wh(ti )

α + Δ
+ xh(ti+1) − xh(ti )

Δ

Δ

α + Δ
.

Taking into account the Eq. (11):

uh(ti+1) = xh(ti ) − wh(ti )

α + Δ
+ xh(ti+1) − xh(ti )

Δ

(

1 − α

α + Δ

)

.

Since uh(t) = uh(ti+1) at t ∈ [ti , ti+1], then

uh(t) − u(t) = xh(ti ) − wh(ti )

α + Δ
− xh(ti+1) − xh(ti )

Δ

α

α + Δ
+

+
( xh(ti+1) − xh(ti )

Δ
− u(t)

)
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or

uh(t) − u(t) = xh(ti ) − wh(ti )

α + Δ
− xh(ti+1) − xh(ti )

Δ

α

α + Δ
+

+
( xh(ti+1) − xh(ti )

Δ
− x(ti+1) − x(ti )

Δ

)

+
( x(ti+1) − x(ti )

Δ
− u(t)

)

.

Passing to the estimation of the norm of a difference we get:

∣
∣uh(t) − u(t)

∣
∣ ≤

∣
∣xh(ti ) − wh(ti )

∣
∣

α + Δ
+

∣
∣xh(ti+1) − xh(ti )

∣
∣

Δ

α

α + Δ
+

+
∣
∣xh(ti+1) − x(ti+1)

∣
∣

Δ
+

∣
∣xh(ti ) − x(ti )

∣
∣

Δ
+

∣
∣
∣
x(ti+1) − x(ti )

Δ
− u(t)

∣
∣
∣,

From where, taking into account (2), the Lemmas 1 and (10) we have:

∣
∣uh(t) − u(t)

∣
∣ ≤ 3αh

Δ(α + Δ)
+ α

α + Δ
Mv + 2h + Δ

Δ

α

α + Δ
+

+ h

Δ
+ h

Δ
+

∣
∣
∣
x(ti+1) − x(ti )

Δ
− u(ti+1)

∣
∣
∣. (15)

It is necessary to estimate
∣
∣
∣
x(ti+1) − x(ti )

Δ
− u(ti+1)

∣
∣
∣. Let

u∗
i = min[ti ,ti+1]

u(t), u∗∗
i = max[ti ,ti+1]

u(t).

There is uc : u∗
i ≤ uc ≤ u∗∗

i such that

∫ ti+1

ti

u(τ )dτ = ucΔ

Therefore, for all t ∈ [ti , ti+1]
∣
∣
∣
x(ti+1) − x(ti )

Δ
− u(t)

∣
∣
∣ =

∣
∣
∣
1

Δ

∫ ti+1

ti

u(τ )dτ − u(t)
∣
∣
∣ ≤

≤
∣
∣
∣
1
Δ
ucΔ − u(t)

∣
∣
∣ ≤ Var[ti ,ti+1]u(·).

In view of the latter and (15), the validity of the lemma follows.

Lemma 3 Let the conditions of Lemmas 1, 2 are satisfied. Then there are positive
constants C5,C6 such that

‖uh(t) − u(t)‖L(T ) ≤ C5
h

Δ
+ C6

α

α + Δ
+ Var[a,b]u(·)Δ (16)
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Proof Since
∫ b

a
V ar[ti ,ti+1]u(τ )dτ ≤ Var[a,b]u(·)Δ, then taking into account

Lemma 2, we have

‖uh(t) − u(t)‖L(T ) =
∫ b

a
|uh(t) − u(t)|dt ≤

≤ C3
h

Δ
(b − a) + C4

α

α + Δ
(b − a) + Var[a,b]u(·)Δ,

for C5 = C3(b − a),C6 = C4(b − a), the estimate (16) is obtained. The lemma is
proved.

Remark 1 The controlled model (11), (12) cannot be realized in practice as the
right-hand side of (11) contains the value wh(ti+1), so for numerical modeling in
(12) should be used

uh(ti+1) = xh(ti+1) − wh(ti )

α + Δ
. (17)

Remark 2 It is essential for a dynamic algorithm not to use information from the
future. For this purpose in (17) should get rid of xh(ti+1). In addition to the system
(5), we consider system

y′ = v(τ ), y(0) = x0, (18)

where τ = t − Δ and

v(τ ) =
{

0 for τ ∈ [0,Δ],
u(t − Δ) for τ ∈ [Δ, b + Δ].

Therefore

y(τ ) =
{

x0 for τ ∈ [0,Δ],
x(t − Δ) for τ ∈ [Δ, b + Δ],

and the system (18) is a system with a shift with respect to (5), at the same time
variation v(·) is limited to:

Var[a−Δ,b]v(·) ≤ u(a) + Var[a,b]u(·). (19)

The method considered above for new system, taking into account (17), takes a
form:

wh(τi+1) = wh(τi ) + vh(τi+1)Δ,

vh(τi+1) = yh(τi+1) − wh(τi )

α + Δ
.
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Since yh(τi+1) = xh(τi ), then

vh(τi+1) = xh(τi ) − wh(τi )

α + Δ
.

If vh(t) is considered as an approximation of u(t), then a different rule of choice
of parameters is proposed in comparison with that indicated in Theorem 1.

Theorem 2 Let the conditions of the Lemma 3 be satisfied. Then there are positive
constants C7,C8 such that

‖vh(·) − u(·)‖L(T ) ≤ C7
h

Δ
+ C8

α

α + Δ
+

(

2Var[a,b]u(·) + u(a)
)

Δ (20)

Proof Since
∫ b

a
|v(t) − u(t)|dt =

∫ b

a
|u(t − Δ) − u(t)|dt ≤ Var[a,b]u(·)Δ, tak-

ing into account the Lemma 3 and (19), we get

‖vh(·) − u(·)‖L(T ) = ‖vh(·) ± v(·) − u(·)‖L(T ) ≤ ‖vh(·) − v(·)‖L(T ) +
+‖v(·) − u(·)‖L(T ) ≤ C7

h

Δ
+ C8

α

α + Δ
+

(

2Var[a,b]u(·) + u(a)
)

Δ.

The theorem is proved.

Remark When choosing the parameters Δ = √
h and α = h in the estimate (20),

an optimal order of 1/2 is achieved.
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Crank–Nicolson Numerical Algorithm
for Nonlinear Partial Differential
Equation with Heredity and Its Program
Implementation

T. V. Gorbova, V. G. Pimenov and S. I. Solodushkin

Abstract Weconstruct a Crank–Nicolson numerical algorithm for nonlinear initial-
boundary value problem of parabolic type complicated by heredity effect. Nonlin-
earity is present in the partial differential operator as well as in the inhomogeneity
function. Stability and convergence property of the elaborated algorithm are studied.
Proposed numerical algorithm was implemented in Python 3.7. Numerical experi-
ments have been carried through. Numerical results coincides with the theoretical
ones.

Keywords Partial differential equation · Heredity · Time delay · Nonlinear
difference scheme

1 Introduction

Differential equations in partial derivatives with nonlinearity in differentiation oper-
ators are considered to be a reliable and adequate tool for mathematical modelling
in population dynamics, immune response and others areas of science, see for exam-
ple [10] and references therein. Since many phenomena require a certain period of
time to be completed, e.g. maturation of newborns before they become fertile, these
equations can also involve a time lag. This is why we are motivated to consider an
initial-boundary value problem of the following form
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∂ p(x, t)

∂t
= a2

∂2φ(p(x, t))

∂x2
+ g(x, t, pt (x, ·)), (1)

p(0, t) = p0(t), p(X, t) = p1(t), 0 � t � T,

p(x, s) = ϕ(x, s), 0 � x � X, −τ � s � 0.

Here t ∈ [0; T ] and x ∈ [0; X ] are independent variables interpreted as time and
space, p(x, t) is an unknown function to be found, pt (x, ·) = {p(x, t + s),−τ �
s � 0} is a prehistory (heredity) of function p to the moment t.

Due to the complexity of these equations their exact solution is possible in excep-
tional cases only, so grid methods are the main technique here. Unfortunately there
are number of issues in the development of difference schemes and substantiation of
their convergence for partial differential equations with nonlinearity in differentia-
tion operators. On the one hand explicit scheme are unstable as it was demonstrated
in numerical experiments [2]. On the other implicit schemes are nonlinear and, there-
fore, it is necessity to solve high dimensional nonlinear systems which arise at each
time layer. Let us give a brief review of different numerical approaches for the prob-
lem under consideration.

Linear partial differential equations with hereditary effect were previously stud-
ied in various aspects [11]. Numerical algorithms for their solution are also well
developed, see, for example [3, 4].

In [10] and plenty of analogous papers numerical methods are not constructed,
on the contrary authors try to represent the exact solution in the form of series. The
applicability of this approach is very limited.

In this paper we use the technique originally elaborated in [7].Wemake a replace-
ment of variables and transfer the nonlinearity from the differentiation operator with
respect to the spatial variable to the time differentiation operator. Next, we build
an analogue of Cranc–Nikolson scheme which appear to be nonlinear, and use the
Newton method to solve it. To take the time delay effect into account we use the
methodology from [6].

This work is a continuation of [2] where a purely implicit scheme with the first
order of time convergence was constructed. Using Crank–Nicolson approximation
we increase the order of convergence in time up to two. To prove the stability and
convergence of new numerical method we modify the general difference scheme for
systems with heredity [5, 6, 9] for nonlinear case.

2 Nonlinear Difference Scheme

Assume the single-valued invertibility of φ(p) on the domain of our interest, and
make the variables replacement u = φ(p), p = ω(u), then (1) could be rewritten as

∂ω(u)

∂t
= a2

∂2u

∂x2
+ f (x, t, ut (x, ·)), ut (x, ·) = {u(x, t + s),−τ � s � 0}. (2)
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u(0, t) = φ(p0(t)) = μ0(t), u(X, t) = φ(p1(t)) = μ1(t), 0 � t � T, (3)

u(x, s) = φ(ϕ(x, s)), 0 � x � X, −τ � s � 0. (4)

Let the problem (2)–(4) has the unique solution, understood in the classical sense,
and this solution has continuous derivatives in time up to the second order and con-
tinuous derivatives in space up to the fourth order. Let the functional f (x, t, ut (x, ·))
is Lipschitz with respect to the last argument on the set of continuous functions,
function ω(u) is twice continuously differentiable in a bounded domain containing
the solution u(x, t) and the following condition be satisfied

0 < ω̂ � ω′(u). (5)

Let us split the segment [0, X ] into parts with step size h = X/N and define
the uniform grid xi = ih, i = 0, . . . , N . Next, let us consider a partition of interval
[−τ , T ] into parts with step size Δ = T/M and define the uniform grid t j = jΔ,

j = −m, . . . , M, (without loss of generality τ/Δ = m is integer).
Byuij wedenote the approximationof the functionvalueu(xi , t j ), i = 0, 1, . . . N ,

j = 0, . . . M, at the corresponding node.
For each grid node (xi , t j ), i = 0, 1, . . . N , j = 0, . . . M, we define its discrete

prehistory by {uik} j = {uik,max{0, j − m} � k � j}.
Amapping I defined on the set of all admissible discrete prehistories and acting by

the rule {uik} j → vi
j (·) = vi

j (t j + ξ), where vi
j (·) is defined on [t j − τ , t j ], is called

an interpolation operator for the discrete prehistory. Below we use a piecewise linear
interpolation

vi (t j + s) = 1

Δ
((tk − t j − s)uik−1 + (t j + s − tk−1)u

i
k), tk−1 � t j + s � tk,

with extrapolation

vi (t j + s) = 1

Δ
((−s)uij−1 + (Δ + s)uij ), t j � t j + s � t j+1.

Consider a nonlinear analog Crank–Nicolson method, j = 0, 1, . . . , M − 1,

ω(uij+1) − ω(uij )

Δ
= a2

2
(
ui−1
j+1 − 2uij+1 + ui+1

j+1

h2
+ ui−1

j − 2uij + ui+1
j

h2
)+

+ f (xi , t j + Δ

2
, vi

t j+ Δ
2
(·)), i = 1, . . . , N − 1,

u0j+1 = μ0(t j+1), uN
j+1 = μ1(t j+1),

(6)

with initial conditions uij = φ(ϕ(xi , t j )), i = 0, . . . , N , j = −m, . . . , 0.
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On each time layer j the (6) is a system of equations that are nonlinear with
respect to uij+1, i = 1, . . . , N − 1. To solve (6) for each fixed j we use Newton’s
method [7], pp. 444–454,

ω(uij+1[k]) + ω′(uij+1[k])(uij+1[k + 1] − uij+1[k])−

− a2Δ
ui−1
j+1[k + 1] − 2uij+1[k + 1] + ui+1

j+1[k + 1]
2h2

=

= a2Δ
ui−1
j − 2uij + ui+1

j

2h2
+ ω(uij ) + Δ f (xi , t j + Δ

2
, vi

t j+ Δ
2
(·)), (7)

where k is an iteration number, k = 0, 1, . . . , and uij+1[k] is k-th approximation by
the Newton’s method to uij+1, i = 1, . . . , N − 1. Note, to find uij+1[k + 1] in (7)
we use uij , which represents not the exact solution, which was found at the j-th time
layer (it is actually unknown), but its approximation in Newton’s method.

The system (7) is a tridiagonal system of linear equations. Condition (5) implies
the diagonal predominance, therefore system (7) could be effectively solved using
the sweep algorithm.

Note that if condition (5) is satisfied, the method (7) can be rewritten as

uij+1[k + 1] − a2Δ
ui−1
j+1[k + 1] − 2uij+1[k + 1] + ui+1

j+1[k + 1]
ω′(uij+1[k])2h2

=

= uij+1[k] + 1

ω′(uij+1[k])
(a2Δ

ui−1
j − 2uij + ui+1

j

2h2
+

+ ω(uij ) − ω(uij+1[k]) + Δ f (xi , t j + Δ

2
, vi

t j+ Δ
2
(·))). (8)

3 Elements of the Theory of Nonlinear Parametric
Difference Schemes

To justify the convergence of the method, we consider a modification of the general
theory of difference schemes with heredity, proposed previously for linear case in
[5, 6].

Let us consider a segment [−τ , T ] and its partition with step Δ = T/M, without
loss of generality τ/Δ = m is integer. The set of nodes t j = jΔ, n = −m, . . . , M
is called the grid.

The grid function y j [k] ∈ Y, j = −m, . . . , M is called the parametric discrete
model; here Y is q-dimensional normed space with norm ‖ · ‖Y , k = 0, . . . , K is
a parameter meaning the iteration number, K is the fixed number of iterations. We
assume that the dimension q of the space Y depends on some number h > 0.
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The set {yi [K ]}n = {yi [K ] ∈ Y, i = n − m, . . . , n} is called the prehistory of
the discrete model by the time tn, n � 0.

Let V be a linear normed space with norm ‖ · ‖V , so-called interpolation space. A
mapping I : I ({yi [K ]}n) = v ∈ V is, by definition, an operator of the interpolation of
the discrete prehistory. We assume that operator I satisfies the Lipschitz condition,
i. e. there exists such a constant L I that, for all prehistories of the discrete model
{y1i [K ]}n and {y2i [K ]}n the following inequality takes place:

‖ v1 − v2 ‖V � L I max
n−m�i�n

‖ y1i [K ] − y2i [K ] ‖Y . (9)

Starting values of the model are defined as follow

yi [K ], i = −m, . . . , 0. (10)

Suppose that for each j = 0, . . . , M − 1 an iterative process is given

y j+1[k] = Sk(y j+1[k − 1]) + ΔΦk(y j+1[k − 1], I ({yi [K ]} j )), k = 1, . . . , K ,

(11)
where Sk(y j+1[k − 1]) and Φk(y j+1[k − 1], I ({yi [K ]} j )) are a nonlinear mapping.
On each time layer, as the initial approximation of this iterative process, we can take
y j+1[0] = y j [K ] (number K is fixed) then the iterative process (11) is reduced to
the form

y j+1[K ] = ŜK (y j [K ]) + ΔΦ̂K (I ({yi [K ]} j )). (12)

The function of exact values is, by definition, the mapping

Z(t j ,Δ, h) = z j ∈ Y, j = −m, . . . , M. (13)

To know the function of exact values means to know the exact solution of the original
problem in the grid nodes. To simplify the calculations we assume that the starting
values are known precisely

y j [K ] = z j , j = −m, . . . , 0. (14)

We say that method (12) converges with the order of q(Δ, h, K ) if there exist
such a constant C and a function q(Δ, h, K ),

lim
Δ→0,h→0,K→∞ q(Δ, h, K ) = 0,

that the following inequality takes place:

‖ z j − y j [K ] ‖Y � Cq(Δ, h, K )

for all j = 0, . . . , M.
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The method (12) is said to be stable if the operator ŜK is Lipschitz with the
constant L ŜK

such that
L ŜK

= L ŜK
(Δ, h, K ) � 1. (15)

An error of approximation (a residual) is, by definition, the grid function

dn = (z j+1 − ŜK (z j ))/Δ − Φ̂K (I ({yi } j ), j = 0, . . . , M − 1. (16)

Theorem 1 Let the method (12) is stable, the approximation error is of the order
of q(Δ, h, K ), lim

Δ→0,h→0,K→∞ q(Δ, h, K ) = 0, then the method converges with the

order q(Δ, h, K ).

The theorem is proved similarly to the analogous statement in [2].

4 Embedding an Implicit Method in a General Nonlinear
Scheme

Here we embed method (7) in the scheme described in the previous section. Without
loss of generality, let us consider homogeneous boundary conditions (3)

u(0, t) = 0, u(X, t) = 0, 0 � t � T .

Let us denote y j = (u1j , u
2
j , . . . , u

N−1
j )T ∈ Y , where Y is a vector space of dimen-

sion N − 1, T is a transpose sign.
In space Y we define an operator A as follow

Auij = −a2
ui−1
j − 2uij + ui+1

j

h2
.

Define vector functions ω(y j ) and f j (I ({yi } j )) as vectors with components ω(uij )

and f (xi , t j + Δ
2 , vi

t j+ Δ
2
(·)) respectively, and rewrite system (6) in the form

ω(y j+1) + Δ

2
Ayj+1 = ω(y j ) + Δ

2
Ayj + Δ f j (I ({yi } j )). (17)

Doing in the samemanner, we denote y j [k] = (u1j [k], u2j [k], . . . , uN−1
j [k])T ∈ Y ,

and we also denote by ω′(y j ) the diagonal matrix with ω′(uij ) on the main diagonal
in i-th row. In these term iteration process (7) with exactly K iterations could be
represented as follow
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(ω′(y j+1[k − 1]) + Δ

2
A)y j+1[k] = ω′(y j+1[k − 1])y j+1[k − 1] +

+ω(y j [K ]) − ω(y j+1[k − 1]) + Δ

2
Ayj [K ] + Δ f j (I ({yi [K ]} j )), k = 1, . . . , K .

(18)
y j+1[0] = y j [K ] (19)

The iterative process can also be written in vector form

(E + Δ Ã)y j+1[k] = y j+1[k − 1] + ΔF̃(y j+1[k − 1], I ({yi } j [K ])), (20)

where

Ãuij+1[k] = −a2
ui−1
j+1[k] − 2uij+1[k] + ui+1

j+1[k]
2ω′(uij+1[k − 1])h2 ,

and F̃(y j+1[k − 1], I ({yi } j [K ])) is a vector with components

1

ω′(uij+1[k − 1]) (
ω(uij [K ]) − ω(uij+1[k − 1])

Δ
+ 1

2
Auij [K ] + f (xi , t j + Δ

2
, vi

t j+ Δ
2
(·)))

Because matrix E + Δ Ã is non degenerate, method (20) could be rewritten
in explicit form (11), where Sk(y j+1[k − 1]) = (E + Δ Ã)−1, Φk(y j+1[k − 1]) =
= (E + Δ Ã)−1 F̃(y j+1[k − 1], I ({yi [K ]} j )).

Let us rewrite system (6) (or Eq. (17)) in the form

F(y j+1) = ω(y j+1) + Δ

2
Ayj+1 − B = 0, B = ω(y j ) + Δ

2
Ayj + Δ f j (I ({yi } j )).

(21)
Then Newton’s method (7) (or (18)) could be written in the form

y j+1[k + 1] = y j+1[k] − S−1(y j+1[k])F(y j+1[k]),

S(y j+1[k]) = (ω′(y j+1[k]) + Δ

2
A) = F ′(y j+1[k]), k = 0, . . . , K − 1. (22)

Let us denote Ψ (y) = y − S−1(y)F(y); it is easy to prove that for small Δ operator
Ψ is contractive.

We can rewrite method (12) in the form

y j+1[K ] = SK (Ψ (Ψ (· · · Ψ (y j+1[0])))) + ΔΦK (Ψ (Ψ (· · · Ψ (y j+1[0]))), I ({yi [K ]} j )),
(23)
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what implies stability of the method. In consideration of (19), method (23) could be
written in the form

y j+1[K ] = SK (Ψ (Ψ (· · ·Ψ (y j [K ])))) + ΔΦK (Ψ (Ψ (· · ·Ψ (y j [K ]))), I ({yi [K ]} j ))
(24)

Analyzing the order of the residual (taking the order of interpolation into account)
and the rate of convergence of Newton method, we obtain the following.

Theorem 2 The error of approximation (7) written in the form (12) has the order
Δ2 + h2 + λ2K , 0 < λ < 1.

Theorems 1 and 2 and the stability of the method imply the following theorem.

Theorem 3 The method (7) written in the form (12) or (24) converges and has the
order Δ2 + h2 + λ2K , 0 < λ < 1.

5 Numerical Examples

Example 1 The method announced previously in [2] had the first order of conver-
gence with respect to time; this led to a significant accumulation of computational
error. The nonlinear analog of Crank–Nicolson method was elaborated to increase
the convergence rate. So, the comparison of method (7) andmethod from [2] is given.

On the domain x ∈ (0, 10), t ∈ (0, 10) we consider a nonlinear initial boundary
value problem

∂u2

∂t
= ∂2u

∂x2
+ t

∫ 0

−4
u(x, t + s) ds + 16t2 − 64

3
t − 2, (25)

with initial and boundary conditions

u(x, t + s) = x2 + t2 + s, 0 ≤ x ≤ 10, −4 ≤ s ≤ 0,

u(0, t) = t2, u(10, t) = 100 + t2, 0 ≤ t ≤ 10.

Problem (25) has an exact solution u(x, t) = x2 + t2.
For all numerical experiments with this test equation the accuracy of Newton

method is taken to be ε = 10−7. To calculate the functional containing a distributed
delay term we used the trapezoid rule and linear interpolation with extrapolation.

Since the approximation of the second derivativewith respect to space is precise in
this example, it could be considered as a perfect test for estimation of computational
order of convergence with respect to time. Note, that despite the fact that u depend
on t quadraticaly as well the approximation of time derivative is not precise because
of nonlinear function ω in differential operator.
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The absolute errors and the computational orders of convergence are reported
in Table1. The absolute errors for given h and Δ is defined as diff = diff(h,Δ) =
= max

i, j
|uij − u(xi , t j )|.The computational order of convergence with respect to time

was defined as follow

COCΔ = log2

(
diff(h, 2Δ)

diff(h,Δ)

)
.

Table1 is splitted into two blocks: numerical results with method (7) are repre-
sented in the left part and with method from [2] in the right. Different set of grids
were chosen to test both methods due to their quite different numerical properties;
for method from [2] the grids are far more dense.

As it can clearly be seen from Table1, nonlinear Crank–Nicolson method (7) is
far better than implicit method from [2]. Namely, even on the grid with 16 segments
only method (7) dives better results, than implicit method from [2] on the grid with
2048 segments.

Numerical estimates of computational order of convergence from method (7) are
very close to theoretical one. On the contrary, the method from [2] demonstrates
a decrease of computational order of convergence upto 0.4877 with an increase in
the number of nodes from 1025 to 2049, which is apparently due to the increasing
influence of rounding errors.

The calculations were carried out in cloud platform Google Colaboratory using a
programming language Python 3.7.

In a series of 50 experiments it was estimated that the mean time required to find
numerical the solution on the grid with N = 32, M = 2048 using method from [2]
is equal 133.73 ± 0.41 s, mean ± standard deviation. To find solution with even
less error using method (7) it is sufficient to build less dense grid N = 32, M = 16;
the mean time decreases dramatically upto 0.0372 ± 0.0019 s. Note, that it took
2.336 ± 0.006 s to find numerical solution with absolute error 2.9277 × 10−4 on
grid N = 32, M = 256 using method (7).

Table 1 Table of absolute errors and computational order of convergence. Numerical results for
nonlinear Crank–Nicolson method (7) and implicit method from [2]. Parameter N , number of
segments with respect to space, was taken to be equal 32

Method (7) Method from [2]

M diffΔ,h COCΔ M diffΔ,h COCΔ

16 1.0759 × 10−1 − 128 2.4909 −
32 2.2941 × 10−2 2.2296 256 1.3735 0.8588

64 5.1102 × 10−3 2.1664 512 5.0035 × 10−1 1.4568

128 1.2088 × 10−3 2.0799 1204 2.1921 × 10−1 1.1906

256 2.9277 × 10−4 2.0456 2048 1.5633 × 10−1 0.4877
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Table 2 Table of absolute errors. Numerical results for method (7), task (26)

No. 1 2 3 4 5 6 7 8

N 8 8 8 8 32 32 32 32

M 16 32 64 128 32 64 128 256

diff 1.4828 0.4793 0.1613 0.0867 0.4150 0.1034 0.0274 0.0096

Example 2 On the domain x ∈ (0,π), t ∈ (0, 4π)we consider the initial boundary
value problem

∂eu

∂t
= ∂2u

∂x2
− 0.5 esin x cos t

∫ 0

−π

u(x, t + s) ds + u, (26)

with initial and boundary conditions

u(x, t + s) = sin x cos(t + s), 0 ≤ x ≤ π, π ≤ s ≤ 0,

u(0, t) = 0, u(π, t) = 0, 0 ≤ t ≤ 4π.

Problem (26) has an exact solution u(x, t) = sin x cos t.

For all numerical experiments with this test equation the accuracy of Newton
method is taken to be ε = 10−7. To calculate the functional containing a distributed
delay term we used the trapezoid rule and linear interpolation with extrapolation.

The absolute errors diff and the computational orders of convergence are reported
in Table2. The sequence number of the experiment is indicated in the first row.
Number of segments with respect to space and time, N and M, are reported in
rows 2 and 3, correspondingly.

6 Conclusion

To construct the nonlinear difference schemes and increase the order of their con-
vergence is a relevant problem from the point of view of applied mathematics and
scientific computing. As it was proved and illustrated in the series of numerical exper-
iments the proposed nonlinear analog of Crank–Nicolson scheme converges with the
second order with respect to space and time. Scheme is unconditionally stable.

The main direction of our future efforts is a widening of the class of equations we
deal with. Precisely, scheme will not change significantly for equations with fraction
derivatives in space, but requires some technical changes only. To deal with many
real-world problems [1, 8] the scheme should be generalised for themultidimensional
case. This will be done in our future studies as well.

Acknowledgements We acknowledge the support by RFBR Grant 19-01-00019.
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On Coincidence Points of Mappings
Between Partially Ordered Sets

S. E. Zhukovskiy

Abstract A coincidence point theorem for mappings between partially ordered sets
is obtained. This result is compared with some known coincidence point theorems
and fixed point theorems.

Keywords Coincidence point · Ordered covering

1 Introduction

Given nonempty sets X,Y and mappings ψ,ϕ : X → Y, a point x ∈ X is called a
coincidence point of ψ and ϕ if

ψ(x) = ϕ(x).

In this paper, we derive sufficient conditions for the existence of coincidence points
for the case when X and Y are partially ordered sets.

The coincidence point problem for mappings between partially ordered sets was
investigated in the papers [1–4]. Here we obtain a more general coincidence point
existence condition than one in [1, 3]. We also show that the Caristi fixed point
theorem (see, for example, [5]) follows from the results of this paper.

2 Preliminaries

Recall that a relation � is called a partial order on X if it is reflexive (i.e., x � x for
all x ∈ X ), antisymmetric, (i.e., x1 � x2 and x2 � x1 imply x1 = x2), and transitive,
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(i.e., x1 � x2 and x2 � x3 imply x1 � x3). The set X with a partial order � is called
a partially ordered set (or poset) and is denoted by (X,�).

Let (X,�) be a partially ordered set. A subset S ⊂ X is called a chain if any two
elements x1, x2 ∈ S are comparable (i.e., either x1 � x2 or x2 � x1). A point x ∈ X
is called a lower bound of a set A ⊂ X if x � a for every a ∈ A. A lower bound
x̄ ∈ X of A is called the infimum of A, and is denoted by inf A, if x � x̄ for every
lower bound x of A. A point ā ∈ A is called a minimal point in the set A if there is
no point a ∈ A such that a ≺ ā.

A subset A ⊂ X is called orderly complete in X , if for any chain S ⊂ A there
exists inf S ∈ X and inf S ∈ A. If X is orderly complete in X, thenwe say that (X,�)

orderly complete. Hence, X is orderly complete if and only if any chain S ⊂ X has
an infimum.

Let (Y,�) be a partially ordered set. A mapping ϕ : X → Y is called isotone if
for any x1, x2 ∈ X the relation x1 � x2 implies ϕ(x1) � ϕ(x2).

For arbitrary x ∈ X denote

OX (x) = {u ∈ X : u � x}.

A mapping ψ : X → Y is called orderly covering a set W ⊂ Y if

OY
(
ψ(x)

) ∩ W ⊂ ψ
(
OX (x)

)

for every x ∈ X. In this case, we will also say that ψ covers W.

The definition of covering was introduced in [1, 3]. The rest of the above men-
tioned notions are standard and can be found in [6]. For other definitions of covering
an properties of covering mappings in various spaces see, for example, [7–9].

In [3], the following coincidence point theorem was obtained. Let the mappings
ψ,ϕ : X → Y and sets U ⊂ X, W ⊂ Y be given.

Denote by S(ψ,ϕ,U,W ) the set of all chains S ⊂ X such that

S ⊂ U, ψ(S) ⊂ W, ψ(x) � ϕ(x) ∀ x ∈ S,
ψ(x1) � ϕ(x2) ∀ x1, x2 ∈ S : x1 ≺ x2.

(1)

Theorem 1 ([3, Theorem 1]) Given a point x0 ∈ X satisfying the relation ψ(x0) �
ϕ(x0), assume that

(a) ϕ is isotone;
(b) ψ orderly covers the set W := ϕ(OX (x0));
(c) for any chain S ∈ S = S(ψ,ϕ, OX (x0),W ) there exists a lower bound u ∈ X

of S such that ψ(u) � ϕ(u).

Then, there exists ξ ∈ X such that ψ(ξ) = ϕ(ξ) and ξ � x0. Moreover, the set {x ∈
OX (x0) : ψ(x) = ϕ(x)} has a minimal element.
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3 Coincidence Point Theorem

Let (X,�), (Y,�) be partially ordered sets, mappings ψ,ϕ : X → Y be given.
Denote

C(ϕ,ψ) := {x ∈ X : ϕ(x) � ψ(x)}. (2)

Theorem 2 Assume that

(d) ∀ x ∈ X : ϕ(x) ≺ ψ(x) ∃ x ′ ∈ X : x ′ ≺ x, ϕ(x ′) � ψ(x ′).
(e) every chain S ∈ C(ϕ,ψ) has a lower bound u ∈ X such that ϕ(u) � ψ(u).

Then, for every x0 ∈ C(ϕ,ψ) there exists ξ ∈ X such that ψ(ξ) = ϕ(ξ) and ξ � x0,
and moreover the set {x ∈ OX (x0) : ψ(x) = ϕ(x)} has a minimal point.

Proof Take an arbitrary x0 ∈ C(ϕ,ψ). The Hausdorff maximal principle implies
that there exists a maximal (in the partially ordered set (C(ϕ,ψ),�)) chain S that
contains x0. Assumption (e) implies that there exists a lower bound ξ ∈ C(ϕ,ψ) of
S. Since S is a maximal chain, we have ξ = inf S.

Let us show that ξ is the desired point. Consider the contrary: ϕ(ξ) ≺ ψ(ξ).
Then, there exists ξ′ ≺ ξ such that ϕ(ξ′) � ψ(ξ). Hence, ξ′ ∈ C(ϕ,ψ). Moreover,
ξ′ ≺ ξ � x for all x ∈ S. Thus, the chain S is a proper subset of the chain S ∪ {ξ′}.
This contradicts to the maximality of the chain S. This contradiction implies that
ψ(ξ) = ϕ(ξ). Inequality ξ � x0 follows from the relations ξ = inf S, x0 ∈ S.

Let us show that ξ is a minimal point of the set {ξ ∈ OX (x0) : ψ(x) = ϕ(x)}.
Consider the contrary: there exists ξ′ ∈ X such that ξ′ ≺ ξ and ϕ(ξ) = ψ(ξ). Then,
ξ′ ∈ C(ϕ,ψ) and ξ′ ≺ ξ � x for all x ∈ S. Thus, the chain S is a proper subset of the
chain S ∪ {ξ′}. This contradicts to the maximality of the chain S. This contradiction
implies that ξ is a minimal point of the set {ξ ∈ OX (x0) : ψ(x) = ϕ(x)}. �

The concept of a fixed point is a partial case of coincidence point. Indeed, given
a mapping ϕ : X → X, a fixed point ξ ∈ X of ϕ is a coincidence point of ϕ and the
identity map. Let us formulate a simple assertion on the fixed point existence that
directly follows from Theorem 2.

Corollary 1 Let (X,�) be orderly complete. Given a mappingϕ : X → X, assume
that ϕ(x) � x for every x ∈ X. Then, for every x0 ∈ X there exists ξ ∈ X such that
ξ = ϕ(ξ), ξ � x0.Moreover, the set {x ∈ OX (x0) : x = ϕ(x)} has a minimal point.
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4 Discussion

Let us show that Theorem 1 follows from Theorem 2.
Let the assumptions of Theorem 1 hold. Define a partial order � in X as fol-

lows: x1 � x2 ⇔ x1 ≺ x2, ψ(x1) � ϕ(x2), ψ(x1) ∈ W. Show that the assumptions
of Theorem 2 hold for mappings ψ,ϕ and the partial order � in X and � in Y.

Take an arbitrary chain S ⊂ C(ϕ,ψ) with respect to partial order �. Then, S ∈
S(ψ,ϕ, OX (x0),W ). Thus, assumption (c) implies that (e) holds. Let us verify (d).
Take an arbitrary x ∈ X such that ϕ(x) ≺ ψ(x). Assumption (b) implies that

ϕ(x) ∈ OY (ψ(x)) ⊂ ψ(OX (x)).

Hence, there exists x ′ ∈ X such that x ′ ≺ x and ψ(x ′) = ϕ(x). This equality and
assumption (a) imply ϕ(x ′) � ϕ(x) = ψ(x ′). By definition of the relation � we
obtain x ′ � x . Thus, (d) holds. So, we have shown that Theorem 1 follows from
Theorem 2.

In [3], it was proved that some known fixed point theorems including the Knaster–
Tarski theorem (see, for example, [10, Sect. 2.1]) and the Birkhoff–Tarski theorem
(see, for example, [6, p. 266]) follow fromTheorem 1. Hence, these assertions follow
also from Theorem 2.

Let us now consider the fixed point problem and coincidence point problem for
mappings between metric spaces. In [3], it was shown that the coincidence point the-
orem for mappings between metric spaces [7, Theorem 1] and some similar results
follow from Theorem 1. Hence, these assertions as well as Banach contraction map-
ping principle and some of its generalizations follow from Theorem 2. Let us show
that onemore result on fixed points in metric spaces can be deduced fromTheorem 2.

Recall the Caristi fixed point theorem. Let (X, ρ) be a metric space, ϕ : X → X
and U : X → R+ be given.

Theorem 3 (see [5]) Assume that the space (X, ρ) is complete, the function U is
lower semicontinuous, the mapping ϕ satisfies the relation

ρ(x,ϕ(x)) ≤ U (x) −U (ϕ(x)) ∀ x ∈ X. (3)

Then, there exists ξ ∈ X such that ξ = ϕ(ξ).

Let us deduce this proposition from Theorem 2. Set

P := {(x, r) ∈ X × R+ : r ≥ U (x)}.

Since U is lower semicontinuous, the set P ⊂ X × R+ is closed. Define a binary
relation � on X × R+ assuming

(x1, r1) � (x2, r2) ⇔ ρ(x1, x2) ≤ r2 − r1.



On Coincidence Points of Mappings Between Partially Ordered Sets 49

This relation is a partial order, the partially ordered set (P,�) is orderly complete
(see [3, Lemma 3]) (this construction was introduced in papers [11, 12] and became
a useful tool for reducing some problems in metric spaces and normed spaces to
problems in partially ordered sets). Define a mapping ω : P → P by formula

ω(x, r) := (
ϕ(x),U (ϕ(x))

)
, (x, r) ∈ P.

The mapping ω satisfies all the assumptions of Corollary 1. Indeed, (P,�) is
orderly complete and ω(x, r) = (

ϕ(x),U (ϕ(x))
) � (x,U (x)) � (x, r) in virtue of

(3) and the definition of the relation � . So, Corollary 1 implies that there exists
(ξ, r) ∈ P such that ω(ξ, r) = (ξ, r). Hence, ξ is a fixed point of ω.

We have shown that the Caristi fixed point theorem follow from Theorem 2. The
introduced coincidence point theorem can also be applied to various problems includ-
ing control problems, ordinary differential equations and optimization problems. An
examples of application of a coincidence point theorems and the concept of covering
to control problems and ordinary differential equations can be found in [13–16]. For
application of close order-theoretic results in optimization see [17, 18].
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An Algorithm for Constructing
Reachable Sets for Systems with Multiple
Integral Constraints

I. V. Zykov

Abstract We propose a method for building reachable sets for control systems with
integral restraints on the control and trajectory of the system. This method is based
on the use of the Pontryagin maximum principle for characterizing the border points
of the reachable set.

Keywords Control system · Isoperimetric constraints · Reachable set · Maximum
principle

1 Introduction

A reachable (attainable) set of a control systems consists of all system states that can
be reached for a given time. The attributes of attainable sets for nonlinear systems
with integral restraints and rules for building of this sets were considered in numerous
papers (see, for example, [1–3]). In [4], it was displayed that under below integral
restraints of a quadratical type on control, any permissible control which get the
trajectory to the reachability border is a local minimum of certain for an integral
criterion. In [5, 6], the results are generalized to the instance of get the trajectories
with cooperative restraints on the control and the state, and in [7] to the instance of
many integral (isoperimetric) restraints. In this paperwe consider linear get trajectory
with quadratic isoperimetric restraints. The technique for constructing attainable sets
provides applied to the instance of quadratic constraints on the control and the path.

In the work we will use the following symbolics. The notation AT means the
transposed matrix to the real matrix A. For x, y ∈ Rk , (x, y) is the scalar product
of the vectors, ‖x‖ = (x, x)1/2 is the Euclidean norm. For the real k × m matrix A,
‖A‖ denotes the norm of the matrix, subjected to the Euclidean norms of vectors.
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For S ⊂ Rn , ∂S denotes the boundary of S. Denote by L1, L2 and C , respectively,
the spaces of summable, square integrable and continuous vector-valued functions
on [t0, t1]. The norms in these spaces are ‖ · ‖L1

, ‖ · ‖L2
, ‖ · ‖ accordingly.

2 Nonlinear Systems with Multiple Integral Restraints

Consider an affine-control system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t), t0 ≤ t ≤ t1, x(t0) ∈ X0, (1)

here x ∈ Rn is a state vector, u ∈ Rr is a control parameter, f1 : Rn+1 → Rn, f2 :
Rn+1 → Rn×r are continuous mappings, X0 is a given subset of Rn .

The solution of the system (1) appropriate to u(·) ∈ L2 is an absolutely con-
tinuous function x : [t0, t1] → Rn such that equality (1) is valid for almost all
t ∈ [t0, t1]. Further we suppose that the mappings f1 and f2 are differentiable in
x , and meet the conditions of sublinear growth and boundedness: ‖ f1(t, x)‖ ≤
l1(t)(1 + ‖x‖), ‖ f2(t, x)‖n×r ≤ l2(t), where l1(·) ∈ L1, l2(·) ∈ L2. For whatever
x0 ∈ Rn, u(·) ∈ L2 there is only one solution x(t)which satisfy equality x(t0) = x0,
which we determine as x(t, x0, u(·)).

Let the functionals be as follows

Ji (x(·), u(·)) =
t1∫

t0

[
Qi (t, x(t)) + u�(t)Ri (t, x(t))u(t)

]
dt, i = 1, . . . , k.

Here x(t) is the solution of the system (1) corresponding to the control u(t) and
the initial vector x0, the functions Qi (t, x) and the symmetric the matrices Ri (t, x)
are assumed to be continuous on [t0, t1] × Rn . Denote by μ = (μ1, . . . , μk) ∈ Rk a
given positive vector.

Definition 1 Under a set of attainability G(t1) of system (1) we mean the set of
all vectors x(t1) in Rn , corresponding to pairs (x(·), u(·)) satisfying Eq. (1) an the
conditions

Ji (x(·), u(·)) ≤ μi , i = 1, . . . , k, x(t0) ∈ X0. (2)

Let us introduce J (x(·), u(·)) = (J1(x(·), u(·)), . . . , Jk(x(·), u(·))) a vector func-
tional with components Ji (x(·), u(·)), i = 1, . . . , k. Consider the multicriteria con-
trol problem of system (1)

J (x(·), u(·)) → min, u(·) ∈ L2, x(t0) ∈ X0, x(t1) = x1, (3)

where x1 ∈ Rn . The pair (x(·), u(·)) is called admissible in the problem (3) if x(t0) ∈
X0, x(t1) = x1.
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Definition 2 The pair (x̂(·), û(·)) (control process) is said to be a Slater optimal
for the problem (3), if does not exist a pair (x(·), u(·)) such that Ji (x(·), u(·)) <

Ji (x̂(·), û(·)), i = 1, . . . , k. The pair (x̂(·), û(·)) is said to be locally Slater opti-
mal if there exists ε > 0 such that for any (x(·), u(·)) from the ε-neighborhood of
(x̂(·), û(·)): ‖x(·) − x̂(·)‖C < ε, ‖u(·) − û(·)‖L2 < ε, there is i such that
Ji (x(·), u(·)) ≥ Ji (x̂(·), û(·)).

The pair (x(·), u(·)), which satisfies the restrictions (2), is said to be boundary if
x(t1) ∈ ∂G(t1).

Theorem 1 ([7]) If the pair (x̂(·), û(·)) is boundary and system (1) linearized along
(x̂(·), û(·)) is completely controllable, then (x̂(·), û(·)) provides a locally Slater
optimal solution in problem (3) with x1 = x̂(t1) and Ji (x̂(·), û(·)) = μi for some
i, 1 ≤ i ≤ k.

Consider the following Pontryagin function

H(t, p, ν, x, u) = p�( f1(t, x) + f2(t, x)u) −
k∑

i=1

νi

(
Qi (t, x) + u�Ri (t, x)u

)
.

If the pair (x̂(·), û(·)) is a permissible process, then necessary conditions of a local
optimality which have a from of the maximum principle are satisfied: there is a
vector ν = (ν1, . . . , νk) 	= 0 with non-negative coordinates and a solution p(t) of
the differential equation ṗ(t) = − ∂H

∂x

(
t, p(t), ν, x̂(t), û(t)

)
such that

H(t, p(t), ν, x̂(t), û(t)) = max
u∈Rr

H(t, p(t), ν, x̂(t)u)

and therefore

û(t) = 1

2

(
k∑

i=1

νi Ri (t, x̂(t))

)−1

f2
(
t, x̂(t)

)
p(t).

At the ends of [t0, t1], the transversality conditions are satisfied.

3 Linear System: Case of Two Integral Constraints

Weconsider a linear systemwith two isoperimetric restrictions and specify optimality
conditions for this case. For the control system

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0 (4)

we consider the vector functional J with the components
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Ji (x(·), u(·)) =
t1∫

t0

[
x�(t)Qi (t)x(t) + u(t)�Ri (t)u(t)

]
dt, i = 1, . . . , k.

Here Qi (t) = Q�
i (t), Ri (t) = R�

i (t) are continuous matrix functions, Qi (t) is non-
negative definite, and Ri (t) is positive definite for all t ∈ [t0, t1].

Obviously, we can take μ1 = μ2 = μ. By Gi (t1), i = 1, 2 we denote the reacha-
bility set for the case of a single constraint Ji (u(·)) ≤ μ. Let us suppose that system
(1) is completely controllable and Ji (ū(·)) < μ, i = 1, 2 for some ū(·) ∈ L2. This
provides a non emptiness of the set G(t1) interior. Obviously, G(t1) ⊂ G1(t1) ∩
G2(t1).

The fact that x̂(t1) ∈ ∂G(t1) is tantamount to the existence of l ∈ Rn, l 	= 0 such
that (l, x̂(t1)) = minu(·):Ji (u(·))≤μ(l, x(t1)), i = 1, 2 on all control trajectories. The
Lagrangian functional of this convex programming problem is as follows

L(λ, u(·)) = (x̂(t1), l) +
∑
i

λi (Ji (u(·)) − μ), λ = (λ1, λ2) ∈ R2.

The Kuhn–Tucker theorem implies the existence of a vector λ ≥ 0 such that
L(λ, û(·)) ≤ L(λ, u(·)) ∀u(·) ∈ L2 and λi (Ji (û(·)) − μ) = 0. From linearity of
(x(t1), l) in u(·) it follows that λ 	= 0 and hence we can take λ1 + λ2 = 1. These
relations are also sufficient for x(t1) ∈ ∂G(t1).

Assume, that one of Lagrange multipliers, for example, λ2 = 0. Then λ1 =
1, J1(û(·)) = μ, and therefore the vector p0 in the maximum principle is a point of
the ellipsoid

E1
p = {p0 : x0�

S11 x
0 + x0

�
S12 p

0 + p0
�
S13 p

0 ≤ μ}.

The matrices S1i are obtained from the matrices Si , i = 1, 2, 3 by replacing
Q1(t), R1(t) instead of Q(t), R(t), and Yi j (t) are blocks of the Cauchy matrix of
the system

û(t) = 1

2
R−1(t)B�(t)p(t),

(
ẋ
ṗ

)
=

(
A(t) 1

2 B(t)R−1(t)BT (t)
2Q(t) −AT (t)

) (
x
p

)
, (5)

for R(t) = R1(t), Q(t) = Q1(t). It is necessary to take into account the sec-
ond constraint, which follows from the conditions of complementary slackness:
J2(û(·)) ≤ μ. Therefore, p0 belongs to the set

E12
p = {p0 : x0�

S121 x0 + x0
�
S122 p0 + p0

�
S123 p0 ≤ μ}.

To find the initial states p0 generating the points of ∂G(t1), one must to intersect the
boundary of E1

p with the ellipsoid E12
p . For λ1 = 0 it we need to find the intersection
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of the boundary of the E2
p with E21

p , these ellipsoids are also defined as E1
p and E2

p,
alternating indices 1 and 2.

Consider the case when λi > 0, i = 1, 2. We denote matrices

Qλ(t) = λ1Q1(t) + λ2Q2(t), Rλ(t) = λ1R1(t) + λ2R2(t).

If we write out the maximum principle for problem

(l, x(t1)) +
t1∫

t0

[
x�(t)Qλ(t)x(t) + u(t)�Rλ(t)u(t)

]
dt → min

u(·)∈L2

(6)

then we obtain the following equality

û(t) = 1

2
R−1

λ (t)B�(t)p(t).

Here p(t) is a solution of the conjugate system. The pair (x(t), p(t)) satisfy the
system (

ẋ
ṗ

)
=

(
A(t) 1

2 B(t)Rλ
−1(t)BT (t)

2Qλ(t) −AT (t)

) (
x
p

)
, (7)

x(t0) = x0, p(t0) = p0.
The conditions for complementary slackness can be replaced by a system of

equations
x0

�
Si1λx

0 + x0
�
Si2λ p

0 + p0
�
Si3λ p

0 = μ, i = 1, 2, (8)

with respect to p0. Here Si1λ, Si2λ, Si3λ are matrices of order n, which are determined
by the formulas for S1, S2, S3, where Ymk(t, t0), m, k = 1, 2 should be taken as
blocks of the Cauchy matrix of the system (7), and for Q(T ), R(T ), qi (t), Ri (t).
Respectively, the matrices Si1λ are non-negative definite and Si3λ are positive definite.
Solutions of the system of Eq. (8) under shifts along the trajectories of the differential
equation (7) move to the boundary points of the reachable set G(t1).

Let us summarize what was said above, giving a brief description of the proce-
dure for constructing the reachability set. The boundary G(t1) is the union of the
sets ∂G(t1) = D1 ∪ D2 ∪ D3. Here Di = Ti (∂Ei

p ∩ Ei j
p ), i, j = 1, 2, i 	= j , Ti is

a linear operator of a shift a along trajectories of the respective system (5). We have
Di ∈ ∂Gi (t1), μ = 1, 2. The set D3 is defined as D3 = ⋃

0<λ<1 Tλ(Pλ), where Pλ

is a set of solutions (8), Tλ is a shift operator along the trajectories of the system (7).
Furtherwe provide a detailed description of the algorithm for autonomous systems

in R2.
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4 Description of Algorithms

4.1 Algorithm 1: A Direct Method

1. First we set the initial data: A, B, [t0, t1], x(t0) = x0; Qi , Ri , i = 1, 2; μ =(
μ1

μ2

)
.

2. We construct the boundaries of the reachability sets Gi (t1) corresponding to
equalities Ji (u(·)) = μi .

Ki =
(

A 1
2 BRi

−1BT

2Qi −AT

)
, Yi (t) =

(
Y i
11(t) Y

i
12(t)

Y i
21(t) Y

i
22(t)

)
= eKi (t−t0),

Si1 =
∫ t1

t0

[
Y i
11

�
(t)QiY

i
11(t) + 1

4
Y i
21

�
(t)BRi

−1�
B�Y i

21(t)

]
dt,

Si2 = 2
∫ t1

t0

[
Y i
11

�
(t)QiY

i
12(t) + 1

4
Y i
21

�
(t)BRi

−1�
B�Y i

22(t)

]
dt,

Si3 =
∫ t1

t0

[
Y i
12

�
(t)QiY

i
12(t) + 1

4
Y i
22

�
(t)BRi

−1�
B�Y i

22(t)

]
dt,

Gi (t1) = {x ∈ R2 : (x − x̄ i )�Pi (x − x̄ i ) ≤ μi + hi (x
0)}, (9)

where x̄ i = Y i
11(t1)x

0 + Y i
12(t1) p̄

i , p̄i = − 1
2 Si3

−1S�
i2x

0, Pi = Y i
12

−1�
(t1)Si3

Y i
12

−1
(t1), and hi (x0) = 1

4 x
0�

Si2Si3−1S12�x0 − x0
�
S11x0. The boundary of the

set Gi (t1) can be parametrized by the following way

x − x̄ i =
√

μi + hi (x0)Pi
−1/2

(
cos θ

sin θ

)
, θ ∈ [0, 2π). (10)

3. The interval (0, 1) is replaced by a grid: Λ = {λ1, . . . , λN } ⊂ (0, 1), λi+1 −
λi = Δ, i = 1, . . . , N − 1. Assume that λ = λ1. Denote

Qλ1 = (1 − λ1)Q1 + λ1Q2, Rλ1 = (1 − λ1)R1 + λ1R2.

Further, in the sameway as 2, we compute Kλ(t), Yλ(t) (instead of Ri and Qi we
take, respectively, Rλ1 and Qλ1 ), S

i
1λ1

, Si2λ1
, Si3λ1

, i = 1, 2. Using the previous
calculations, we start the function of finding the roots for the system (8) with
respect to p0 for λ1: parametrizing one of the Eq. (8) (see (10)) and substituting
into the second one we do a complete search in the parameter θ ∈ [0, 2π). If
there are roots, we store them as initial approximations for finding roots for
λ + Δ. In the next step, the values found for λ2 are also remembered as initial
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values for the search for λ3 and so on to λN . Otherwise, we repeat all steps of
this item until there are roots for some λi0 , i0 ∈ {1, . . . , N } (such can and not
to be). After we have found a set of initial values for the conjugate system, we
construct the part of the boundary of the attainable setG(t1)by the transformation
p0λi

→ x = Y λi
11(t1)x

0 + Y λi
12(t1)p

0, i = 1, . . . , N .
4. Let λ = 0. Then J1(û(·)) = μ1, and J2(û(·)) ≤ μ2, and we get vector p0 must

lie in the intersection of the sets

∂E1
p = {p0 : x0�

S11 x
0 + x0

�
S12 p

0 + p0
�
S13 p

0 = μ1}

with
E2

p = {p0 : x0�
S21 x

0 + x0
�
S22 p

0 + p0
�
S23 p

0 ≤ μ2}.

We use the parametrization of the boundary of the form x = x(θ), θ ∈ [0, 2π ]
for the boundary of E1

p. Substituting x(θ) into inequality describing the second
ellipsoid, we look for the solutions of this inequality on the uniform grid from
[0, 2π ].

Remark 1 This design allows you to search for roots much faster than a direct
search of all values of λ.

In the next section we consider a different method for an approximation of an
attainable set.

4.2 Algorithm 2: An Analog of the Monte Carlo Technique

1. Step 1 from the description of the first algorithm are applicable to this algorithm,
so we immediately go to the next step.

2. We represent u(t) by the following way u(t) = ∑n
j=0 c jϕ j (t), here {ϕ(t)}nj=0 is

a system of orthonormal polynomials, and c j , j = 0, 1, . . . , n are the expan-
sion coefficients. Analogically, we can write the following formula x(t) =
eA(t−t0)x0 + ∑n

j=0 c jψ j (t), where {ψ(t)}nj=0 is a collection of some functions.
3. After substituting into the initial system of equations, we obtain that {ψ(t)}nj=0

should be solutions of the system

ψ̇ j (t) = Aψ j (t) + Bϕ j (t), ψ j (t0) = 0, j = 0, 1, . . . , n.

4. Now, restrictions Ji (x(·), u(·)) ≤ μi , i = 1, 2, imply the system of inequalities
for c = (c0, . . . , cn)�:

x0
�
Pi1x

0 + c�Pi2x
0 + c�Pi3c ≤ μi , (11)

where
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Pi1 =
∫ t1

t0

E�(t)Qi E(t)dt, Pi2 =
∫ t1

t0

2ψ�(t)Qi E(t)dt,

Pi3 =
∫ t1

t0

(
ψ�(t)Qiψ(t) + ϕ(t)Riϕ

�(t)
)
dt,

E(t) = eA(t−t0), i = 1, 2.
5. Choose the coefficients of decomposition. From theBessel inequality, it is known,

that
∑n

j=0 c j
2 ≤ ‖ u(·) ‖L2

2. Since
∫ t1
t0
u�(t)Riu(t)dt ≤ μi , i = 1, 2 the latter

implies that αi‖ u(·) ‖L2
2 ≤ μi , where αi is the minimal eigenvalue of Ri , i =

1, 2. Thus
∑n

j=0 c j
2 ≤ mini {μi

αi
} and

|c j | ≤
√
min
i

{
μi

αi

}
, j = 0, 1, . . . , n; i = 1, 2. (12)

6. At the last stage of the calculations, we choose the vector c, which obeys inequal-
ities (12):

c =
√
min
i

{
μi

αi

}
(I − 2r) (13)

where r is an array of length n + 1, whose elements are random values uniformly
distributed in the interval (0, 1), I is (n + 1)-dimensional vector with unit com-
ponents. Consider the following array of points from R2: select c according to
relation (13) and, if the inequalities (11) hold, we write E(t1)x0 + ∑n

j=0 ciψ(t1)
into an array. Further, repeat the procedure for choosing c.

5 Numerical Modeling

Consider a linear controlled system

ẋ1 = x2, ẋ2 = u, t ∈ [t0, t1], x(t0) = x0, μ = (μ1, μ2)

with joint integral constraints

J1(x(·), u(·)) =
t1∫

t0

[
3x1

2(t) + 0.1x2
2(t) + 0.05u2(t)

]
dt ≤ μ1,

J2(x(·), u(·)) =
t1∫

t0

[
0.1x1

2(t) + 0.2x2
2(t) + 0.1u2(t)

]
dt ≤ μ2.

The results of numerical simulation are shown in Figs. 1 and 2.
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Fig. 1 The reachable set for [t0, t1] = [0, π ], x0 = [0; 1], μ = [3; 3]

Fig. 2 The reachable set for [t0, t1] = [0, 1], x0 = [1; 1], μ = [3; 3]
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Thin black lines designate the boundaries of G1(t1) and G2(t1). A bold line of
different colors gives the boundary of G(t1) ⊆ G1(t1) ∩ G2(t1). In this case, red
and blue colors show the points corresponding to the cases λ1 = 0 and λ2 = 0,
respectively. Green color corresponds to the case when λ ∈ (0, 1). The case of λ ∈
(0, 1) corresponds to the green color. The set that approximates the reachability set
G(t1) is represented in yellow.
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Similarity and Structural Stability with
Respect to Delay of FDE Phase Portraits

A. V. Kim, N. A. Andryushechkina and V. V. Kim

Abstract In this work, we established the structure similarity of phase portraits of
ordinary solutions of a linear system with a discrete delay and a corresponding finite
dimensional system under some assumptions on the delay and the system parameters.

Keywords Functional differential equations · Stability · Phase portraits

1 Similarity and Structural Stability of FDE

In the paper, we consider a linear system with a discrete delay

ẋ(t) = Ax(t) + Aτ x(t − τ ), t ∈ [t0, θ] (1)

where x ∈ Rn is a phase vector, A, Aτ are n × n constant matrices, τ is a positive
constant (a discrete delay).

Myshkis [1] established that in case of a small delay a phase portrait of a set of
special solutions of autonomous functional-differential equation (FDE) is identical
to a phase portrait of the corresponding ordinary differential equations (ODE).

In the present paper we prove that under some assumptions on the delay and the
system parameters the phase portrait of regular (ordinary) solutions of the system (1)
has the structure analogous to the structure of the corresponding finite dimensional
system (obtained from (1) when Aτ = 0).
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Definition 1 A phase portrait of FDE

x(t) = f (x(t + s)),−τ ≤ s < 0 (2)

and a phase portrait of ODE
ġ(t) = g(x(t)) (3)

are called similar if for any ε > 0 the following condition is fulfilled: for every
solution x(t), t ∈ T = [0, Γ ] of (2) there exists at least one solution x̃(t), t ∈ T̃ =
[0, Γ̃ ] of (3) such that ‖x(t) − x̃(t)‖ ≤ ε, t ∈ T ∩ T̃ .

Thus, the similarity property means that at a neighborhood of every trajectory of
FDE phase portrait there is an ODE trajectory.

Definition 2 The system (1) is structurally stable on [t0, θ]with respect to the delay
if (∀ε > 0)(∃δ > 0) such that for ‖Aτ‖n×n < δ and | τ |< δ the solution x̃(t) of (1)
corresponding the initial condition

x̃(t0) + s =
{
x0, s = 0

y0(s), −τ ≤ s < 0

h0 = {x0, y0(·)} ∈ H = Rn × Q[−τ , 0),

and the solution x∗(t) of the initial-value problem
{

ẋ(t) = Ax(t)

x(t0) = x0
(4)

satisfy the condition ‖x̃(t) − x∗(t)‖ ≤ ε for t ∈ [t0, θ].
Obviously, the following proposition is valid.

Theorem 1 If the system (1) is structurally stable with respect to the delay, then its
phase portrait is similar to the phase portrait of ODE

ẋ(t) = Ax(t). (5)

Theorem 2 If the system (5) is stable then the system (1) be structurally stable on
any finite interval [t0, θ] with respect to the delay.
Proof Due to stability of the system (4) there exists ε1 > 0 such that max

t∈[t0,θ]‖x∗(t)‖ ≤ ε1
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Assuming that we know x̃(t) and substituting it into (1) instead of x(t − τ ) we
obtain the inhomogeneous ODE system

ẋ(t) = Ax(t) + Aτ x̃(t),

which solution, corresponding to an initial data {t0, x0}, has the form

x0(t) = x∗(t) +
τ∫

t0

eA(t−ζ)Aτ x̃(ζ − τ )dζ. (6)

Obviously x0(t) = x̃(t). Therefore, taking into account that x∗(t) = eA(t−t0)x0,
obtain

x̃(t) = x∗(t) +
t∫

t0

eA(t−ζ)Aτ x̃(ζ − t)dζ.

Then

x0(t) − x∗(t) =
t∫

t0

eA(t−ζ)Aτ x̃(ζ − t)dζ.

One can estimate

‖x0(t) − x∗(t)‖ =
∥∥∥

t∫
t0

eA(t−ζ)Aτ x̃(ζ − t)dζ
∥∥∥ ≤

t∫
t0

∥∥eA(t−ζ)Aτ x̃(ζ − t)
∥∥dζ

≤
t∫

t0

∥∥eA(t−ζ)
∥∥‖Aτ ‖‖x̃(ζ − t)‖dζ ≤

t∫
t0

Tr A(t − ζ)‖Aτ ‖‖x̃(ζ − t)‖dζ

≤ Tr A(t − ζ)‖Aτ ‖(θ − t0)

t∫
t0

max
t0≤ζ≤t

‖x̃(ζ − τ )‖dζ

≤ (Tr A)‖Aτ ‖(θ − t0)ε1(t − t0) ≤ (Tr A)‖Aτ ‖(θ − t0)
2ε1.

Thus, if for ε > 0 we take

δ = ε

(Tr A)Aτ (θ − t0)2ε1
,
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then from the above estimation we obtain that for ‖Aτ‖ < δ

‖x(y) − x∗(t)‖ = (Tr A)‖Aτ‖(θ − t0)
2ε1 ≤ (Tr A)δ(θ − t0)

2ε1 ≤ ε.

Therefore the system (1) is structurally stable with respect to the delay.

The proof of the theorem is complete.
Note that stability of the system (1) is not only sufficient but also the necessary

condition of the structural stability of the system.

2 Regular Phase Portraits of Linear Systems with Delays

In this section we study phase portraits of systems

ẋ(t) = Ax(t) + Bx(t − τ ), (7)

where x ∈ R2, A, B are 2 × 2 constant matrices.
Systems (7) are considering in the phase space

H = R2 × Q2[−τ , 0),

where Q2[−τ , 0) is the space of piecewise continuous functions

y(·) : [−τ ) → R2,

i.e. 2-dimensional functions, continuous everywhere on [−τ , 0), excluding, perhaps,
no more than a finite number of discontinuity points of the first kind, in which the
functions are continuous from the right.

Fig. 1 Phase portrait of the
type “Saddle”
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From the Theorem 1 it follows that for sufficiently small values of the matrix B
and the delay τ the phase portrait of the system (7) be similar to the phase portrait
of the system (5) Taking this fact into account, Figs. 1, 2, 3 and 4 show the obtained
standard phase portraits of the system (7).

Fig. 2 Phase portrait of the
type “Center” (due to
stretching has the shape of an
oval)

Fig. 3 Phase portrait of the
type “Unstable focus”

Fig. 4 Phase portrait of the
type “Degenerate unstable
node”
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3 Specific Phase Portraits of Linear Systems with Delays

Because of infinite dimensional nature, FDE can have effects different from regular
phase portraits of the finite dimensional system. In this section we present several
specific phase portraits of linear systems with delays.

1. Stretching. Stretching effect can arise and in finite dimensional systems, neverthe-
less we emphasize this phenomenon in systems with delays. Due to the Theorem
1 for sufficiently small ε and τ its the phase portrait of

ẋ(t) = Ax(t) + εBx(t − τ ) (8)

be similar to the phase portrait of (5). If we increase ε then the phase portrait is
stretching with preserving the structure (see Fig. 2).

2. Bifurcation. Linear system (1) can have infinite numbers of eigenvalues, that can
lead to bifurcation. We consider the bifurcation of the system (8) corresponding
to the variation of the parameter ε.

Fig. 5 Bifurcation on the
parameter λ

Fig. 6 Pendulum
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Fig. 7 Splitting petal-type
phase portrait

Fig. 8 Splitting center-type
phase portrait

Definition 3 Avalue of the parameter ε0 is the bifurcation value, if the phase portrait
has different structure for different ε in a neighborhood of ε0.

Figure5 exposes the bifurcation.

3. Pendulums. Interesting structures arising in system (1) can be called pendulum.
Pendulums are structures having repeating, but not periodic character (see Fig. 6).

4. Splitting. Another interesting effect arising in system (7) is the possibility of
“splitting” the phase portrait into several self-similar figures. For example, see
Figs. 7 and 8.
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Real-Time Modeling of System State
During the Process of More Precise
Estimation of the Initial Position

A. V. Kim and N. A. Andryushechkina

Abstract In the paper we study a problem of calculating in real-time the position of
a dynamical system under conditions that an initial position is not known, however
during an observation time one can obtainmore precise information about the starting
position of the system.

Keywords Modeling · Real-time identification

In the paper we use the following notation:
En is n-dimensional space;
f : En → En is continuous differentiable mapping;
T = [0, 1].
Consider a dynamical system

dx

dt
= f (x), x ∈ En. (1)

We assume that for any x0 ∈ En there exists on T a solution φ(·, x0) of the system
(1) satisfy the initial condition φ(0, x0) = x0; due to properties of f the solution is
unique.

An absolute continuous function x0(t) : T → En, x(0) = x0 is given. Consider
a problem of finding equations which satisfy the function

w0(t) = φ(t, x0(t)), t ∈ T .

This problem has the following interpretation. Let, for example (1) describes a
motion of a real dynamical system on the time interval [0, 1]. It is necessary elaborate
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a real time algorithm which to the final moment t = 1 realizes the final state φ(1, x∗)
of the system. Moreover at every moment t ∈ [0, T ] the real exact initial state x∗ of
the system is a priory unknown, and more exact information about the real initial
state is obtaining during the process as some informational approximation x0(t).
At the beginning of the process (t close to 0) this approximation can be rough
(‖x0(t) − x∗‖ is large), however to the end of the process x0(t) → x∗ as t → 1. In
this case forming (using information x0(t)) and solving differential equations for
w0(t) to the final moment t = 1 we find the requirement point φ(1, x∗) because this
point is w(1). Note that we take an initial approximation x0(0) = x∗ as the initial
state w0(0).

The problem under consideration can be solved by the following natural schene:

– wait until a moment 1 − γ, with small γ;
– measure at this moment the approximation x0(1 − γ);
– during the interval [1 − γ, 1] solve (1) with the initial state x(0) = x0(1 − γ).

The value of this solution at the moment t = 1 be approximate the required point
φ(1, x∗).

This method required realize large computations (modeling of the solution (1))
during short interval (of the length γ). In case of slow computation device it can
influence on the accuracy (it will be necessary make a choice between finding an
appropriate value of γ and efficiency of a computation device). A comparing of two
methods is demonstrated on examples.

A particular case of the problem under consideration is a problem of real time
calculating the final state of a dynamical system with a parameters

dy

dt
= g(y,μ), y ∈ Em, μ ∈ Er , t ∈ [0, 1].

Under the assumptions of exactly known an initial state y(0) = y0 of the system
and an estimation μ(t) of a real value μ0 of the parameter such that μ(t) → μ0 as
t → 1. To reduce this problem to the original one it is sufficiently denote x = (y,μ),
x0(t) = (

y0,μ(t)
)
, f (x) = (g(x), 0).

The obtained differential equation for w0(t) can be useful from computational
point of view in some cases when standard methods can be not efficient (see exam-
ples).

Further, for simplicity, we consider two dimensional case: n = 2. The results of
the Sects. 3 and 4 in a natural way are generalized for arbitrary n. For a differentiable
function g : E2 → E2 (g = (g1, g2)) denote

dg

dx
(x) =

∥∥
∥∥∥

dg1
dx1

(x) dg1
dx2

(x)
dg2
dx1

(x) dg2
dx1

(x)

∥∥
∥∥∥

, x = (x1, x2).
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Let l(i) : T × E2 → E2, i = 1, 2 be continuous differentiable functions such
that:

1. every l(i) is the solution of the system of partial differential equations

dl

dt
+ dl

dx
f (x) − d f

dx
l = 0, (t, x) ∈ T × E2. (2)

2. l(1)(0, x), l(2)(0, x) are linear independent vectors for every x ∈ E2. Existence of
l(1), l(2) is discussed in Sect. 5. Obviously, the function l(x) = f (x) is the solution
of the system (2). Define functions, λ(i) : E2 → E2, i = 1, 2, and μ(i) : E2 →
E1, i = 1, 2 by the following conditions:

λ(1)(x)l(1)(0, x) + μ(1)(x)l(2)(0, x) =
(
1
0

)

λ(2)(x)l(1)(0, x) + μ(2)(x)l(2)(0, x) =
(
0
1

)

Due to the properties of the functions l(1) and l(2) there exist continuous differen-
tiable functions λ(i), μ(i), i = 1, 2.
Let us consider functions

p(1)(t, x, w) = λ(1)(x)l(1)(t, w) + μ(1)l(2)(t, w)

p(2)(t, x, w) = λ(2)(x)l(1)(t, w) + μ(2)l(2)(t, w)

for t ∈ T , x ∈ E2.
Compose a function F : T × E2 → E2 assuming

F[t, w] = f (w) + p(1)(t, x0(t), w) + p(1)(t, x0(t), w)ẋ02 (t)

or

F[t, w] = f (w) + [
λ(1)(x0(t))ẋ01 (t) + λ(2)(x0(t))ẋ02 (t)

]
l(1)(t, w)+

+ [
μ(1)(x0(t))ẋ01 (t) + μ(2)(x0(t))ẋ02 (t)

]
l(2)(t, w),

where x0(t) = (x01 (t), x02 (t)).

Solution of the problem stated in the Sect. 1 gives the following proposition.

Theorem 1 The function w0(t) = φ(t, x0(t)) is the solution of the Initial Value
problem

ẇ(t) = F[t, w(t)],W (0) = x∗, t ∈ T . (3)

Proof The initial condition of the problem (3) is satisfied because w0(0) =
φ(0, x0(0)) = x0(0) = x∗.
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Now let us show thatw0(t) is the absolutely continuous on T function and satisfies
the equality

ẇ0(t) = F[t, w0(t)]. (4)

Due to assumptions on the system (1) the function φ(·, ·) : T × E2 → E2 is the
continuous differentiable function satisfying the condition [3]

∂φ

∂t
(t, x) = f (φ(t, x)),

∂φ

∂x1
(t, x) = ψ(1)(t, x),

∂φ

∂x2
(t, x) = ψ(2)(t, x),

(t, x) ∈ T × E2,

(5)

where ψ(i)(t, x), i = 1, 2 are solutions of the equations

ψ̇ = ∂ f

∂x
(t, x)ψ (6)

with initial conditions ψ(1)(0, x) = (1, 0)T , ψ(2)(0, x) = (0, 1)T .
From continuous differentiability of the function φ(·, ·) on T × E2 and absolute

continuity of the function x0(·) on T follows absolute continuity of the function
W 0(t) on T . Let T ∗ be the set of Lebesgue points of the function x0(·). Then from
the condition (5) follows that for t ∈ T ∗ and t + �t ∈ T

w0(t + �t) − w0(t) = φ(t + �t, x0(t + �t) − φ(t, x0(t)) =
= f

(
φ

(
t, x0(t)

)) �t + ψ(1)
(
t, x0(t)

)
ẋ01 (t)�t+

+ ψ(2)
(
t, x0(t)

)
ẋ01 (t)�t + o(�t).

Dividing by �t and tending �t → 0, obtain that for every t ∈ T ∗ (that is almost
everywhere on T ) the following equality is valid

ẇ0(t) = f
(
w0(t)

) = ψ(1) (
t, x0(t)

)
ẋ01 (t) + ψ(2) (

t, x0(t)
)
ẋ01 (t).

We prove more general: for every fix ξ ∈ T for all t ∈ T

ψ(i)
(
ξ, x0(ξ)

) = p(i)
(
t, x0(ξ), w0(ξ)

)
, i = 1, 2. (7)

Let us prove (7) for i = 1 (similar proof is for i = 2). Fix arbitrary ξ ∈ T and
denote q(t) = p(1)

(
t, x0(ξ), w0(ξ)

)
, ξ ∈ T .
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Because q(0) = (1, 0)T , then it is sufficiently to show that q(·) satisfies the dif-
ferential equation (6) for x = x0(ξ)n. p0 is the combination (see Sect. 3) of two
functions h(i)(t) = l(i)

(
t,φ

(
t, x0(ξ)

))
, t ∈ T , i = 1, 2.

Each of these functions satisfies the Eq. (6) for x = x0(ξ) because due to (2) and
(5) we have

ḣ(i)(t) = ∂l(i)

∂t

(
t,φ

(
t, x0(ξ)

)) + ∂l(i)

∂x

(
t,φ

(
t, x0(ξ)

))
f
(
φ

(
t, x0(t)

)) =

= ∂ f

∂x

(
φ

(
t, x0(t)

))
l(i)

(
t,φ

(
t, x0(ξ)

)) + ∂ f

∂x

(
φ

(
t, x0(t)

))
h(i)(t),

t ∈ T, i = 1, 2.

Therefore and q(·) satisfies the Eq. (6) for x0(ξ). Theorem is proved.
Note that continuous differentiability of f, l(1), l(2) guaranty uniqueness of the

initial value problem (3).
In this section we discuss solvability of the system (8), which particular case is

the system (2). Consider the system

∂l

∂t
+ ∂l

∂x
f (t, x) − ∂ f

∂t
(t, x)l = 0, (8)

where l = (l1(t, x), . . . , ln(t, x)), f (t, x) = ( f1(t, x), . . . , fn(t, x)), (t, x) ∈ T ×
En, ∂l/∂t = (∂l1/∂t, . . . , ∂ln/∂t); ∂l/∂x and ∂ f/∂x are the Jacobi matrix. Along
with the system (8) consider the system of ordinary differential equations

dx

dt
= f (t, x), (t, x) ∈ T × En. (9)

Let ω(ω·; τ , x) be a solution of the system (9) with the initial condition
ω(·); (t, x) ∈ T × En

l(t, x) = (l1(t, x), . . . , ln(t, x)) .

Theorem 2 Let the function f has continuous partial derivatives with respect to x
up to the second order and for any (t, x) ∈ T × En a solutionω(·; (t, x) is extendable
on the whole T . Then for any continuous differentiable function α : En → En there
exists a solution l : T × En → En of the differential equation (8) such that l(0, x) =
α(x), x ∈ En.

Proof Let φ(t, y) = ω(t; 0, y), (t, y) ∈ T × En . Note, ω and φ are at least contin-
uous differentiable functions.

Consider the system

dψ

dt
= ∂ f

∂x
(t,φ(t, y)) ψ, t ∈ T . (10)
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where y ∈ En is a parameter. Let ψ(·; y, z) be the continuous differentiable solution
of the system (8) with the initial condition ψ(0; y, z) = z.

Obviously the function γ(t, y) = ψ(t; y,α(y)) satisfies the conditions

∂γ

∂t
(t, y) = ∂ f

∂x
(t,φ(t, y), γ(t, y)), γ(0, y) = α(y), (t, y) ∈ T × En. (11)

Let us show that the function l(t, x) = γ(t,ω(0, t, x)) is the required solution of
the problem (8). Let us verify the validity of the initial conditions

l(0, x) = γ(0,ω(0; 0, x)) = γ(0, x) = α(x), x ∈ En.

Note that
∂γ

∂t
(t,ω(0, t, x)) − ∂ f

∂x
(t,φ(t, y), γ(t, y)) = 0, (12)

∂ω

∂t
(0, τ , x) + ∂ω

∂x
(0, τ , x) f (τ , x) = 0. (13)

The validity of (12) follows from (10) and the equality φ(t,ω(0, t, x) = x . Rela-
tion (13) can be obtained differentiating the identity ω(t, τ , x) = ω(0, τ , x) with
respect to t for t = τ and taking into account that ω is the solution of the system (8).
Substituting (11) into the system (7) and taking into account relations (12) and (13)
obtain

∂γ

∂t
(t, y) + ∂γ

∂y
(t, y)

∂ω

∂t
(0, t, x) + ∂γ

∂y
(t, y)

∂ω

∂x
(0, t, x) f (t, x) − ∂ f

∂x
(t, x)γ(t, y) = 0,

where y = ω(0, t, x).
Consider the case of one dimensional system (2). Suppose that the function f :

E1 → E1 satisfies the condition:

f (x) > 0 ( f (x) < 0), x ∈ E1. (14)

Because the function l(x) = f (x) is the solution of the system (3), then the equation
take the form

ẇ = f (w)

(

1 + ẋ0(t)

f
(
x0(t)

)

)

, w(0) = x0(t), t ∈ T . (15)

Obviously that instead of the requirement (14) one can assume that f
(
x0(t)

) �= 0
for t ∈ T .

Let us discuss some computational aspects of the method basing on the Eq. (4).
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Example 1 Let on the interval T = [0, 100] we investigate the dynamics of the
system

ẋ = 2 + sin x . (16)

It is assumed that the initial state x∗ = 101 of the system is a priory unknown. An
information about x∗ is given in the form of variable approximation x0(t) = 1 + t
(at the final moment x(100) = x∗). Under these conditions necessary to construct
an algorithm which calculate the final state x̄ = φ(100, x∗) of the system during the
real time interval T (see Sect. 2). Numerical computations show that x̄ = 274,736.

Let us compare two possible methods of solving the problem.

(A) First solve the problem using the differential equation (4) taking into account
equality w0(100) = x̄ For the system (16) the Eq. (4) has the form (see (15))

w = (2 + sin x)l̇ +
(

ẋ0

2 + sin
(
x0(t)

)

)

,

w(0) = 1

(17)

One can solve the equation in real time by the Runge-Kutta method [RK]. At
every step the value ẋ0(t) is replaced by the difference

(
x0(τi ) − x0(τi−1

)
/h,

where τi , τi−1—are net points of the method such that t is located between these
points.; in our case this difference coincides with ẋ0(t) and is equal to 1. It is
natural take the value of solution at the point t∗ = 99,998 as the approximationof
the required point x̄ . Suppose that It is necessary p = 100 computer actions for
realizing one step of the Runge-Kutta method. Then the number of step l of the
method is defined from the condition lpΔ = 100 (100 is the length of the interval
T ), and the step of the method is h = 10−5. Π1 = |w(t∗) − x̄ | = 3 · 10−8.
The computational result is w(t∗) = 274,733.

(B) Now let us solve the problem in a following naturalway.Wait until amoment t =
100 − γ, γ > 0. Then during interval [100 − γ, 100] solve, using the Runge-
Kuttamethod, theEq. (16)with the initial condition x ∗ 0(100 − γ) (seeSect. 2).
Suppose that it is required p = 10 computer actions for realizing one step of the
Runge-Kutta method for the Eq. (16). The minimal step h of the method can be
found from the condition phΔ = γ and is equal to h = 10−2

γ
. Inconvenience of

this method It is impossible for this method define a priory the optimal (that is
guarantying the smallest computation error) value γ: decreasing? We increase
the step h, that leads to increasing the error of the method. On the other side:
increasing γ we, generally speaking , increase the error of the initial condition
|x0(100 − γ) − x∗|.
Simulation of the problem using this method gives the following:

– The best approximation xγ = 274,756 was obtained for γ = 0.01 and h =
0.909.

– The corresponding error is Π2 = ∣∣xγ − x̄
∣∣ = 2 · 10−2.
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Therefore for this example the method A has an advantage in accuracy compar-
ing the method B.
The Example 1 demonstrated effectiveness of the method, related to solution of
Eq. (4), for solving the problem in dynamics. In the next examples we consider
problemswith computation specific features, which can be effectively overcame
by this method.

Example 2 Consider on the interval [0, 1] the system

ẋ = 30x + 0.001 cos x (18)

with the initial condition
x(0) = e−30. (19)

It is necessary to calculate x(1).
Note the following:

1. There is no explicit form solution of the equation;
2. Guaranteed estimation of the solution using the approximate system ẋ = 30x is

much grater than 1;
3. x(0) = e−30 is almost the computer zero.

From the last fact follows that computer simulation of the system (18) with the
initial condition (19) can give wrong result. If the problem is solved with the double
accuracy then generally speaking (19) is not the computer zero. However and in this
case another x(0) can be smaller than the computer zero.

Let us solve the problem (18)–(19) by our method. Using the equality w0(1) =
x(1).

To the initial state (19) we will approach by the law x0(t) = e−30t , t ∈ [0, 1].
The Eq. (4) takes the form

⎧
⎪⎨

⎪⎩

ẇ = (30w + 0.001 cosw) ·
(

1 − 1

1 + e−30t

3 0.001 cos
(
e−30t

)

)

,

w(0) = 1.

Solving this equation by the Runge-Kutta method with the step h = 10−2 obtain
w(1) = 1. This ensures |w(1) − x(1)| ≤ 10−3.

Example 3 Consider on the interval [0, 1] the system

ẋ = −100x2 + 0.0001 sin x (20)

with the initial state
x(0) = e100. (21)

It is necessary to calculate x(1).
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Note:

1. There is no explicit solutions of the Eq. (20);
2. Estimation of the solution of the Eq. (20) using the approximate system x =

−100x2 is much more than 1;
3. The number (20) is too big for computer memory.

Because the last fact it is impossible to use standard computational methods for
numerical solving the problem (20), (21) using computer.

Let us solve the problem (20), (21) using the equality w0(1) = x(1).
To the initial state we will approach by the law x0(t) = e100t , t ∈ [0, 1].
The Eq. (4) has the form

ẇ = (−100x2 + 0.0001 sin x
) ·

(
1 + e−100t

−1 + 10−6e−200t

)
,

w(0) = 1.

Solving this equation by the Runge-Kutta method with the step h = 10−3 obtain
w(1) = 0.01. This ensures |w(1) − x(1)| ≤ 10−6.
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Finite Difference Scheme for Special
System of Partial Differential Equations

A. V. Kim and N. A. Andryushechkina

Abstract The paper establishes conditions of existence and uniqueness of the
bounded solution of a special system of linear partial differential equations of the
first order. The system arises in the problem of a finite difference scheme of finding
an approximate solution is elaborated.

Keywords First order linear partial differential equation · Numerical ethods ·
Finite difference scheme

1 Problem Statement

Further En is the Euclidean space of vectors x , (T denotes the transposition) with
the norm ‖x‖; Z is the set of integers; Zn is the n-dimensional Cartesian product.
We consider a problem of numerical solving of finding on [0, T ] × En of a system
of partial differential equations

∂l(k)(t,x)

∂t
+

n∑

i=1

f (i)(t, x)
∂l(k)(t,x)

∂x
+

n∑

i=1

g(i)
k (t, x)l(i)(t, x) = q(k)(t, x), k = 1, n.

(1)
With initial conditions

l(k)(0, x) = r (k), k = 1, n. (2)

Further we assume that the following hypotheses be fulfilled.
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Assumption 1 The problem (1)–(2) has continuous differentiable on [0, T ] × En

solution l(t, x)
(
l(1)(t, x), . . . , l(n)(t, x)

)
such that partial derivatives ∂2l(k)(t,x)

∂t2 and
∂2l(k)(t,x)

∂xi
2 , i = 1, . . . , n, k = 1, . . . , n are continuous and bounded on [0, T ] × En.

Also we assume existence of constants F, G such that

‖ f (t, x)‖ ≤ F(t, x) ∈ [0, T ]; (3)

gk(t, x) ≤ G(t, x) ∈ [0, T ] × En, k = 1, n. (4)

2 Finite Difference Scheme: Approximation, Stability,
Convergence

Let α = (α1, . . . ,αn) ∈ En; ēk be the unite vector of the axis 0xk and τ = T/M
(M is a natural). Denote tν = ντ ; ν = 0, . . . , M ; xα = α1hē1, . . . ,αnhēn; fν,α =
f (tν, xα).
In the region [0, T ] × En we construct grids Ω0

h = (0, xα) : α ∈ Zn,Ων
h =

(tν, xα) : ν = 0, . . . , M ; Ω
′
h = {(tν, xα) : ν = 1, . . . , M;α ∈ Zn} .

For grid functions uν,α = (
u(1)

ν,α, . . . , u(n)
ν,α

)
defined on grids Ων

h and Ω
′
h we use

the corresponding norms

uν,α = supΩh‖uν,α‖, uν,α = supΩ
′
h‖uν,α‖.

Let n+
ν,α = j ∈ 1, . . . , n : f ( j)

ν,α > 0, n−
ν,α = j ∈ 1, . . . , n : f ( j)

ν,α ≤ 0.
The difference numerical scheme corresponding to the problem (1)–(2) we con-

struct in the following way.
On the grid Ω

′
h :

u(k)
ν,α − u(k)

(ν−1),α

τ
+

∑

i∈n+
ν,α

f (i)
(ν−1),α

u(k)

(ν−1),α − u(k)

(ν−1),α−ēl

h
+

+
∑

i∈n−
ν,α

f (i)
(ν−1),α

u(k)

(ν−1),α − u(k)

(ν−1),α

h
+

n∑

i=1

g(i)
k,(ν=1),αu(i)

(ν−1),α = q(k)

(ν−1),α, k = 1, n.

(5)
On the grid Ω0

h :

u(k)
0,α = r (k)

α , k = 1, n. (6)
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From (5)

u(k)
ν,α =

(
1 − τ

h

n∑

i=1

∣∣∣ f (i)
ν−1,α

∣∣∣

)
u(k)

ν−1,α+

+ τ

h

∑

i∈n+
ν−1,α

f (i)
ν−1,α × u(k)

ν−1,α−ēl
− τ

h

∑

i∈n−
ν−1,α

f (i)
ν−1,α × u(k)

ν−1,α+ēl
.

Solving the Eq. (5) with respect to uν,α obtain

uν,α =
(
1 − τ

h

n∑

i=1

f (i)
ν−1,α

)
f (k)
ν−1,α + τ

h

∑

i∈n

f (i)
ν−1,α × u(k)

ν−1,α−ēl
− τ

h
+

+ τ

h

∑

i∈nν−1,α

f (i)
ν−1,α × u(k)

ν−1,α+ēl
− τ

n∑

i=1

g(i)
k,ν−1,αu(i)

ν−1,α + τq(k)
ν−1,α, k = 1, n

(7)
Because u(k)

0,α are known from the initial condition (6) then by the formula (7) one
can calculate layer by layer at first u1,α,α ∈ Zn , then u2α,α ∈ Zn , and so on.

Let us estimate the approximation order which the scheme (5)–(6) approximates
the problem (1)–(2). Due to the Assumption 1 according to the Taylor series we have

l(k)(tν, xα) − l(k)(tν−1, xα)

τ
= ∂l(k)(tν−1, xα)

∂t
+ τ

2

∂2l(k)(tν, xα)

∂t2
(8)

l(k)(tν−1, xα) − l(k)(tν−1, xα − hēl)

h
= ∂l(k)(tν−1, xα)

∂xi
−

− h

2

∂2l(k)(tν − 1, ξk,ν,α)

∂xi
2

, i = 1, n, (9)

h

2

∂2l(k)(tν − 1, ηk,ν,α
i )

∂xi
2

, i = 1, n (10)

where
tν ≤ ξk

ν,α ≤ tν,xα−hēl ≤ ξk,ν,α
i ≤ xα, xα ≤ ηk,ν,α

i ≤ xα + hēl . (11)

From (6) follows that the initial condition (2) is approximated atΩ0
h exactly. Then

due to (9)–(11) the residual between (1) and (5) on the solution l(t, x) is equal to

δ(k)
t,h = τ

2

∂2l(k)
(
ξ(k)
ν,α, xα

)

∂t2
− h

2

+∑

i∈nν−1,α

f (i)
ν−1,α

∂2l(k)
(
tν−1,αξ(k)

ν,α, xα

)

∂t2

+ h

2

−∑

i∈nν−1,α

f (i)
ν−1,α

∂2l(k)
(

tν−1,αη(k,ν,α)
i

)

∂x2
i

, k = 1, n
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Due to the Assumption 1 the estimation ‖δ‖ ≤ c × (τ + h), c = const is valid
from which follows the following proposition.

Theorem 1 If the Assumption 1 is valid then the difference scheme (5)–(6) approx-
imates the problem (1)–(2) on its solution l(t, x) with the first order with respect to
τ and h.

Let us show the stability of the difference scheme (5)–(6). It will be sufficiently
for its convergence, because the initial condition (2) is approximated exactly on Ω0

h .
Formula (7) shows the solvability of the difference problem (5)–(6). Let us obtain

estimation of the solution of (5) corresponding to the zero initial conditions

u(k)
0,α = 0, k = 1, n. (12)

If

0 <
τ

h
≤ 1

nF
, (13)

then from (3), (4), (7) follows

sup
α

‖uν,α‖ ≤ (1 + τGn) sup
α

‖uν−1,α‖ + τ‖qν,α‖′
h .

Then taking into account (12), obtain

sup
ν,α

‖uν,α‖ ≤ T

M
‖qν,α‖′

h

(
1 + T Gn

M

)M

×

×
[

1

(1 + τG M)M
+ 1

(1 + τG M)M−1
+ · · · + 1

1 + τG M

]
. (14)

Taking into account that (1 + T Gn
M )M tends to eT Gn as M → ∞ and therefore

is bounded, then from (14) follows that the solution uν,α of the problem (5), (12)
satisfies the estimation

∥∥uν,α

∥∥
h ≤ L

∥∥qν,α

∥∥
h , L = const. This proves the following

proposition.

Theorem 2 If conditions (3), (4) and (8) are fulfilled then the scheme (5)–(6) is
stable with respect to the right-hand side. From the stability and the approximation
of the difference scheme follows its convergence.

Theorem 3 Let the Assumption 1 and conditions (3), (4) and (8) be fulfilled then
the solution of the difference scheme (5)–(6) converges to the solution of the problem
(1)–(2) with the first order by τ and h.
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On URANS Congruity with Time
Averaging: Analytical Laws Suggest
Improved Models

W. Layton and M. McLaughlin

Abstract The standard 1-equation model of turbulence was first derived by Prandtl
and has evolved to be a common method for practical flow simulations. Five funda-
mental laws that any URANS model should satisfy are

1. Time window:
τ ↓ 0 implies vURANS → uNSE &

τ ↑ implies νT ↑
2. l(x) = 0 at walls: l(x) → 0 as x → walls,
3. Bounded energy: supt

∫
1
2 |v(x, t)|2 + k(x, t)dx < ∞

4.
Statistical
equilibrium:

lim supT →∞
1
T

∫ T
0 εmodel(t)dt = O

(
U 3

L

)

5.
Backscatter
possible:

(without negative viscosities)

This report proves that a kinematic specification of themodel’s turbulence lengthscale
by

l(x, t) = √
2k1/2(x, t)τ ,

where τ is the time filter window, results in a 1-equation model satisfying
Conditions 1, 2, 3, 4 without model tweaks, adjustments or wall damping multi-
pliers.
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1 Introduction

URANS (unsteady Reynolds averaged Navier–Stokes) models of turbulence are
derived1 commonly to produce a velocity, v(x, t) � u(x, t), that approximates a
finite time window average of the Navier–Stokes velocity u(x, t)

u(x, t) = 1

τ

∫ t

t−τ

u(x, t ′)dt ′. (1)

From this connectionflows5 fundamental conditions (below) that a coherentURANS
model should satisfy and that few do. Herein we delineate these conditions and show
that, for the standard 1-equation model, a new kinematic turbulence length scale
results in a simpler model satisfying 4 of the 5.

The first condition is a simple observation that the timewindow τ should influence
the model, as τ → 0 the model should revert to the NSE (Navier–Stokes equations)
and as τ increases, more time scales are filtered and thus the eddy viscosity should
increase.

Condition 1 The filter window τ should appear as a model parameter. As τ → 0 the
model reverts to the NSE. As τ increases, the model eddy viscosity νT (·) increases.

We consider herein 1-equation models of turbulence. These have deficiencies
but nevertheless include models considered to have good predictive accuracy and
low cost, e.g., Spalart [28] and Fig. 2, p. 8 in Xiao and Cinnella [37]. The standard
1-equation model (from which all have evolved), introduced by Prandtl [25], is

vt + v · ∇v − ∇·
([

2ν + μl
√

k
]
∇sv

)
+ ∇ p = f (x),

∇ · v = 0, (2)

kt + v · ∇k − ∇·
([

ν + μl
√

k
]
∇k

)
+ 1

l
k
√

k = μl
√

k|∇sv|2.

Briefly, p(x, t) is a pressure, f (x) is a smooth, divergence free (∇ · f = 0) body
force,μ � 0.55 is a calibration parameter,2 ∇sv = (∇v + ∇T v)/2 is the deformation
tensor, and k(x, t) is the model approximation to the fluctuations’ kinetic energy
distribution, 1

2 |(u − u)(x, t)|2. The eddy viscosity coefficient

νT (·) = μl
√

k

1URANSmodels are also constructed ad hoc simply by adding ∂v
∂t to a RANSmodel without regard

to where the term originates. Formulation via averaging over a finite time window is a coherent
source for the term.
2Pope [24] calculates the value μ = 0.55 from the (3d) law of the wall. An analogy with the kinetic
theory of gasses (for which νT = 1

3 lU ) yields the value μ = 1
3

√
2/d which gives μ � 0.33 in 2d

and μ � 0.27 in 3d, Davidson [6], p. 114, Eqn. (4.11a).
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(the Prandtl–Kolmogorov formula) is a dimensionally consistent expression of the
observed increase of mixing with turbulence and of the physical idea of Saint-Venant
[27] that this mixing increases with “the intensity of the whirling agitation”, [7], p.
235. The k-equation describes the turbulent kinetic energy evolution; see [5], p. 99,
Sect. 4.4, [6], [22], p. 60, Sect. 5.3 or [24], p. 369, Sect. 10.3, for a derivation. The
model (2) holds in a flow domain Ω with initial conditions, v(x, 0) and k(x, 0), and
(here L-periodic or no-slip) v, k boundary conditions on the boundary ∂Ω .

The parameter of interest herein is the turbulence length-scale l = l(x), first pos-
tulated by Taylor in 1915 [30]. It varies from model to model, flow subregion to
subregion (requiring fore knowledge of their locations, [28]) and must be specified
by the user; see [35] for many examples of how l(x) is chosen in various subregions.
The simplest case is channel flow for which

l0(x) = min{0.41y, 0.082Re−1/2}

where y is the wall normal distance, Wilcox [35], Chap. 3, Eqn. (3.99), p. 76.
Model solutions are approximations to averages of velocities of the incompressible

Navier–Stokes equations. Other fundamental physical properties of NSE solutions
(inherited by averages) should also be preserved by the model. These properties
include:

Condition 2 The turbulence length-scale l(x) must l(x) → 0 as x → walls.

Condition 2 follows since the eddy viscosity term approximates the Reynolds
stresses and

μl
√

k∇sv � u′u′ which → 0 at walls like O(wall-distance2).

Specifications of l(x) violating this are often observed to over-dissipate solutions (in
many tests and now with mathematical support [23]).

Condition 3 (Finite kinetic energy) The model’s representation of the total kinetic
energy in the fluid must be uniformly bounded in time:

∫

Ω

1

2
|v(x, t)|2 + k(x, t)dx ≤ Const. < ∞ uniformly in time.

The kinetic energy (per unit volume) 1
|Ω|

∫
1
2 |u|2dx , is distributed between means

and fluctuations in the model as

1

|Ω|
∫

Ω

1

2
|v(x, t)|2 + k(x, t)dx � 1

|Ω|
∫

Ω

1

2
|u(x, t)|2dx < ∞.

This property for the NSE represents the physical fact that bounded energy input
does not grow to unbounded energy solutions.
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Condition 4 (Time-averaged statistical equilibrium)The time average of the model’s
total energy dissipation rate, εmodel (4) below, should be at most the time average
energy input rate:

lim sup
T →∞

1

T

∫ T

0
εmodel(t)dt ≤ Const.

U 3

L
, uniformly in Re.

The most common failure model for turbulence models is over-dissipation.
Condition 4 expresses aggregate non-over-dissipatiopn. The energy dissipation rate
is a fundamental statistic of turbulence, e.g., [24, 31]. This balance is observed in
physical experiments [13, 31] and has been proven for the NSE [8–10].

The fifth condition is that the model allows an intermittent flow of energy from
fluctuations back to means. This energy flow is important, e.g., [29, 32], less well
understood and not addressed herein; for background see [15].

Condition 5 The model allows flow of energy from fluctuations back to means with-
out negative eddy viscosities. This energy flow has space time average zero.

To develop Conditions 3 and 4, multiple the v-equation (2) by v and integrate
over Ω . Add to this the k-equation integrated over Ω . After standard manipulations
and cancellations of terms there follows the model’s global energy balance

d

dt

∫

Ω

1

2
|v(x, t)|2 + k(x, t)dx +

∫

Ω

2ν|∇sv(x, t)|2 + 1

l(x)
k3/2(x, t)dx (3)

=
∫

Ω

f (x) · v(x, t)dx .

Thus, for the 1-equation model we have (per unit volume)

Kinetic energy = 1

|Ω|
∫

Ω

1

2
|v(x, t)|2 + k(x, t)dx,

Dissipation rate εmodel(t) = 1

|Ω|
∫

Ω

2ν|∇sv(x, t)|2 + 1

l(x)
k3/2(x, t)dx (4)

The standard 1-equation model has difficulties with all 5 conditions. Condi-
tions 1 and5 are clearly violated. The second, l(x) → 0 at walls, is not easily enforced
for complex boundaries; it is further complicated in currentmodels, e.g., Spalart [28],
Wilcox [35], by requiring user input of (unknown) subregion locations where differ-
ent formulas for l(x) are used. Conditions 3 and 4 also seem to be unknown for the
standard model; they do not follow from standard differential inequalities due to the
mismatch of the powers of k in the energy term and the dissipation term.

The correction herein is a kinematic l(x, t). We prove herein that a kinematic3

turbulence length-scale enforces Conditions 1, 2, 3 and 4 as well as simplifying the

3This can also be argued to be a dynamic choice since the estimate of |u′| in l(x, t) is calculated
from an (approximate) causal law.



On URANS Congruity with Time Averaging … 89

model. In its origin, the turbulence length-scale (then called a mixing length) was
an analog to the mean free pass in the kinetic theory of gases. It represented the
distance two fluctuating structures must traverse to interact. Prandtl [26] in 1926
also mentioned a second possibility:

…the distance traversed by amass of this type before it becomes blended inwith neighboring
masses…

The idea expressed above is ambiguous but can be interpreted as suggesting l =
|u′(x, t)|τ , i.e., the distance a fluctuating eddy travels in one time unit. This choice
means to select a turbulence time scale τ (e.g., from (1)) and, as |u′| � √

2k(x, t)1/2,
define4 l(x, t) kinematically by

l(x, t) = √
2k(x, t)1/2τ . (5)

With this choice the time window τ enters into the model. To our knowledge, (5)
is little developed. Recently in [14] the idea of l = |u′|τ has been shown to have
positive features in ensemble simulations. With (5), the model (2) is modified to

vt + v · ∇v − ∇ ·
([

2ν + √
2μkτ

]
∇sv

)
+ ∇ p = f (x),

∇ · v = 0, (6)

kt + v · ∇k − ∇ ·
([

ν + √
2μkτ

]
∇k

)
+

√
2

2
τ−1k = √

2μkτ |∇sv|2.

Let L , U denote large length and velocity scales, defined precisely in Sect. 2, Eq. (9),
Re = LU/ν the usual Reynolds number and let T ∗ = L/U denote the large scale
turnover time. The main result herein is that with the kinematic length scale selection
(5) Conditions 1–4 are now satisfied.

Theorem 1 Let μ, τ be positive and Ω a bounded regular domain. Let

l(x, t) = √
2k(x, t)1/2τ .

Then, Condition 1 holds.
Suppose the boundary conditions are no-slip (v = 0, k = 0 on ∂Ω). Then, Con-

dition 2 is satisfied. At walls

l(x) → 0 as x → walls.

4The k-equation and a weak maximum principle imply k(x, t) ≥ 0, following [20, 36]. Thus, k1/2

is well defined.
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Suppose the model’s energy inequality, Eq. (11) below, holds. If the boundary
conditions are either no slip or periodic with zero mean for v and periodic for k, (8)
below, Condition 3 also holds:

∫

Ω

1

2
|v(x, t)|2 + k(x, t)dx ≤ Const. < ∞ uniformly in time.

The model’s energy dissipation rate is

εmodel(t) = 1

|Ω|
∫

Ω

2ν|∇sv(x, t)|2 +
√
2

2
τ−1k(x, t)dx .

Time averages of the model’s energy dissipation rate are finite:

lim sup
T →∞

1

T

∫ T

0
εmodel(t)dt < ∞.

Suppose the boundary conditions are either periodic with zero mean for v and
periodic for k, (8) below, or no-slip (v = 0, k = 0 on the boundary) and the body
force satisfies f (x) = 0 on the boundary. If the selected time averaging window
satisfies

τ

T ∗ ≤ 1√
μ

(� 1.35 for μ = 0.55)

then Condition 4 holds uniformly in the Reynolds number

lim sup
T →∞

1

T

∫ T

0
εmodel(t)dt ≤ 4

(
1 + Re−1

) U 3

L
.

Proof The proof that Condition 4 holds will be presented in Sect. 3. The reminder is
proven as follows. Condition 1 is obvious. Since l(x, t) = √

2k(x, t)1/2τ and k(x, t)
vanishes at walls it follows that so does l(x, t) so Condition 2 holds.

In the energy inequality (11), l(x, t) = √
2k(x, t)1/2τ yields

d

dt

∫

Ω

1

2
|v(x, t)|2 + k(x, t)dx +

∫

Ω

2ν|∇sv(x, t)|2 +
√
2

2
τ−1k(x, t)dx

≤
∫

Ω

f (x) · v(x, t)dx . (7)

By Korn’s inequality and the Poincaré–Friedrichs inequality

α

∫

Ω

1

2
|v(x, t)|2 + k(x, t)dx ≤

∫

Ω

2ν|∇sv(x, t)|2 +
√
2

2
τ−1k(x, t)dx,

where α = α(CP F , ν, τ ) > 0.
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Let y(t) = ∫
1
2 |v(x, t)|2 + k(x, t)dx . Thus, y(t) satisfies

y′(t) + αy(t) ≤
∫

Ω

f (x) · v(x, t)dx ≤ α

2
y(t) + C(α)

∫

Ω

| f |2dx .

An integrating factor then implies

y(t) ≤ e− α
2 t y(0) +

(

C(α)

∫

Ω

| f |2dx

)∫ t

0
e− α

2 (t−s)ds

which is uniformly bounded in time, verifying Condition 3.
For the last claim, time average the energy balance (7). The result can be com-

pressed to read

y(T ) − y(0)

T
+ 1

T

∫ T

0
εmodel(t)dt = 1

T

∫ T

0

(∫

Ω

f (x) · v(x, t)dx

)

dt

The first term on the left hand side is O( 1
T ) since y(t) is uniformly bounded. The

RHS is also uniformly in T bounded (again since y(t) is uniformly bounded). Thus
so is 1

T

∫ T
0 εmodel(t)dt .

The estimate ε � U 3/L in Theorem 1 is consistent as Re → ∞ with both phe-
nomenology, [24], and the rate proven for the Navier–Stokes equations in [8, 9, 34].
Building on this work, the proof in Section consists of estimating 4 key terms. The
first 3 are a close parallel to the NSE analysis in these papers and the fourth is model
specific.

The main contribution herein is then recognition that several flaws of the model
(2) originate in the turbulence length-scale specification. These are corrected by the
kinematic choice (5) rather than by calibrating l with increased complexity. The
second main contribution is the proof in Sect. 3 that the kinematic choice does not
over dissipate, i.e., Condition 4 holds.

Model existence is an open problem. The proof of Theorem 1 requires assuming
weak solutions of the model exist and satisfy an energy inequality (i.e., (3) with =
replaced by≤), k(x, t) ≥ 0 and that in themodel’s weak formulation the test function
may be chosen to be the (smooth) body force f (x). Such a theory for the standard
model (with static l = l(x)) has been developed over 20+ years of difficult progress
from intense effort including [19], with positivity of k established in [20], see also
[36], existence of suitable weak solutions in [3], culminating in Chap.8 of [5] and [2]
including an energy inequality (with equality an open problem) and uniqueness under
restrictive conditions. Conditions 3 and 4 are open problems for the standard model.
Based on this work we conjecture that an existence theory, while not the topic of
this report, may be possible for the (related) 1-equation model with kinematic length
scale (6). For background see also [1, 4, 11, 12, 16, 17, 21].
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2 Preliminaries and Notation

This section will develop Condition 4, that after time averaging εmodel � U 3/L , and
present notation and preliminaries needed for the proof in Sect. 3.We impose periodic
boundary conditions on k(x, t) and periodic with zero mean boundary conditions on
v, p, v0, f . Periodicity and zero mean denote respectively

Periodic:φ(x + LΩe j , t) = φ(x, t) and Zero mean:
∫

Ω

φdx = 0 . (8)

The proof when the boundary conditions are no-slip, v = 0, k = 0 on ∂Ω , and
f (x) = 0 on ∂Ω will be omitted. It is exactly the same as in the periodic case.
Notation used in the proof. The long time average of a function φ(t) is

〈φ〉 = lim sup
T →∞

1

T

∫ T

0
φ(t)dt and satisfies

〈φψ〉 ≤ 〈|φ|2〉1/2 〈|ψ|2〉1/2 and 〈〈φ〉〉 = 〈φ〉 .

The usual L2(Ω) norm, inner product and L p(Ω) norm are || · ||, (·, ·), || · ||p.
Preliminaries. Define the global velocity scale5 U , the body force scale F and

large length scale L by

F =
(

1
|Ω|

∫
Ω

| f (x)|2dx
)1/2

,

L = min

[

LΩ, F
supx∈Ω |∇s f (x)| ,

F
(

1
|Ω|

∫
Ω

|∇s f (x)|2dx
)1/2

]

U =
(
lim supT →∞

1
T

∫ T
0

1
|Ω|

∫
Ω

|v(x, t)|2dxdt
)1/2

.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(9)

L has units of length and satisfies

||∇s f ||∞ ≤ F

L
and

1

|Ω| ||∇
s f ||2 ≤ F2

L2
. (10)

We assume that weak solutions of the system satisfy the following energy inequality.

d

dt

(
1

2
||v||2 +

∫

Ω

kdx

)

+ 2ν||∇sv||2 +
√
2

2τ

∫

Ω

kdx ≤ ( f, v). (11)

5It will simplify the proofs not to scale also by the number of components. This can easily be done
in the final result.
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This is unproven for the newmodel but consistent withwhat is known for the standard
model, e.g., [5].We assume the following energy equality for the separate k-equation.

d

dt

∫

Ω

kdx +
√
2

2τ

∫

Ω

kdx =
∫

Ω

√
2μkτ |∇sv|2dx . (12)

This follows from the definition of a distributional solution by taking the test function
to be φ(x) ≡ 1.

3 Proof that Condition 4 Holds

This section presents a proof that Condition 4 holds for the model (6). The first steps
of the proof parallel the estimates in the NSE case in, e.g., [8, 9]. With the above
compressed notation, the assumed model energy inequality, motivated by (11), can
be written

d

dt

(
1

2|Ω| ||v||2 + 1

|Ω|
∫

Ω

kdx

)

+ 1

|Ω|
∫

Ω

2ν|∇sv|2 +
√
2

2τ
kdx ≤ 1

|Ω| ( f, v(t)).

In the introduction the following uniform in T bounds were proven

1
2 ||v(T )||2 + ∫

Ω
k(T )dx ≤ C < ∞,

1
T

∫ T
0

∫
Ω

(
2ν|∇sv|2 +

√
2

2τ k
)

dxdt ≤ C < ∞.

}

(13)

Time averaging over 0 < t < T gives

1

T

(
1

2
||v(T )||2 +

∫

Ω

k(x, T )dx − 1

2
||v(0)||2 −

∫

Ω

k(x, 0)dx

)

+

+ 1

T

∫ T

0

∫

Ω

(

2ν|∇sv|2 +
√
2

2τ
k

)

dxdt = 1

T

∫ T

0
( f, v(t))dt.

In view of the á priori bounds (13) and the Cauchy–Schwarz inequality, this implies

O
(
1

T

)

+ 1

T

∫ T

0
εmodel(t)dt ≤ F

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 1
2

. (14)

To bound F in terms of flow quantities, take the L2(Ω) inner product of (6) with
f (x), integrate by parts (i.e., select the test function to be f (x) in the variational
formulation) and average over [0, T ]. This gives
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F2 = 1

T

1

|Ω| (v(T ) − v0, f ) − 1

T

∫ T

0

1

|Ω| (vv,∇s f )dt+ (15)

+ 1

T

∫ T

0

1

|Ω|
∫

Ω

2ν∇sv : ∇s f + √
2μkτ∇sv : ∇s f dxdt.

The first term on the RHS isO(1/T ) as above. The second term is bounded by the
Cauchy–Schwarz inequality and (10). For any 0 < β < 1

Second:

∣
∣
∣
∣
1

T

∫ T

0

1

|Ω| (vv,∇s f )dt

∣
∣
∣
∣ ≤ 1

T

∫ T

0
||∇s f (·)||∞ 1

|Ω| ||vv||2dt

≤ ||∇s f (·)||∞ 1

T

∫ T

0

1

|Ω| ||v(·, t)||2dt ≤ F

L

1

T

∫ T

0

1

|Ω| ||v(·, t)||2dt.

The third term is bounded by analogous steps to the second term. For any 0 < β < 1

Third:
1

T

∫ T

0

1

|Ω|
∫

Ω

2ν∇sv(x, t) : ∇s f (x)dxdt ≤

≤
(
1

T

∫ T

0

4ν2

|Ω| ||∇
sv||2dt

) 1
2
(
1

T

∫ T

0

1

|Ω| ||∇
s f ||2dt

) 1
2

≤
(
1

T

∫ T

0

2ν

|Ω| ||∇
sv||2dt

) 1
2

√
2νF

L
≤ βF

2U

1

T

∫ T

0

2ν

|Ω| ||∇
sv||2dt + 1

β

νU F

L2
.

The fourth term is model specific. Its estimation begins by successive applications
of the space then time Cauchy–Schwarz inequality as follows

Fourth:

∣
∣
∣
∣
∣
1

T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτ∇sv(x, t) : ∇s f (x)dxdt

∣
∣
∣
∣
∣
≤

≤ 1

T

∫ T

0

1

|Ω|
∫

Ω

(√√
2μkτ

)(√√
2μkτ |∇sv|

)

|∇s f |dxdt

≤ ||∇s f ||∞ 1

T

∫ T

0

(
1

|Ω|
∫

Ω

√
2μkτdx

) 1
2
(

1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dx

) 1
2

dxdt

≤ F

L

(
U

FT

∫ T

0

1

|Ω|
∫

Ω

√
2μkτdxdt

) 1
2
(

F

U T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dxdt

) 1
2

.

The arithmetic-geometric mean inequality then implies
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Fourth:

∣
∣
∣
∣
1

T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτ∇sv(x, t) : ∇s f (x)dxdt

∣
∣
∣
∣ ≤

≤ β

2

F

U T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dxdt + U

2βF

F2

L2

1

T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτdxdt

≤ β

2

F

U T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dxdt + 1

2β

U F

L2T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτdxdt.

Using these four estimates in the bound for F2 yields

F2 ≤ O
(
1

T

)

+ F

L

1

T

∫ T

0

1

|Ω| ||v||2dt + 1

2β

U F

L2

1

T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτdxdt

+ 1

β

νU F

L2
+ βF

2U

1

T

∫ T

0

1

|Ω|
∫

Ω

[
2ν + √

2μkτ
]
|∇sv|2dxdt.

Thus, we have an estimate for F
(

1
T

∫ T
0

1
|Ω| ||v||2dt

) 1
2 :

F

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 1
2

≤ O
(
1

T

)

+ 1

L

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 3
2

+

+ β

2

(
1
T

∫ T
0

1
|Ω| ||v||2dt

) 1
2

U

1

T

∫ T

0

1

|Ω|
∫

Ω

[
2ν + √

2μkτ
]
|∇sv|2dxdt+

+ 1

2β

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 1
2 2νU

L2
+

+ 1

2β

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 1
2 U

L2

1

T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτdxdt.

Inserting this on the RHS of (14) yields

1

T

∫ T

0
εmodeldt ≤ O

(
1

T

)

+ 1

L

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 3
2

+ (16)

+ β

2

(
1
T

∫ T
0

1
|Ω| ||v||2dt

) 1
2

U

1

T

∫ T

0

1

|Ω|
∫

Ω

[
2ν + √

2μkτ
]
|∇sv|2dxdt+

+ 1

2β

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 1
2

U
2ν

L2
+

+ 1

2β

(
1

T

∫ T

0

1

|Ω| ||v||2dt

) 1
2 U

L2

(
1

T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτdxdt

)

.
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We prove in the next lemma an estimate for the last, model specific, term
∫ √

2μkτdx
on the RHS. This estimate has the interpretation that, on time average, the decay
(relaxation) rate of k(x, t) balances the transfer rate of kinetic energy from means to
fluctuations.

Lemma 1 For weak solutions of the k-equation we have

〈
1

|Ω|
∫

Ω

√
2μk(x, t)τdx

〉

= 2μτ 2

〈
1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dx

〉

.

Proof (of Lemma 1) Integrating the k-equation (i.e., choosing φ(x) ≡ 1 in the equa-
tion’s distributional formulation) yields

d

dt

1

|Ω|
∫

Ω

kdx +
√
2

2τ

1

|Ω|
∫

Ω

kdx = 1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dx .

From Theorem 1,
∫

kdx (and thus its time averages) is uniformly bounded in time.
Thus, we can time average the above. This gives

O
(
1

T

)

+
√
2

2τ

1

T

∫ T

0

1

|Ω|
∫

Ω

kdxdt = 1

T

∫ T

0

1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dxdt,

and thus
〈

1

|Ω|
∫

Ω

√
2μk(x, t)τdx

〉

= 2μτ 2

〈
1

|Ω|
∫

Ω

√
2μkτ |∇sv|2dx

〉

,

proving the lemma.

To continue the proof of Theorem 1, this lemma is now used to replace terms on
the RHS of (16) involving

√
2μkτ |∇sv|2 by terms with

√
2μk(x, t)τ . Let Tj → ∞

in (16), recalling the definition of εmodel and inserting the above relation for the last
term yields

〈
1

|Ω|
∫

Ω

[

2ν|∇sv(x, t)|2 +
√
2

2
τ−1k(x, t)

]

dx

〉

≤ U 3

L
+ (17)

+ β

2

〈
1

|Ω|
∫

Ω

2ν|∇sv|2 + 1

2μτ 2

√
2μk(x, t)τdx

〉

+

+ 1

β
U 2 ν

L2
+ 1

2β

U 2

L2

〈
1

|Ω|
∫

Ω

√
2μk(x, t)τdx

〉

.
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Collecting terms gives

〈
1

|Ω|
∫

Ω

[

2ν|∇sv(x, t)|2 +
√
2

2
τ−1k(x, t)

]

dx

〉

≤ 1

L
U 3 + 1

β
U 2 ν

L2
(18)

+ β

2

〈
1

|Ω|
∫

Ω

2ν|∇sv|2 +
(

1

2μτ 2
+ 1

2β

U 2

L2

)√
2μk(x, t)τdx

〉

.

The multiplier of
√
2μk(x, t)τ simplifies to

β

2

(
1

2μτ 2
+ 1

2β

U 2

L2

)√
2μτ =

√
2

2
τ−1

[
β

2
+ 1

2
μ

U 2

L2
τ 2

]

.

Thus, rearrange the above inequality to read

〈
1

|Ω|
∫

Ω

[(

1 − β

2

)

ν|∇sv|2 +
(

1 −
{

β

2
+ μ

2

U 2

L2
τ 2

}) √
2

2
τ−1k

]

dx

〉

≤ U 3

L
+ 1

β
U 2 ν

L2
=
(

1 + 1

β
Re−1

)
U 3

L
.

Pick (without optimizing) β = 1. This yields

〈
1

|Ω|
∫

Ω

[

ν|∇sv(x, t)|2 +
√
2

2
τ−1k(x, t)

]

dx

〉

≤ 2

min{1, 1 − μU 2

L2 τ 2}
{

U 3

L
+ Re−1 U 3

L

}

.

We clearly desire

1 − μ
U 2

L2
τ 2 = 1 − μ

( τ

T ∗
)2 ≥ 1

2
.

This holds if the time cutoff τ is chosen with respect to the global turnover time
T ∗ = L/U so that

τ

T ∗ ≤
√
1

μ
� 1.35, for μ = 0.55.

Then we have, as claimed,

〈
1

|Ω|
∫

Ω

[

ν|∇sv|2 +
√
2

2
τ−1k

]

dx

〉

≤ 4
(
1 + Re−1

) U 3

L
.
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4 Numerical Illustrations in 2d and 3d

This section shows that the static and kinematic turbulence length scales produces
flows with different statistics. We use the simplest reasonable choices

l0(x) = min{0.41y, 0.41 · 0.2Re−1/2} and lK (x, t) = √
2k(x, t)1/2τ .

All numerical experiments were performed using the package FEniCS. We consider
several normalized, space-averaged statistics. Recall that the turbulence intensity is
I = 〈||u′||2〉 / 〈||u||2〉. An approximation to the (time) evolution of this is calculable
from the model

Imodel(t) :=
2

|Ω|
∫
Ω

k(x, t)dx
1

|Ω|
∫
Ω

|v(x, t)|2dx
.

Next we consider the effective viscosity coefficient for the two methods. The
effective viscosity is a useful statistic to quantify the aggregate, space averaged effect
of fluctuating eddy viscosity terms. It is

νeffective(t) :=
1

|Ω|
∫
Ω

[
ν + μl

√
k
]
|∇sv|2dx

1
|Ω|

∫
Ω

|∇sv|2dx
.

We also consider the related statistic of the viscosity ratio of turbulent viscosity to
molecular viscosity

V R(t) :=
1

|Ω|
∫
Ω

μl
√

k|∇sv|2dx
1

|Ω|
∫
Ω
2ν|∇sv|2dx

.

We also calculate the evolution of the Taylor microscale of each model’s solution:

λTaylor(t) :=
(∫

Ω
|∇sv|2dt

∫
Ω

|v|2dt

)−1/2

.

The time evolution of the scaled averaged turbulence length scale and turbulent
viscosity are also of interest:

avg(l)

L
:= 1

L

(
1

|Ω|
∫

Ω

l(x, t)2dx

)1/2

avg(νT )

LU
:= 1

LU

1

|Ω|
∫

Ω

μl(x, t)
√

k(x, t)dx .
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4.1 Test 1: Flow Between 2d Offset Circles

For the first test, we consider a two-dimensional rotational flow obstructed by a
circular obstacle with no-slip boundary conditions. Let Ω1 ⊂ R

2, where

Ω1 = {(x, y) ∈ R
2 : x2 + y2 < 1} \ {(x, y) ∈ R

2 : (x − .5)2 + y2 ≤ 0.01}.

The domain Ω1 is discretized via a Delaunay triangulation with a maximal mesh
width of 0.01; a plot is given below. From the plot in Fig. 1 of the model’s Taylor
microscale this mesh fully resolves the model solution.

Fig. 1 Discretization of Ω

(a) Ω

(b) Ω near the obstacle
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We start the test at rest, i.e., v0 = (0, 0)T , and let the fluid have kinematic viscosity
ν = 0.0001.We take the final time T = 10 and averagingwindow τ = 1. Rather than
give an interpretation of the time average for 0 ≤ t < 1 we harvest flow statistics for
t ≥ 1 after a cold start and ramping up the body force with a multiplier min{t, 1}. To
generate counter-clockwise motion we impose the body force

f (x, y; t) = min{t, 1}(−4y(1 − x2 − y2), 4x(1 − x2 − y2))T .

Initial Conditions. An initial condition for the velocity, v(x, 0), and for the TKE
k(x, 0) must be specified. For some flows standard choices are known.6 We use a
different and systematic approach to the initial condition k(x, 0) as follows. From
l(x, t) = √

2k1/2τ we set at t = 0, l = l0(x) and solve for k(x, 0). This yields the
initial condition

k(x, 0) = 1

2τ 2
l20(x) where l0(x) = min{0.41y, 0.082Re−1/2}.

This choice means that l0(x) = lK (x, 0).
To compare the models, we plot the temporal evolution of the above statistics.

For both models, we let μ = 0.55 and timestep Δt = 0.01. To let the flow develop,
we first activate both models when t = 1.

In the test, the model’s estimate of the turbulent intensity for both is similar, as
shown in Fig. 2a. In [14] the turbulent intensity was estimated by an ensemble simu-
lation. For ensemble averaging I was significant larger than calculated here by time
averaging and with the 1-equation model. Either intensities by time and ensemble
averaging do not coincide or Imodel is not an accurate turbulent intensity. Figure2b
shows that the effective viscosity for the kinematic length scale is significantly smaller
than for the standard model. This is consistent with Fig. 2c, e, f. In Fig. 2d the Taylor
microscale is larger than expected, possibly due to numerical dissipation in the fully
implicit time discretization used.

The statistics considered reveal differences in the two models. Figure2b shows
that the kinematic model has an effective viscosity that decays to νeffective = 0.0001
more rapidly than does the static model. More evidence of this fact is given in
Fig. 2c, which shows the turbulent-to-molecular viscosity ratio. The comparison of
the evolution of the Taylor microscale, given in Fig. 2d, shows similar profiles until
t ≈ 5. Figure2e, which compares the evolution of the average mixing length, shows
that the kinematicmixing lengthmodel decreases the turbulence length scale over the
course of the simulation. Finally, Fig. 2f shows that the average turbulent viscosity for
the kinematic model is consistently smaller than that of the static model. Statistical

6For example, for turbulent flow in a square duct, a choice is

k(x, 0) = 1.5|u0(x)|2 I 2 where

I = turbulent intensity � 0.16Re−1/8.
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(a) Model intensity Imodel (b) Effective viscosity νeffective

(c) Viscosity ratio V R1 (d) Taylor microscale λTaylor

(e) avg(l)/L (f) avg(νT )/UL

Fig. 2 2d Flow statistics for both models
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(a) avg(l)/L for τ = .01, .1, 1. (b) avg(l)/L for τ = 1, 10, 100 and the
static model.

Fig. 3 Average mixing length comparison

comparisons of both of these models with different parameters (in particular, the
turbulent time scale τ ) are also of interest. Below, we give semilog (in the vertical
axis) plots of the averagemixing lengthwith different values of τ . Figure3 shows that
decreasing values of τ lead to a vanishing average mixing length, whereas increasing
τ yields average mixing lengths that appear to converge to the static mixing length.

Next, we give plots of the velocity magnitude and squared vorticity for the kine-
matic model at t = 1, 5, and 10.

4.2 Test 2: Flow Between 3d Offset Cylinders

The second test is a 3d analogue of the first. It shows similar differences in the
two models. Taking Ω1 to be the domain given in the first test, we define Ω =
Ω1 × (0, 1), a cylinder of radius and height one with a cylindrical obstacle removed.
The domain Ω was discretized with Delaunay tetrahedrons with a maximal mesh
width of approximately 0.1. As before, we start the flow from rest (v0 = (0, 0, 0)T )

and let the kinematic viscosity ν = 0.0001. The flow evolves via the body force

f (x, y, z; t) = min{t, 1}(−4y(1 − x2 − y2), 4x(1 − x2 − y2), 0)T ,

and is observed over the time interval (0, 10], with Δt = 0.05 and the initial condi-
tions for k being set in the same way as the first test. Below, we present the evolution
of the statistics introduced above.

The statistics shown in Fig. 5 exhibit similar differences between the 2 models
as in the 2d case, Fig. 4a–c, e–f. As before, the evolution of the Taylor microscale
in Fig. 4d is similar in both models, with slight differences appearing as the flow
evolves. Here the Taylor microscale is much smaller for the 3d test than the previous
2d test (even though the mesh is coarser).
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(a) Velocity (t = 1) (b) Squared vorticity (t = 1)

(c) Velocity (t = 5) (d) Squared vorticity (t = 5)

(e) Velocity (t = 10) (f) Squared vorticity (t = 10)

Fig. 4 Kinematic mixing length model velocity and vorticity
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(a) Model intensity Imodel (b) Effective viscosity νeffective

(c) Viscosity ratio V R1 (d) Taylor microscale λTaylor

(e) avg(l)/L (f) avg(νT )/UL

Fig. 5 Flow statistics for the 3d offset cylinder problem
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(a) t = 1 (b) t = 5

(c) t = 10

Fig. 6 Streamlines for the 3d offset cylinder problem

To conclude, we present streamline plots of the offset cylinder simulation as
viewed from above. In the figures, color signifies themagnitude of velocity. At t = 1,
the flow appears laminar, and over the course of the simulation becomes turbulent,
as evidenced by the plots at t = 5, 10 (Fig. 6).
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5 Conclusions and Open Problems

Predictive simulation of turbulent flows using a URANS model requires some prior
knowledge of the flow to calibrate the model and side conditions. Our intuition is
that the better the model represents flow physics the less complex this calibration will
be. To this end we have suggested a simple modification of the standard 1-equation
model that analysis shows better represents flow physics.

In turbulence, it is of course easier to list open problems than known facts. How-
ever, there are a few within current technique for the modified model herein.

– Extension of estimates of 〈εmodel〉 to turbulent shear flows is open and would
give insight into near wall behavior. Various methods for reducing the turbulent
viscosity locally in regions of persistent, coherent structures have been proposed,
e.g., [18, 33]. Sharpening the (global) analysis of 〈εmodel〉 for these (local) schemes
would be a significant breakthrough.

– Extension of an existence theory to the modified model is another important open
problem. Our intuition is that existence will hold but there may always occur
hidden difficulties.

– The estimate in Theorem 1 requires an upper limit on the time average’s window of
τ/T ∗ ≤ μ−1/2.We do not know if a restriction of this type can be removed through
sharper analysis or if there exists a fundamental barrier on the time average’s
window. Connected with this question, the behavior of the model as τ → ∞ is an
open problem.

– Eddy viscosity models do not permit transfer of energy from fluctuations back
to means. Recently in [15] an idea for correcting these features of eddy viscosity
models was developed. Extension to the present context would be a significant
step forward in model accuracy.

– Various averages of the classic turbulence length scale with the kinematic one
proposed herein are possible, such as the geometric average

lθ(x, t) = lθ0(x)l1−θ
K (x, t).

It is possible that such a weighted combination will perform better than either
alone. For example, for decaying turbulence when v = 0,∇v = 0 the k-equation
reduces to

kt + 1

lθ
k
√

k = 0.

Decaying turbulence experiments in 1966 of Compte-Bellot-Corsin, e.g., pp. 56–
57 in [22], suggest polynomial decay as k(t) = k(0) (1 + λt)−1.3. Neither mixing
length formula replicates this decay. But choosing θ = 2

1.3 � 1.54 yields polyno-
mial decay with exponent −1.3. The effect of this data-fitting on the predictive
power of the model and on the Conditions 1–4 are an open problem.
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– Our intuition is that for many tests numerical dissipation is greater than model
dissipation (and acts on different features and scales of those features). Thus the
analysis of numerical dissipation including time discretizations is an important
open problems.

– Comparative test on problems known to be challenging for RANS and URANS
models is an important assessment step.

Acknowledgements The work was partially supported by NSF grant DMS 1817542.
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3. Bulíček,M., Lewandowski, R.,Malek, J.: On evolutionaryNavier–Stokes-Fourier type systems
in three spatial dimensions. Comment. Math. Univ. Carol. 52(1), 89–114 (2011)

4. Boussinesq, J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants
à l’Académie des Sciences 23, 1–680 (1877)

5. Chacon-Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbu-
lence Models and Applications. Springer, New York (2014)

6. Davidson, P.: Turbulence: An Introduction for Scientists and Engineers. Oxford University
Press, Oxford (2015)

7. Darrigol, O.: Worlds of Flow. Oxford (2005)
8. Doering, C., Foias, C.: Energy dissipation in body-forced turbulence. J. Fluid Mech. 467,

289–306 (2002)
9. Doering, C.R., Constantin, P.: Energy dissipation in shear driven turbulence. Phys. Rev. Lett.

69(11), 1648 (1992)
10. Doering, C., Gibbon, J.D.: Applied Analysis of the Navier–Stokes Equations. Cambridge Uni-

versity Press, Cambridge (1995)
11. Durbin, P.A., Pettersson Reif, B.A.: Statistical Theory and Modeling for Turbulent Flows, 2nd

ed. Wiley, Chichester (2011)
12. Eckert, M.: The Dawn of Fluid Dynamics. Wiley-VCH, Weinheim (2006)
13. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)
14. Jiang, N., Layton, W.: Numerical Analysis of two Ensemble Eddy Viscosity Models of Fluid

Motion. Accepted: NMPDEs, 2014. Published online: 15 July2014. https://doi.org/10.1002/
num.21908

15. Jiang, N., Layton, W.: Algorithms and models for turbulence not at statistical equilibrium.
Comput. Math. Appl. 71, 2352–2372 (2016)

16. Johnson, F.T., Tinoco, E.N., Yu, N.J.: Thirty years of development and application of CFD at
boeing commercial airplanes. Seattle Comput. Fluids 34(10), 1115–1151 (2005)

17. Layton,W.: The 1877 Boussinesq conjecture: turbulent fluctuations are dissipative on the mean
flow. TR 14-07, http://www.mathematics.pitt.edu/research/technical-reports (2014)

18. Layton, W., Rebholz, L.G., Trenchea, C.: Modular nonlinear filter stabilization of methods for
higher Reynolds numbers flow. J. Math. Fluid Mech. 14, 325–354 (2012)

19. Lewandowski, R.: The mathematical analysis of the coupling of a turbulent kinetic energy
equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal. 28, 393–417
(1997)

20. Lewandowski, R., Mohammadi, B.: Existence and positivity results for the φ − θ model and a
modified k − ε model. Math. Model Methods Appl. Sci. 3, 195–215 (1993)

https://doi.org/10.1002/num.21908
https://doi.org/10.1002/num.21908
http://www.mathematics.pitt.edu/research/technical-reports


108 W. Layton and M. McLaughlin

21. Mathieu, J., Scott, J.: An Introduction to Turbulent Flows. Cambridge (2000)
22. Mohammadi, B., Pironneau, O.: Analysis of the K-Epsilon Turbulence Model. Masson, Paris

(1994)
23. Pakzad, A.: Damping functions correct over-dissipation of the Smagorinsky model. Math.

Methods Appl. Sci. 40(16) (2017). https://doi.org/10.1002/mma.4444
24. Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)
25. Prandtl, L.: Über ein nenes Formelsystem für die ausgebildete Turbulenz. Nacr. Akad. Wiss.

Göttingen, Math. Phys. Kl. 6–16 (1945)
26. Prandtl, L.: On fully developed turbulence. In: Proceedings of the 2nd International Congress

of Applied Mechanics, Zurich, pp. 62–74 (1926)
27. Saint-Venant (Barré), A.J.C.: Note à joindre au Mémoire sur la dynamique des fluides. CRAS

17, 1240–1243 (1843)
28. Spalart, P.R.: Philosophies and fallacies in turbulence modeling. Prog. Aerosp. Sci. 74, 1–15

(2015)
29. Starr, V.P.: Physics of Negative Viscosity Phenomena. McGraw Hill, NY (1968)
30. Taylor, G.I.: Eddy motion in the atmosphere. Phil. Trans. of Royal Soc. Series A 215, 1–26

(1915)
31. Vassilicos, J.C.: Dissipation in turbulent flows. Ann. Rev. Fluid Mech. 47, 95–114 (2015)
32. Vergassola,M.,Gama, S., Frisch,U.: Proving the existence of negative, isotropic eddy viscosity.

In: Proctor,M.,Mattheus, D., Rucklidge, A. (eds.) Solar and PlanetaryDynamics, pp. 321–328.
Cambridge University Press, Cambridge (1994)

33. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic
theory and applications. Phys. Fluids 16, 3670–3681 (2004)

34. Wang, X.: The time averaged energy dissipation rates for shear flows. Phys. D 99(1997), 555–
563 (2004)

35. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada (2006)
36. Wu, Z.-N., Fu, S.: Positivity of k-epsilon turbulence models for incompressible flow. Math.

Models Methods Appl. Sci. 12, 393–406 (2002)
37. Xiao, H., Cinnella, P.: Quantification of model uncertainty in RANS: a review.

arxiv.org/pdf/1806.10434.pdf (2018)

https://doi.org/10.1002/mma.4444
http://arxiv.org/org/pdf/1806.10434.pdf


Geometric Singularities of the Solution
of the Dirichlet Boundary Problem
for Hamilton–Jacobi Equation
with a Low Order of Smoothness
of the Border Curve

P. D. Lebedev and A. A. Uspenskii

Abstract Algorithms for constructing an optimal result function are proposed for a
planar time-optimal control problem with a circular velocity vectorogram and a non-
convex compact target set with a smooth boundary. The differential dependencies for
smooth segments of a singular set are revealed, which allows them to be considered
and constructed in the form of arcs of integral curves. Various types of characteristic
points of the boundary of the target set—so-called pseudo-vertices—are studied. The
necessary conditions for their existence are found and formulas giving the coordi-
nates of the projections of the points of the singular set in their neighborhood are
obtained. Examples of time-optimal problems for which numerical construction of
the functions of the optimal result and their singular sets are carried out are given.
The results are visualized.

Keywords Time-optimal problems · Optimal result functions · Singular sets ·
Bisector · Wave fronts · Pseudo-vertex · Curvature · Generalized solution

1 Formulation of the Problem

We consider the time-optimal control problem, which consists of transferring the
point on the Euclidean plane to a given target set M ⊂ R2 during the minimum
possible time [1]. We assume that the motion of the point x with the coordinates
x = (x, y) is defined by the equation

ẋ = v, (1)
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where the restriction ‖v‖ =
√

v2
1 + v2

2 ≤ 1 is imposed on the control v = (v1, v2).

The motions’ vectorogram of the considered dynamic system is a unit-radius circle
centered at the origin of coordinates.

In case of x /∈ M , the optimal control v is a unit length vector directed from x to the
point y, which is the point of the boundary of the set M closest to x in the Euclidean
metric. The function of the optimal result u(x, y) (which is equal to the minimum
time during which the moving point can reach M) coincides with the Euclidean
distance ρ(x, M) = min{‖x − y‖: y ∈ M} from the point x = (x, y) ∈ R2 to the
set M, see [2, 3].

Hereinafter we consider the case of a compact simply-connected set M whose
boundary Γ is a plane curve defined by the parametric equation

Γ = {y ∈ R2 : y = y(t), t ∈ [0, T ]}. (2)

Here T > 0, and the mapping y : [0, T ] → R2 is continuous on the segment [0, T ],
differentiable at all points of the interval (0, T ) and twice differentiable on (0, T )

with the possible exception of a finite number of points. The values of the first and
second order derivatives at the ends of the interval are assumed to be equal. We
assume that (2) is a closed regular curve without self-intersection points, that is, (2)
can be represented as a trace of a point moving along a plane with finite nonzero
velocity.

The considered time-optimal problem can be associated with the Hamilton-Jacobi
equation [4]

min
v : ‖v‖≤1

〈Du(x), v〉 + 1 = 0, (3)

where Du(x) is the gradient of the function u(x) at the point x and 〈·, ·〉 denotes the
scalar product of the vectors. The minimax solution [5] of the Dirichlet problem for
equation (3) with the boundary condition

u|Γ = 0 (4)

coincides with the function of the optimal result u(x, y) on the set G = R2 \ M,

see [2].

2 Singular Sets in the Time-Optimal Problem

In the case of a convex set M , the function u(x) = ρ(x, M) is convex on the entire
plane R2 and differentiable on the set G (see [6]). If the set M is not convex, then it
has essential singularities, notably the sets on which u(x) loses its smoothness.

Definition 1 The set �M(x) of the projections of the point x onto the set M is the
union of all points y ∈ M that are closest to x in the Euclidean metric.



Geometric Singularities of the Solution of the Dirichlet … 111

Definition 2 The bisector L(M) of a closed set M ⊂ R2 is the set of all points for
which the set �M(x) [2, 7] consists of two or more elements:

L(M) = {
x ∈ R2 : ∃y1 ∈ �M(x), y2 ∈ �M(x) (y1 
= y2)

}
. (5)

Bisector of a set is a special case of symmetry sets (see [8]) studied, for example,
in [9].

We can specify the so-called skeleton of a set actively used by L. M. Mestetskiy
in the problems of pattern recognition [10] as another representative of sets of sym-
metries (lying not outside the set M, but inside it). By definition, the skeleton S(M)

of the set M ⊂ R2 is the locus of the centers x of the circular disks O(x, r) of equal
radius r ∈ [0,+∞) for which the following inclusions hold

O(x, r) ⊆ M;

∀ε > 0 O(x, r + ε) ∩ (R2 \ M) 
= ∅.

The equation
S(M) = cl L

(
cl(R2 \ M)

)
,

connects the concept of skeleton of a set with bisector of a set. Hereinafter cl X
denotes the closure of the set X.

According to R. Isaacs classification, L(M) is the dispersing line in the time-
optimal problem for dynamic system (1): more than one optimal trajectory originates
from each of its points [4]. This causes a violation of the smoothness of the optimal
result function on L(M), which is specific for singular curves.

Definition 3 A point x ∈ L(M) of the bisector of L(M) is called generated by a
pair of points {y1, y2} ∈ ∂M if {y1, y2} ⊆ �M(x) and y1 
= y2. In this case, y1 and
y2 are called α-symmetric points [11].

It is natural in the practical implementation of construction of smooth regions
of L(M) to find the dependence t2 = t2(t1), which relates parameters defining α-
symmetric points. However, in practice, this is difficult to implement in the form of
a numerical algorithm.

When constructing dispersing lines in the time-optimal problem, it is best to
obtain formulas that are least dependent on the parametrization of the curve Γ . One
of the main characteristics of a plane curve is its curvature. For planar curve (2), the
curvature value k = k(t) at the point y(t) is equal to

k(t) = y′′(t) ∧ y′(t)
‖y′(t)‖3/2 . (6)

Here (a1, a2) ∧ (b1, b2) = a1b2 − a2b1.We assume without loss of generality that if
the parameter t changes from 0 to T, the vector y(t) rotates around the interior points
of the set M counterclockwise. The following two concepts are closely related to
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curvature: curvature radius r(t) = 1/k(t) and curvature center c(t) is a point located
on the normal to Γ at the point y(t) at the distance r(t) from y(t) in the direction
opposite local convexity (see [12]).

Theorem 1 (On the structure of a smooth section of a bisector.)Let the bisector point
x ∈ L(M) have exactly two projections y1 = y(t1) and y2 = y(t2) into a compact
simply connected set M,while x 
= (y1 + y2)/2.Then for the parameters t1, t2, which
specify the coordinates of α-symmetric points, the following differential relation is
true

dt2
dt1

= −k1r + 1

k2r + 1
· ‖y′(t1)‖
‖y′(t2)‖ , (7)

where k1 and k2 are curvature values (6) at the points y1 and y2, r = ρ(x, M).

The proof of the Theorem 1 is given in [13]. It follows from Theorem 1 that if
the set of the projections of the point x∗ ∈ L(M) consists of exactly two elements
of �M(x∗) = {y1, y2}, then the tangent � to L(M) in x∗ coincides with the median
perpendicular to the segment [y1, y2] (which was previously proved from geometric
considerations in [14]).

Definition 4 Let’s call the point y0 = y(t0) ∈ Rn a pseudo-vertex [11] of the set M
if there exists a sequence {(yn, ỹn)}∞n=1 of pairs of α-symmetric points for which the
limit holds:

lim
n→∞(yn, ỹn) = (y0, y0).

Definition 5 Let y0 ∈ Rn be a pseudo-vertex of the set M with the bisector L(M).

Let’s call a point x̂ ∈ Rn an extreme point of the bisector [15] corresponding to the
pseudo-vertex y0 if there exist sequences {(yn, ỹn)}∞n=1 ⊂ ∂M and {xn}∞n=1 ⊂ L(M)

for which the following conditions hold

(1) lim
n→∞(yn, ỹn) = (y0, y0);

(2) lim
n→∞ xn = x̂;

(3)∀n ∈ N (yn, ỹn) ⊂ �M(xn).

Since the mapping x �→ �M(x) is upper semicontinuous by inclusion (see [6]), the
pseudo-vertex and the corresponding bisector’s extreme point satisfy inclusion

y0 ∈ �M(x̂). (8)

Theorem 2 (On the character of a pseudo-vertex of second order smoothness.) Let
the point y0 = y(t0) ∈ Γ , in which the curvature k(t0) is defined, be a pseudo-vertex
of the set M and let the extreme point x̂ of the bisector L(M) correspond to it. Then
the following assertions are true:
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(1) A local maximum of the absolute value |k(t)| of the curvature of Γ is reached
at t = t0;

(2) The point x̂ is the curvature center c(t0) of the curve Γ at the point y(t0);
(3) For the parameters t1, t2, which specify the coordinates of α-symmetric points

(in a neighborhood of t0), the following relation is true

lim
t1→t0−0

t2(t1) − t0
t1 − t0

= −1. (9)

The proofs of assertions (1) and (2) of the Theorem 2 are given, for example, in [11],
and the proof of assertion (3) is given in [16].

Theorem 3 (On the character of a pseudo-vertex with a breaking the smoothness in
the second order.)Let y0 = y(t0) ∈ Γ be a pseudo-vertex of the set M and correspond
with the extreme point x̂ of the bisector L(M), wherein the one-sided curvature
values k(t0 − 0)and k(t0 + 0)are determinedandhave similar signs and k(t0 − 0) 
=
k(t0 + 0).

Then, if |k(t0 − 0)| > |k(t0 + 0)|, then the following assertions are true:
(A1) The curvature’s absolute value |k(t)| increases on some left semi-neighbor-

hood (t0 − ε, t0), ε > 0 of the point t = t0;
(A2) The point x̂ is the limit c(t0 − 0) of the curvature centers of the curve Γ at

the points y(t) with t → t0 − 0;
(A3) The following relation is true

lim
t1→t0−0

t2(t1) − t0
t1 − t0

= 0. (10)

If |k(t0 − 0)| < |k(t0 + 0)|, then the following assertions are true:
(B1) The curvature’s absolute value |k(t)| increases on some right semi-neighbor-

hood (t0, t0 + ε), ε > 0 of the point t = t0;
(B2) The point x̂ is the limit c(t0 + 0) of the curvature centers of the curve Γ at

the points y(t) with t → t0 + 0;
(B3) The following relation is true

lim
t1→t0−0

t1 − t0
t2(t1) − t0

= 0. (11)

Proof Let’s consider the case of |k(t0 − 0)| > |k(t0 + 0)|.Without loss of generality,
we assume that the point y0 coincides with the origin of coordinates, the tangent to
the curve Γ coincides with the abscissa axis in this point, and the convexity direction
of Γ coincides with the positive direction of the ordinate axis. The conditions on the
curve Γ (2) allow us to represent it in some neighborhood of the pseudo-vertex y0
as the plot of the function f (x) with the domain (−ε, ε), ε > 0.

Let’s consider the abscissas x1 and x2 of the projections of the bisector points
lying in a neighborhood of the pseudo-vertex y0. Now consider the intersection
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point (x∗, y∗) of the normals to the plot gr f (x) of the function f (x) at these points.
By the construction, we have

f (0) = 0, (12)

f ′(0) = 0, (13)

f ′′(−0) = |k(t0 − 0)|, f ′′(+0) = |k(t0 + 0)|. (14)

We denote the ordinates of the points yi = f (xi ), i = 1, 2 and the values of the
derivatives of the function y = f (x) at this points as y′

i = f ′(xi ), y′′
i = f ′′(xi ), i =

1, 2. Thus, we obtain the expressions of the coordinates of the points of the bisector

x∗ = (x1 + y1y′
1)y

′
2 − (x2 + y2y′

2)y
′
1

y′
2 − y′

1

, (15)

y∗ = −(x1 + y1y′
1) + (x2 + y2y′

2)

y′
2 − y′

1

. (16)

We can assume that x2 is a function of x1 in some neighborhood of the origin of
coordinates, since there exists a one-to-one correspondence between the abscissas
of the projections of the bisector points. Let’s show that the relation

lim
x1→−0

x2
x1

= 0 (17)

is true.
Suppose that (17) does not hold. Then there exist such sequences {x (i)}∞i=1 and

{̃x (i)}∞i=1 that ∀i ∈ N x (i) < 0, x̃ (i) > 0; (18)

lim
i→∞ x (i) = lim

i→∞ x̃ (i) = 0, (19)

lim
i→∞

x̃ (i)

x (i)
= c∗ < 0. (20)

Conditions (18)–(20)mean that the elements of these sequences canbe represented
in the form

x (i) = κ1t
(i) + o(t (i)), x̃ (i) = κ2t

(i) + o(t (i)), (21)

where
∀i ∈ N t (i) > 0, lim

i→∞ t (i) = 0, κ1 ≤ 0, κ2 > 0,

o(t) is an infinitesimal function of higher order than t (that is, lim
t→0

t−1o(t) = 0)).
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The Taylor series for the function f (x) and it’s derivative f ′(x) in a neighborhood
of the point x = 0 with regard to equalities (12)–(14) is

f (x (i)) = f (0) + f ′(0)x (i) + o(x (i)) = o(x (i)) = o(t (i)),

f (̃x (i)) = f (0) + f ′(0)̃x (i) + o(̃x (i)) = o(̃x (i)) = o(t (i)),

f ′(x (i)) = f ′(0) + f ′′(−0)x (i) + o(x (i)) = f ′′(−0)(κ1t
(i) + o(t (i))) + o(t (i)) =

= f ′′(−0)κ1t
(i) + o(t (i)),

f ′(̃x (i)) = f ′(0) + f ′′(+0)̃x (i) + o(̃x (i)) = f ′′(+0)(κ2t
(i) + o(t (i))) + o(t (i)) =

= f ′′(+0)κ2t
(i) + o(t (i)).

Therefore, one can get the expressions that specify the coordinates (̂x, ŷ) of the
extreme point of the bisector by substituting the values (21) into the formulas (15),
(16):

x̂ = lim
i→∞

(x (i) + f (x (i)) f ′(x (i))) f ′(̃x (i)) − (̃x (i) + f (̃x (i)) f ′(̃x (i))) f ′(x (i))

f ′(̃x (i)) − f ′(x (i))
=

= lim
i→∞

(
(κ1t (i) + o(t (i)) + o(t (i)))( f ′′(+0)κ2t (i) + o(t (i)))

f ′′(+0)κ2t (i) + o(t (i)) − f ′′(−0)κ1t (i) − o(t (i))

− (κ2t (i) + o(t (i)) + o(t (i)))( f ′′(−0)κ1t (i) + o(t (i)))

f ′′(+0)κ2t (i) + o(t (i)) − f ′′(−0)κ1t (i) − o(t (i))

)
=

= lim
i→∞

o(t (i))

( f ′′(+0)κ2 − f ′′(−0)κ1)t (i) + o(t (i))
= 0, (22)

ŷ = lim
i→∞

−(x (i) + f (x (i)) f ′(x (i))) + (̃x (i) + f (̃x (i)) f ′(̃x (i)))

f ′(̃x (i)) − f ′(x (i))
=

= lim
i→∞

(κ2 − κ1)t (i) + o(t (i))

( f ′′(+0)κ2 − f ′′(−0)κ1)t (i) + o(t (i))
=

= κ2 − κ1

f ′′(+0)κ2 − f ′′(−0)κ1
. (23)
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If κ2 > 0, then the value (23) can be estimated as

ŷ =
(

κ2

κ2 − κ1

1

f ′′(+0)
+ −κ1

κ2 − κ1

1

f ′′(−0)

)−1

>

>

(
κ2

κ2 − κ1

1

f ′′(−0)
+ −κ1

κ2 − κ1

1

f ′′(−0)

)−1

=

= κ2 − κ1

κ2 − κ1

1

f ′′(−0)
= |k(t0 − 0)|−1.

That is, the ordinate of the bisector’s extreme point is greater than the limit value of
the curvature radius at the pseudo-vertex approached from the left. With regard to
(22), this means that the extreme point (̂x, ŷ) lies on the normal to the bisector at the
pseudo-vertex at a distance equal to (23) exceeding the limit the value of the radius
of curvature r(t0 − 0) approached from the left, on the same side of y0 as the limit
position of the of curvature center. However, if we consider the limit osculating circle
[12] at the point x = 0 approached from the left, it will have the radius 1/ f ′′(−0), so
it falls inside the circle O (̂x, ‖y0 − x̂‖). Since the curve has a tangency of the second
order with the osculating circle, there are points of Γ that lie closer to the extreme
point x̂ than y0 in some small neighborhood of the pseudo-vertex y0. This result is
contrary to property (8) of the pseudo-vertex and the corresponding extreme point.
Hence, (17) is true.

One can write the following relation for the increments of the lengths s1(t), s2(t)
of the arc of the curve Γ measured from the pseudo-vertex y0 to the points y(t1) and
y(t2)

ds2
ds1

∣∣∣
t=t0

= dt2
dt1

∣∣∣
t=t0

‖y′(t0 − 0)‖
‖y′(t0 + 0)‖ = dt2

dt1

∣∣∣∣
t=t0

‖y′(t0)‖
‖y′(t0)‖ = dt2

dt1

∣∣∣∣
t=t0

.

On the other hand, expression

ds2
ds1

∣∣∣∣
t=t0

= dx2
√
1 + y′(0)2

dx1
√
1 + y′(0)2

∣∣∣∣
t=t0

= dx2
dx1

∣∣∣∣
t=t0

is true.
Therefore,

dt2
dt1

∣∣∣∣
t=t0

= dx2
dx1

∣∣∣∣
t=t0

.

Thus, we get the limit relation (10) with respect to (17).
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Considering that x2 = o(x1), the coordinates of the extreme point of the bisector
are equal to

x̂ = lim
x1→−0

(x1 + y1y
′
1)y

′
2 − (x2 + y2y

′
2)y

′
1

y′
2 − y′

1
= lim

x1→−0

o(x1)

o(x1) − y′′(−0)x1 + o(x1)
= 0,

ŷ = lim
x1→−0

−(x1 + y1y
′
1) + (x2 + y2y

′
2)

y′
2 − y′

1
= lim

x1→−0

−x1 + o(x1)

o(x1) − y′′(−0)x1 + o(x1)
=

= lim
x1→−0

−x1
−y′′(−0)x1

= 1

y′′(−0)
.

Hence, the point (̂x, ŷ) coincides with the limit position (0, y′′(−0)−1) of the
curvature center of the plot of the function f (x) at the point x = 0 approached from
the left.

This implies that A1 is also true. If the curvature of the f (x) plot decreases
on some finite interval [−ε, 0], then this plot happens in the limit position of the
osculating circle ∂O (̂x, ‖y0 − x̂‖). In this case, Γ as well includes such points that
the distance between them and the extreme point of the bisector is less than ‖y0 − x̂‖,
which is contrary to (8).

The proof of assertions B1–B3 is similar to the proof of A1–A3. �

Finding pseudo-vertices makes it possible to find the coordinates of α–symmetric
points as solutions of equation (7) with the Cauchy condition given at the pseudo-
vertex of the first type using limit relation (9) and in the pseudo-vertex of the second
type using (10) or (11).

3 Example of a Procedure

The authors have developed a software package [17] using the MATLAB program-
ming language. It allows the construction of singular sets, wave fronts and the func-
tion of the optimal result in time-optimal problems with circular velocity vectoro-
grams and nonconvex target sets. It is based on the methods of differential [12] and
computational geometry [18].

Example 1 We assume that in boundary problem (3), (4) the boundary condition is
given on the boundary of the set M bounded by the curve Γ , whose equation is

{
x = (R − mR) cos(mt) + h cos(t − mt),
y = (R − mR) sin(mt) − h sin(t − mt),

(24)

in which the parameter t ∈ [0, T ] = [0, 6π ], R = 1,m = 1/3, h = 0.31. The curve
(24) is a hypotrochoid—the trace of the point on a circle of radius r lying at the
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Fig. 1 The curve Γ, the
bisector L(M) and the wave
fronts Φ in Example 1

Fig. 2 The curvature plot
k(t) (for t ∈ [2π, 4π ]) in
Example 1.

distance h from the center. The circle is rolling along the inner side of a circle of
radius R. It is required to construct a plot of the optimal result function u(x, y) and
to isolate the singular set (5).

The set M has 6 pseudo-vertices in which the curvature is defined and reaches a
local maximum. The conditions of Theorem 2 hold at this points, so limit relation
(9) is true. The bisector L(M) consists of 3 connectivity components, each of which
is a union of 3 one-dimensional and 1 zero-dimensional manifolds.

The boundaryΓ of the setM (shown as a black curve), the pseudo-vertices (shown
as white bubbles), wave frontsΦ (in the form of blue lines) and the singular set L(M)

(shown as red lines) are shown in Fig. 1. Figure2 shows the plot of curvature k(t)
and its maximum points (for one of the connectivity components of the bisector).

The dependence between the parameters t1 and t2 defining α–symmetric points in
the neighborhood of the pseudo-vertices is shown in Fig. 3. Figure4 shows the plot
of the solution u(x, y) = ρ

(
(x, y), M

)
of problem (3), (4).
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Fig. 3 The relation between
the parameters t1 and t2 for
α-symmetric points in
neighborhoods of
pseudo-vertices (for
t ∈ [2π, 4π ]) in Example 1

Fig. 4 The plot of the
optimal result function
u(x, y) = ρ

(
(x, y), M

)
of

the problem in Example 1

Example 2 We assume that in boundary problem (3), (4) the boundary condition is
defined on the boundary of the set M bounded by the curve Γ defined by equations

x(t) =
{(

1.5 − sin2(t)
)
cos t, t ∈ [0, π/2] ∪ [3π/2, 2π ],(

1 − 0.5 sin2(t)
)
cos t, t ∈ (π/2, 3π/2),

(25)

y(t) =
{(

1.5 − sin2(t)
)
sin t, t ∈ [0, π/2] ∪ [3π/2, 2π ],(

1 − 0.5 sin2(t)
)
sin t, t ∈ (π/2, 3π/2),

(26)

where t ∈ [0, 2π ].
The set M has 2 pseudo-vertices in which the curvature of curve (25), (26) is not

defined, but there exist one-sided limits. They satisfy the conditions of Theorem 3,
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Fig. 5 The curve Γ, the
bisector L(M) and the wave
fronts Φ in Example 2

Fig. 6 The broken curvature
plot k(t) (for t ∈ [0, π/2]) in
Example 2

the coordinates of the extreme points of the curve (5) are calculated in the first case
by formula (10), and in the second case by formula (11). The bisector L(M) consists
of 2 connectivity components.

The boundary Γ of the set M, the pseudo-vertices, the wave fronts Φ and the
singular set L(M) in Example 2 are shown in Fig. 5. The curvature plot k(t) and
the point of its discontinuity corresponding to the pseudo-vertex (for one of the
connectivity components of the bisector) are shown in Fig. 6.

The dependence between the parameters t1 and t2 defining α–symmetric points
in the neighborhood of the pseudo-vertex in Example 2 is shown in Fig. 7. The plot
of the solution u(x, y) = ρ

(
(x, y), M

)
of problem (3), (4) in Example 2 is shown in

Fig. 8.



Geometric Singularities of the Solution of the Dirichlet … 121

Fig. 7 The relation between
the parameters t1 and t2 for
α-symmetric points in
neighborhoods of
pseudo-vertices (for
t ∈ [0, π/2]) in Example 2

Fig. 8 The plot of the
optimal result function
u(x, y) = ρ

(
(x, y), M

)
of

the problem in Example 2

4 Conclusion

The authors have developed analytical procedures for isolating the characteristic
points of the boundary of the target set and the dispersing lines in the time-optimal
problem with a circular velocity vectorogram. Algorithms for constructing of the
plot of the optimal result function and its singular sets are developed on that basis.
They allow simulation of examples with different geometry of nonconvex target sets
and to visualize the results.
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Applications of the Theory of Covering
Maps to the Study of Dynamic Models
of Economic Processes with Continuous
Time

N. G. Pavlova

Abstract The paper is a study of the existence of equilibrium in the Allen dynamic
model with continuous time. We present sufficient conditions for the existence of an
equilibrium price vector, which are consequences of theorems on the existence of
coincidence points in the theory of covering and Lipschitz continuous mappings.

Keywords Equilibrium points · Coincidence points · Production models ·
Consumer behavior models · Market models

1 Introduction

Dynamic models of economic processes with continuous time were first considered
by Evans [1]. In 1940s, such models were studied by Samuelson [2], and in 1960s
by Allen [3]. An important question is the existence of equilibrium.

However, sufficient conditions of the existence of equilibrium indynamicdemand-
supplymodels with continuous time and two or more economic sectors are not estab-
lished yet. This is related to the absence of an appropriate mathematical apparatus.
The results obtained in [4–6] allows to solve this problem. For instance, results of
the paper [6] devoted to applications of the theory of covering mappings to implicit
differential equations, allow to establish sufficient conditions for the existence of an
equilibrium price vector in the Allen dynamic model.

In the present paper, we use some results of the theory of covering mappings
(namely, theorems on the existence of coincidence points) for deriving sufficient
conditions of the existence of the equilibrium price vector in various models of
economic processes. This is a further development of the study started in [7–11].
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The main feature of the present paper is that the demand and supply functions in
economic models depend not only on the prices but on the velocities of the price
changes.

2 Auxiliary Results

Consider the metric spaces (X, ρX ) and (Y, ρY ), where X = R
2n , Y = R

n , and the
metrics ρX , ρY are defined respectively by the norms

‖x‖ = max
i=1,2n

|xi |, ‖y‖ = max
i=1,n

|yi |.

Further, we shall use the following definitions.
Let BX (x, r) ⊂ X be the closed ball with the center x ∈ X and radius r ≥ 0.

Similarly, denote the ball BY (y, r) ⊂ Y .

Definition 1 (see [4]). Given α > 0, a mapping Ψ : X → Y is called α-covering,
if the following condition holds true:

Ψ (BX (x, r)) ⊇ BY (Ψ (x),αr) ∀r ≥ 0, ∀x ∈ X.

Definition 2 (see [5]).Givenα > 0 and setsU ⊆ X ,V ⊆ Y , amappingΨ : X → Y
is called α-covering with respect to U, V , if for every u ∈ U and r > 0 such that
BX (u, r) ⊆ U the following condition holds true:

Ψ (BX (u, r)) ⊇ BY (Ψ (u),αr) ∩ V .

Definition 3 (see [6]).Givenα > 0 and setsU ⊆ X ,V ⊆ Y , amappingΨ : X → Y
is called relatively α-covering with respect to U, V , if it is α-covering with respect to
U and Ṽ = V ∩ Ψ (U ). Moreover, ifU = X and V = Y , then Ψ is called relatively
α-covering.

Theorem 1 ([4]) Assume that the mapping D : X → Y is continuous and α-
covering, S : X → Y is Lipschitz continuous with constant β < α. Then for any
x0 ∈ X there exists ξ = ξ(x0) ∈ X such that

D(ξ) = S(ξ), (1)

ρX (x0, ξ) ≤ ρY (D(x0), S(x0))

α − β
.

A point ξ satisfying the equality (1) is called a coincidence point of the mappings
D and S. Obviously, it is not necessarily unique.

Theorem 1 implies (see [4]) the following statement about perturbations of cov-
ering mappings.
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Theorem 2 (Milyutin) Let D : X → Y be a continuous and α-covering mapping.
Then for any S : X → Y satisfying the Lipschitz condition with constant β < α the
mapping D + S is (α − β)-covering.

Remark It is worth observing that Theorems 1, 2 remain valid if X,Y are arbitrary
metric spaces, X is complete, and (in Theorem 2) Y is a normed vector space.

Given closed set Ω ⊆ R
n and vector xa ∈ R

n , consider the Cauchy problem

f (ẋ, x, t) = 0, ẋ ∈ Ω, t ∈ [a, b], (2)

x(a) = xa, (3)

where x = (x1, . . . , xn)T ∈ R
n .

We assume that further the following condition is valid:

Assumption 1 Themapping f : Ω × R
n × [a, b] → R

m satisfies theCarathéodory
conditions:

(1) f (·, ·, t) is continuous at almost all t ∈ [a, b];
(2) f (ẋ, x, ·) is measurable for all (ẋ, x) ∈ Ω × R

n;
(3) for any ρ > 0 there exists M > 0 such that ‖ f (ẋ, x, t)‖ ≤ M for all (ẋ, x) ∈

Ω × R
n satisfying the condition ‖(ẋ, x)‖ ≤ ρ and almost all t ∈ [a, b].

Consider the complete metric space AC∞(Ω, xa, [a, b]) that consists of abso-
lutely continuous functions x : [a, b] → R

n such that ẋ ∈ L∞(Ω, [a, b]), x(a) =
xa , with the metric

ρAC∞(Ω,xa ,[a,b])(x1, x2) = ‖x1 − x2‖AC∞(Rn ,[a,b]) =
= ‖ẋ1 − ẋ2‖L∞(Rn ,[a,b]) = ρL∞(Ω,[a,b])(ẋ1, ẋ2).

Definition 4 (see [6]). A function

xδ ∈ AC∞(Ω, xa, [a, a + δ]), 0 < δ ≤ b − a,

is called a solution of the problem (2), (3) on the segment [a, a + δ], if (2) holds true
for almost all t ∈ [a, a + δ].

The following theorem plays a crucial role.

Theorem 3 ([6]) Assume that there exist positive numbers ν, R1, R2, a number
τ ∈ (0, b − a], and a function u0 ∈ L∞(Ω, [a, b]) such that the following conditions
hold true:

(1) There exists α > 0 such that for almost all t ∈ [a, a + τ ] and every x ∈
BRn (xa, ν), the mapping f (·, x, t) : Ω → R

m is relatively α-covering with respect
to the balls

U (t) = BΩ(u0(t), R1), V (x, t) = BRm ( f (u0(t), x, t),αR2).
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(2) The inclusion
0 ∈ f (U (t), p, t)

holds true for almost all t ∈ [a, a + τ ] and every x ∈ BRn (xa, ν).
(3) There exists L ≥ 0 such that the inequality

‖ f (u, x, t) − f (u, x̂, t)‖ ≤ L‖x − x̂‖

holds true for all t ∈ [a, a + τ ], all x, x̂ ∈ BRn (xa, ν), and every u ∈ U (t).
(4) The following estimation holds true:

r0 := α−1vraisup
t∈[a,a+τ ]

‖ f (u0(t), xa, t)‖ < Rmin := min{R1, R2}.

Then for any ε > 0 there exist δ ∈ (0, τ ] and a corresponding solution of the
problem (2), (3) xδ ∈ AC∞(Ω, xa, [a, a + δ]) such that

ρL∞(Ω,[a,a+δ])
(
ẋδ, uδ

0

)
< r0 + ε,

where uδ
0 is the restriction of the function u0 to the segment [a, a + δ].

3 Dynamic Allen Model with Continuous Time

In this section, we investigate the existence of an equilibrium price vector in dynamic
Allen model with continuous time.

Assume that we have n ≥ 1 goods, pi = pi (t) > 0 is the price for customer of
the i-th good at the moment t ∈ [t1, t2], t1 ≥ 0.

Suppose also that ṗ(t) = ( ṗ1(t), ṗ2(t), . . . , ṗn(t)) ∈ Ω for almost all t , where
Ω ⊆ R

n is a given closed set.
The total demand is represented by the mapping

D : Ω × R
n → R

n, D = D( ṗ(t), p(t)),

where Di ( ṗ(t), p(t)), i = 1, n, is the quantity of i-th good purchased at the moment
t . The total supply is represented by the mapping

S : Ω × R
n → R

n, S = S( ṗ(t), p(t)),

where Si ( ṗ(t), p(t)), i = 1, n, is the quantity of i-th good produced at the moment
t . Assume that the both mappings D, S are continuous.

Consider the dynamic demand-supply model

σ(D( ṗ, p), S( ṗ, p)). (4)
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Definition 5 Given δ ∈ (0, t2 − t1), an absolutely continuous function pδ : [t1; t1 +
δ] → R

n is called an equilibrium in the model (4) if the derivative of pδ is essentially
bounded and the conditions

p(t1) = p̄ := ( p̄1, p̄2, . . . , p̄n), (5)

D( ṗ, p) = S( ṗ, p), ṗ ∈ Ω ∀̇t ∈ [t1; t1 + δ]. (6)

hold true.
Consider the complete metric space AC∞(Ω, p̄, [t1, t2]) that consists of abso-

lutely continuous functions p : [t1, t2] → R
n such that ṗ ∈ L∞(Ω, [t1, t2]), p(t1) =

p̄, with the metric

ρAC∞(Ω, p̄,[t1,t2])(p1, p2) = ‖p1 − p2‖AC∞([t1,t2],Rn) =
= ‖ ṗ1 − ṗ2‖L∞(Rn ,[t1,t2]) = ρL∞(Rn ,[t1,t2])( ṗ1, ṗ2).

The main result of the paper is the following theorem.

Theorem 4 Assume that there exist positive numbers ν, R1, R2, a number τ ∈
(0, t2 − t1], and a function u0 ∈ L∞(Ω, [t1, t2)) such that the following conditions
hold true:

(1) There exists α > 0 such that for any p ∈ BRn ( p̄, ν) the mapping S(·, p) :
Ω → R

n is relatively α-covering with respect to the balls

U (t) = BΩ(u0(t), R1), V (p, t) = BR
n+(S(u0(t), p),αR2).

(2) There exists β > 0 such that

‖D(u, p) − D(û, p)‖ ≤ β‖u − û‖

for any p ∈ BR
n+( p̄, ν) and all u, û ∈ Ω .

(3) The inclusion
0 ∈ S(U (t), p) − D(U (t), p);

holds true for almost all t ∈ [t1, t1 + τ ] and every p ∈ BR
n+( p̄, ν).

(4) There exist LS ≥ 0 and LD ≥ 0 such that the inequalities

‖S(u, p) − S(u, p̂)‖ ≤ LS‖p − p̂‖, ‖D(u, p) − D(u, p̂)‖ ≤ LD‖p − p̂‖

hold true for all t ∈ [t1, t1 + τ ], all p, p̂ ∈ BR
n+( p̄, ν), and every u ∈ U (t).

(5) The following estimation holds true:

r0 := (α − β)−1vraisup
t∈[t1,t1+τ ]

‖S(u0(t), p̄) − D(u0(t), p̄)‖ <

< Rmin := min{R1, R2}.
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Then for any ε > 0 there exist δ ∈ (0, τ ] and a corresponding solution of the
problem (5), (6) pδ ∈ AC∞(Ω, p̄, [t1, t1 + δ]) such that

ρL∞(Ω,[t1,t1+δ])
(
ṗδ, uδ

0

)
< r0 + ε,

where uδ
0 is the restriction of the function u0 to the segment [t1, t1 + δ].

Proof Consider the mapping

F : Ω × R
n → R

n, F( ṗ(t), p(t)) = S( ṗ(t), p(t)) − D( ṗ(t), p(t)).

From the conditions 1, 2 andTheorem2 it follows that there exist positive numbers
α,β such that for almost all t ∈ [t1, t1 + τ ] and every p ∈ BR

n+( p̄, ν) the mapping F
is relatively (α − β)-covering with respect to the balls U (t) and V (p, t). Moreover,
from the condition 4 we conclude that there exists L ≥ 0 such that

‖F(u, p) − F(u, p̂)‖ ≤ L‖p − p̂‖

for all t ∈ [t1, t1 + τ ], all p, p̂ ∈ BR
n+( p̄, ν), and every u ∈ U (t). From the con-

dition 3 it follows that 0 ∈ F(U (t), p) for almost all t ∈ [t1, t1 + τ ] and every
p ∈ BR

n+( p̄, ν). Finally, from the condition 5 we have the estimation

r0 := (α − β)−1vraisup
t∈[t1,t1+τ ]

‖F(u0(t), p̄)‖ < Rmin := min{R1, R2}.

Applying Theorem 3 to the mapping F , we obtain the assertion of Theorem 4.
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Smooth Solutions of Linear Functional
Differential Equations of Neutral Type

V. B. Cherepennikov and A. V. Kim

Abstract The paper considers an initial-value problem with the initial function for
the linear functional differential equation of neutral type with constant coefficients.
The problem is stated, which is bound up with finding an initial function such that the
solution of the initial-value problem, which is generated by this function, possesses
somedesired smoothness at the pointsmultiple to the delay. For the purpose of solving
this problemwe use themethod of polynomial quasi-solutions, whose basis is formed
by the concept of an unknown function of the form of a polynomial of some degree. In
case of its substitution into the initial problem, there appears some incorrectness in the
sense of dimension of the polynomials, which is compensated by introducing into the
equation some residual, for which a precise analytical formula, which characterizes
the measure of disturbance of the considered initial-value problem. It is shown that if
a polynomial quasi-solution of degree N has been chosen in the capacity of the initial
function for the initial-value problem under scrutiny, then the solution generated will
have the smoothness at the abutment points not smaller than the degree N.

Keywords Linear functional differential equations · Initial-value problem ·
Smooth solutions · Polynomial quasisolutions method

1 Introduction

Investigation of many dynamic processes is related with the development and study
of mathematical models of these processes. In some cases, linear functional differ-
ential equations (FDE) are used as such models. One of the methods for finding
solutions to initial-value problem for such equations is the method of successive
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integration (method of steps), in which an initial function is given on an initial set,
which coincides with the delay. In this case, the solution of the FDE is reduced to
the solution of a sequence of Cauchy problems for ordinary differential equations
without deviations of arguments (see [1]). On the other hand, it is known that, as a
rule, at connection points of solutions, i.e., at points that are multiple to the delay,
the solutions have discontinuous derivatives. It is shown that if for FDEs of delayed
type the smoothness of a solution at successive connection point increases, then for
FDEs of neutral type the discontinuity of derivatives is preserved at all successive
connection points. This property of violation of smoothness of solutions at points that
are multiple to the delay is a specific feature of the FDE. In many applied problems,
the mathematical model of which is represented as a FDE, the discontinuity of the
derivative at the solution connection points is not observed.

In this connection, the problem of the study of the class of initial functions that
generate solutions of the studied FDE, possessing the required smoothness at points
multiple to the delay, is quite important. In this paper, to examine the problem on
smooth solutions; we use themethod of polynomial quasisolutions (see [3–5]), which
was developed for the study of initial-value problems with initial points for linear
FDEs of various types.

2 Problem Statement

We consider the following initial-value problem with initial function for a scalar
linear functional-differential equation of neutral type:

ẏ(t) + pẏ(t/q) = ay(t − 1) + f (t), q > 1, t ∈ [0,∞), (1)

y(t) = g(t), t ∈ [−1, 0], (2)

where a, p are constant coefficients, g(t) ∈ C∞[−1, 0], and

f (t) =
F∑

n=0

fnt
n. (3)

We formulate the following problem on smooth solutions.
Problem. Obtain existence conditions and methods of search for the initial func-

tion g(t), t ∈ [−1, 0], such that the solution of the initial-value problem (1)–(3)
generated by it possesses a necessary smoothness at points that are multiple to the
delay.

In this paper, we search for a solution of the problem based of the method of
polynomial quasisolutions ([2–4]).
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3 Method of Polynomial Quasisolutions

Recall the basic facts of themethod of polynomial solutions. Consider an initial-value
problem with an initial point for the FDE of neutral type with constant coefficients:

ẋ(t) + pẋ(t/q) = ax(t − 1) + f (t), q > 1, (4)

t ∈ J = (−∞,∞), x(0) = x0. (5)

Introduce the polynomial

x(t) =
N∑

n=0

xnt
n. (6)

Then

ẋ(t) =
N∑

n=0

nxnt
n−1, x(t − 1) =

N∑

n=0

xn(t − 1)n =
N∑

n=0

x̃nt
n, (7)

ẋ(t/q) =
N∑

n=0

nxn(t/q)n−1, (8)

where

x̃n(t) = xn +
N∑

i=n+1

(−1)i C̄ i
n+i · xn+i , (9)

x̃N = xN ; C̄m
n = (−1)m

n!
m!(n − m)! .

Substituting polynomials (3), (7) and (8) into Eq. (4), incorrectness arises in the
sense of the degree of polynomials. So, the derivatives ẋ(t) and ẋ(t/q) have degree
N − 1, the terms ax(t − 1) and f (t) have degrees N and F , respectively. On the
other hand, the last coefficient xN in (6) is defined by the last coefficient fF in (3)
only if N = F + 1 in (6). In this case, in (1) the term ax(t − 1) is a polynomial of
degree N + 1. We compensate for the discrepancy by introducing an additional term
ΔN (t) = fN t N into the equation for the initial problem (4).

Definition 1 It is said that the problem

ẋ(t) + pẋ(t/q) = ax(t − 1) + f (t) + ΔN (t), t ∈ J, x(0) = x0 (10)

is consistent in degree of polynomials with respect to problem (4).
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Let p �= −qn ∀n ∈ [1, N + 1]. Substituting (6), (7), and (8) in (10) and applying
the method of undetermined coefficients, we obtain

nxn = (1 + p/qn)−1ax̃n−1 + fn−1, 1 ≤ n ≤ N ; (11)

0 = −ax̃n−1 + fn−1, n = N + 1.

Note the following.

Remark 1 Since the degree of the polynomial x(t) equals to F + 1, this allows one
to choose the degree of the polynomial f (t) in (4) depending on the desired degree
of the polynomial x(t), adding to f (t) the corresponding number of zero terms.

Definition 2 If there exists a polynomial

x(t) =
N∑

n=0

xnt
n, t ∈ J, (12)

that identically satisfies the (10), then this polynomial is called the polynomial qua-
sisolution of the problem (4).

4 Theorem on Smooth Solutions of FDE

Let us return to the initial problem (1)–(2), which we rewrite in the form

ẏ(t) + pẏ(t/q) = ay(t − 1) + f (t), q > 1, t ∈ [0,∞), (13)

y(t) = xN (t), t ∈ [−1, 0], (14)

where

xN (t) =
N∑

n=0

xN
n t

n (15)

is the polynomial quasisolution of degree N to the initial-value problem with the
initial point (4)–(5).

Theorem 1 Assume that in the initial-value problem (13)–(14) the initial function
is a polynomial quasisolution xN (t) to the initial-value problem (4)–(5). Then if p �=
−qn ∀n ∈ [1,∞], then the solution to the problem (13)–(14), on the segment [0, T ],
T > 1, generated by this initial function has at the connection point of solutions
continuous derivatives whose degree is not less than N.
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Proof On the first step for t ∈ [0, 1], taking into account the initial condition (14),
we obtain

ẏ(t) + pẏ(t/q) = axN (t − 1) + f (t), y(0) = xN (0) = x0, t ∈ [0, 1]. (16)

Since the right-hand side of the equation is a polynomial of degree N , this equation
has a unique solution that can be represented as a series

y(t) =
∞∑

n=0

ynt
n. (17)

Then

ẏ(t) =
∞∑

n=0

nynt
n−1, ẏ(t/q) =

∞∑

n=0

nyn(t/q)n−1.

To find the coefficients of yn , we substitute these formulas, as well as (3) and (9) in
(16). Gathering terms with the same degree of the variable t , we obtain the recurrent
formula

nyn =
{

(1 + p/qn)−1ax̃n−1 + fn−1, 1 ≤ n ≤ N ,

(1 + p/qn)−1ayn−1, ∀n ≥ N + 1.
(18)

From the comparison of formulas (11) and (18) it follows that

yk = xN
k , k = 1, N . (19)

Since (15) and (17) imply that for t = 0

xN
n = (xn(0))(n)

n! and yn = y(0)(n)

n!
the formula (19) implies that at the point t = 0 of connection of the initial function
xN (t) and the solution y(t) generated by it, the following equality of derivatives is
valid:

y(n)(0) = (xn(0))(n), n = 1, N .

For the studied linear FDE of neutral type (1) this means that at the subsequent
connection points t = 1, 2, . . . of the solution it is guaranteed the existence of N
continuous derivatives of the generated solution y(t).

The proof of the theorem is complete.
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5 Numerical Experiment

Consider an initial-value problem with an initial point for the following linear func-
tional differential equation of neutral type:

ẏ(t) − 0.5ẏ(t/2) = y(t − 1), t ∈ [0,∞), (20)

y(t) = g(t), t ∈ [−1, 0]. (21)

Following the method of polynomial quasisolutions, we introduce an auxiliary
initial problem with an initial point that is consistent in the degree of polynomials,
assuming a polynomial quasisolution in the form

x(t) =
3∑

n=0

xnt
n. (22)

By (4)–(5) and (10) we have

ẋ(t) − 0.5ẋ(t/2) = x(t − 1) + f3t
3, t ∈ J = (−∞,∞), x(0) = x0 = 1.

(23)
Herewith

ẋ(t) = x1 + 2x2t + 3x3t
2, ẋ(t/2) = x1 + x2t + (3/4)x3t

2,

x(t − 1) = x0 + x1(t − 1) + x2(t − 1)2 + x3(t − 1)3 =

x0 − x1 + x2 − x3 + (x1 − 2x2 + 3x3)t + (x2 − 3x3)t
2 + x3t

3.

Substituting the obtained formulas into (23) and comparing the coefficients for the
same degrees of the variable t , we obtain:

for t0: x0 − 1.5x1 + x2 − x3 = 0;
for t1: x1 − 3.5x2 + 3x3 = 0;
for t2: x2 − 5.625x3 = 0;
for t3: x3 + f3 = 0.
Further, we express all coefficients xi , i = 3, 2, 1, 0 through an unknown coeffi-

cient f3:
x3 = − f3;
x2 = 5.625x3 = −5.625 f3;
x1 = 3.5x2 − 3x3 = −16.6875 f3;
x0 = 1.5x1 − x2 + x3 = −20.40625 f3.
Since according to (23) x0 = 1, from the last relation we find

f3 = 1

−20.40625
= −0.04900.
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From the rest of the relations we have

x1 = −16.6875(−0.04900) = 0.8178; x2 = 5.625(−0.04900) = 0.2756; x3 = 0.04900.

Then, by virtue of (22), the polynomial quasisolution has the form

x(t) = 1 + 0.8178t + 0.2756t2 + 0.0490t3. (24)

Let us return to the initial-value problemwith the initial function (20)–(21), where
as the initial function we take the obtained polynomial quasisolution, i.e

ẏ(t) − 0.5ẏ(t/2) = y(t − 1), t ∈ [0,∞), (25)

y(t) = g(t) = x(t), t ∈ [−1, 0]. (26)

On the first step for t ∈ [0, 1], taking into account (24), we obtain

y(t − 1) = g(t − 1) = x(t − 1) =

1 + 0.8178(t − 1) + 0.2756(t − 1)2 + 0.0490(t − 1)3 =

0.4089 + 0.4135t + 0.1287t2 + 0.0490t3.

Consequently, on the segment the problem (25)–(26) is rewritten as:

ẏ(t) − 0.5ẏ(t/2) = 0.4089 + 0.4135t + 0.1287t2 + 0.0490t3, y(0) = y0 = 1.
(27)

This problem is uniquely solvable [2]. We search a solution to this problem in the
form of a series

y(t) =
∞∑

n=0

ynt
n.

Then

ẏ(t) =
∞∑

n=0

nynt
n−1, ẏ(t/2) =

∞∑

n=0

nyn
1

2n−1
tn−1.

Substituting these formulas in (27), we have

∞∑

n=0

nyn
(
1 − 1

2n−1

)
tn−1 = 0.4089 + 0.4135t + 0.1287t2 + 0.0490t3, y(0) = y0 = 1.
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Comparing the coefficients at the same degrees of the variable t , we obtain
for t0: 0.5y1 = 0.4089, y1 = 0.8178;
for t1: 1.5y2 = 0.4135, y2 = 0.2756;
for t2: 2.625y3 = 0.1286, y3 = 0.0490;
for t3: 3.75y4 = 0.0490, y4 = 0.0131;
for tm : ym = 0, ∀m ≥ 3.
Therefore, the solution of the initial problem (25)–(26) on the segment t ∈ [0, 1]

is the polynomial

y(t) = 1 + 0.8178t + 0.2756t2 + 0.0490t3 + 0.0131t4.

Comparing the polynomial quasisolution x(t), defined according to (24) on t =
[−1, 0], with the solution y(t) found on t = [0, 1], we conclude thatwhen t = 0 at the
connction point of the initial function and the generated solution there is an equality
of derivatives, i.e. dnx(t)

dtn = dn y(t)
dtn , n = 1, 3. For the studied linear FDE of neutral

type, this means that at subsequent connection points of solutions t = 1, 2, . . . the
existence of three continuous derivatives of the generated solution y(t) is guaranteed.

6 Conclusion

The aim of the work is to obtain exact solutions of the equation, possessing desired
smoothness at the points that are multiples of the constant delay. It is known that,
as a rule, at the connection points of solutions, i.e. at points that are multiples of the
delay, the solution of linear FDEs has a discontinuous derivative. However, in many
applied problems, the mathematical model of which is represented in the form of
linear FDEs, discontinuities of the derivatives at the connection points of solutions
are not observed. The main result of the paper consists in the formulation and proof
of Theorem 1, which states that a polynomial quasisolution found for a linear initial
problem with an initial point and accepted as an initial function for a FDE with an
initial function generates a solution that has at the connection points smoothness of at
least polynomial degree of a quasisolution. The obtained results are important for the
study of applied problems whose mathematical models are described by functional
differential equations.
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On an Inverse Problem to a Mixed
Problem for the Poisson Equation

N. Yu. Chernikova, E. B. Laneev, M. N. Muratov and E. Yu. Ponomarenko

Abstract The stable solution to the inverse problem of restoring the function of
density distribution of the sources, corresponding to an infinitely thin body, was
acquired in mixed boundary problem of Poisson equation. The Tikhonov method of
regularization using principle of minimum smoothing was applied for obtaining the
stable solution.

Keywords Inverse problem · Ill-posed problem · Integral equation of the first
kind · Method of tikhonov regularization

1 Introduction

The inverse problem of restoring the function of distribution density of the sources
corresponding to infinitely thin body is considered in this article in the framework of
mixed problem of Poisson equation. According to the main idea of the method [1] of
solvingmixed problem of Laplace equation inverse problem for density is to reduce it
to inverse problemof potential [2]. In casewhen the function of distribution density of
the sources corresponds to infinitely thin body the linear Fredholm integral equation
of the first kind was obtained for its definition. This equation is an ill-posed problem
and it’s solution is obtained based on Tikhonov method of regularization [3]. In this
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case the solution of the inverse problem is similar to the solution of the problem of
extending the potential field in the direction of the sources [4].

2 Statement of the Problem

In the cylindrical domain

D(F,∞) = {
(x, y, z) : 0 < x < lx , 0 < y < ly, F(x, y) < z < ∞}

, (1)

bounded by the surface

S = {(x, y, z) : 0 < x < lx , 0 < y < ly, z = F(x, y) < H}, (2)

consider the boundary problem

Δu(M) = ρ, M ∈ D(F,∞),
∂u

∂n

∣∣
S = −hu

∣∣
S, h = const, h > 0,

u|x=0,lx = 0, u|y=0,ly = 0,
u → 0 z → ∞.

(3)

Let’s assume that the function of distribution density of the sources corresponds to
infinitely thin body of an arbitrary shape in the plane z = H . In this case the density
ρ can be represented as

ρ(x, y, z) = σ(x, y)δ(z − H). (4)

We assume that the function σ and the function F , defining the surface (2), ensure
the existence of the solution of the boundary value problem (3) in
C2(D(F,∞))

⋂
C1(D(F,∞)).

Inverse problem. Let within the model (3) the function u on the surface S is
given, that is, the function

u|S = f, (5)

is known and the density ρ is unknown. Let’s set the task of recovery functions ρ
of the form (4) for a given function f . It means than the problem is to restore the
function σ(x, y) in (4) for known function f on the surface S in (5).
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3 The Exact Solution of the Inverse Problem

Let the function f = u|S , where u is the solution of the problem (3), ρ has a form
(4). Then the solution of inverse problem exists. Let us obtain this solution using the
method suggested in [1].

According to (3) the third boundary condition takes place on the surface of S, and
then it is known normal derivative of the function u on the surface S

∂u

∂n

∣∣
S

= −h f. (6)

In the domain

D∞ = {
(x, y, z) : 0 < x < lx , 0 < y < ly,−∞ < z < ∞}

(7)

consider the source function ϕ(M, P) of the Dirichlet problem for the Laplace equa-
tion

ϕ(M, P) = 2

πlx ly

∞∑

n,m=1

e
−π

√
n2

l2x
+ m2

l2y
|zM−zP |

√
n2
l2x

+ m2

l2y

sin
πnxM
lx

sin
πmyM
ly

×

× sin
πnxP
lx

sin
πmyP
ly

. (8)

Let M ∈ D(−∞, F), where

D(−∞, F) = {
(x, y, z) : 0 < x < lx , 0 < y < ly,−∞ < z < F(x, y)

}
, (9)

Applying the Green formula in the domain D(F,∞) (1) to the function u(P), i.e.,
a solution of problem (3), and to a function ϕ(M, P) of the form (8), we obtain the
relation

∫

Suppρ

ρ(P)ϕ(M, P)dVP =
∫

S

[∂u

∂n
(P)ϕ(M, P) − u(P)

∂ϕ

∂nP
(M, P)

]
dσP . (10)

Under the conditions of inverse problem with regard to the (5) and (6) we obtain

∫

Suppρ

ρ(P)ϕ(M, P)dVP =
∫

S

[
− hu(P)ϕ(M, P) − f (P)

∂ϕ

∂nP
(M, P)

]
dσP .

(11)
The function f is given and the right-hand side (11) is a known function. Introducing
the notation
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Φ(M) = −
∫

S

[
hu(P)ϕ(M, P) + f (P)

∂ϕ

∂nP
(M, P)

]
dσP , (12)

we obtain the equation for the function ρ

∫

Suppρ

ρ(P)ϕ(M, P)dVP = Φ(M). (13)

This equation is a variant of the inverse potential problem [2]. For the left-hand side
(11), using the representation (8), we obtain

∫

Suppρ

ρ(P)ϕ(M, P)dVP = 2

lx ly

∫

Suppρ

dVPρ(P)

∞∑

n,m=1

e
−π

√
n2

l2x
+ m2

l2y
|zM−zP |

√
n2
l2x

+ m2

l2y

×

× sin

(
πnxP
lx

)
sin

(
πmyP
ly

)
sin

(
πnxM
lx

)
sin

(
πmyM
ly

)
.

From this, in the case where the source density ρ has the form (4), with regard to
zM < zP when zM ∈ D(−∞, F), it follows

∫

Suppρ

ρ(P)ϕ(M, P)dVP = 2

lx ly

lx∫

0

ly∫

0

σ(xP , yP)

∞∑

n,m=1

e
−π

√
n2

l2x
+ m2

l2y
(H−zM ) ×

× 1
√

n2
l2x

+ m2

l2y

sin
πnxP
lx

sin
πmyP
ly

sin
πnxM
lx

sin
πmyM
ly

dxPdyP =

=
lx∫

0

ly∫

0

K (xM , yM , zM , x, y)σ(x, y)dxdy, (14)

where

K (xM , yM , zM , x, y) = 4

lx ly

∞∑

n,m=1

e
−π

√
n2

l2x
+ m2

l2y
(H−zM ) 1

√
n2
l2x

+ m2

l2y

×

× sin
πnxM
lx

sin
πmyM
ly

sin
πnx

lx
sin

πmy

ly
. (15)

If point M is on a plane zM = a, a < min F(x, y), from (10) and (14) we obtain
the following integral equation for the function σ:



On an Inverse Problem to a Mixed Problem for the Poisson Equation 145

lx∫

0

ly∫

0

K (xM , yM , a, x, y)σ(x, y)dxdy = Φ(xM , yM , a). (16)

The kernel of the integral operator K has the form (15) and a is a fixed parameter
satisfying the condition a < min F(x, y) < H .

Solving equation (16), we find the density function σ, and the required density ρ
of the form (4).

The solution of the integral equation (16) can be obtained in the form of a Fourier
series

σ(x, y) =
∞∑

n,m=1

Φ̃nm(a)e
π

√
n2

l2x
+ m2

l2y
(H−a)

√
n2

l2x
+ m2

l2y
sin

πnx

lx
sin

πmy

ly
, (17)

where Φ̃nm(a) are the Fourier coefficients

Φ̃nm(a) = 4

lx ly

lx∫

0

ly∫

0

Φ(x, y, a) sin
πnx

lx
sin

πmy

ly
dxdy

of the function Φ of the form (12) at zM = a. Introducing the notation

Knm(a) = e
π

√
n2

l2x
+ m2

l2y
(H−a)

√
n2

l2x
+ m2

l2y
, (18)

Equation (17) can be written in the form

σ(x, y) =
∞∑

n,m=1

Φ̃nm(a)Knm(a) sin
πnx

lx
sin

πmy

ly
. (19)

If function f in (5) is known as exact function, then the right-hand part in
(16) of the form (12) corresponds to the density function σ of the form (4), so

the coefficients Φ̃nm(a) = σ̃nm/Knm(a) decrease faster than exp{π
√

n2
l2x

+ m2

l2y
(H −

a)}
√

n2
l2x

+ m2

l2y
increases and the series (19) converges in L2.

If the density function σ, defining the boundary of the body, has a support D,
then σ(M) = σ(M)χD(M), where χD is characteristic function of the support of the
density function σ, in particular, when σ = σ0 = const within of the support, then
σ(M) = σ0χD(M) and

χD(x, y) = 1

σ0
σ(x, y).
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Thus, if the density σ is found as a solution the integral equation (16), and the
value σ0 is given, the support of density function is determined by the formula

D = {(x, y) : 1

σ0
σ(x, y) > λ, 0 < λ < 1}. (20)

4 Approximate Solution of the Inverse Problem

Let the functions f be given with an error; i.e., let the function f δ be known instead
of the exact function f and

|| f δ − f ||L2(S) ≤ δ, (21)

In this case, the right-hand side of the equation (16) is calculated approximately

Φδ(M) = −
∫

S

[
h f δ(P)ϕ(M, P) + f δ(P)

∂ϕ

∂nP
(M, P)

]
dσP , (22)

For the difference between the approximate and exact right-hand side of the inte-
gral equations (16) we obtain an estimate

‖Φδ − Φ‖L2(Π(a)) ≤ C1δ, C1 = Const. (23)

where

Π(a) = {
(x, y, z) : 0 < x < lx , 0 < y < ly, z = a

}
, a < min F(x, y).

Stable approximate solution of Fredholm integral equation the first kind (16) as
an ill-posed problem can be obtained based on Tikhonov regularization method [3].
As the approximate solution of the integral equation will be considered the extremal
of the functional of Tikhonov

M[w] =‖ Kw − Φδ ‖2L2(Π(a)) +α ‖ w ‖2L2
, (24)

where K is the integral operator in (16). Extremal σδ
α can be obtained as a solution

Euler equations for the functional (24) in the form

σδ
α(x, y) =

∞∑

n,m=1

Φ̃δ
nm(a)Knm(a)

1 + αK 2
nm(a)

sin
πnx

lx
sin

πmy

ly
, (25)

where Φ̃δ
nm(a) are Fourier coefficients of the function Φδ|Π(a) of the form (22) and

Knm(a) has the form (18).
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The approximate solution (25) of the equation (16) differs from the exact one (19)
regularizing factor in the coefficients of the series.

Theorem 1 For any α = α(δ) > 0 such that α(δ) → 0 and δ/
√

α(δ) → 0 when
δ → 0, the function σδ

α of the form (25) converges to the exact solution of (19) in L2

when δ → 0.

Proof Introducing a function σα of the form (25) with δ = 0, estimate the difference
σδ

α − σ
‖σδ

α − σ‖L2 ≤ ‖σδ
α − σα‖L2 + ‖σα − σ‖L2 (26)

For the difference σδ
α − σα we obtain

‖σδ
α − σα‖L2 = [ 4

lx ly

∞∑

n,m=1

( Knm(a)

1 + αK 2
nm(a)

)2|Φ̃δ
nm(a) − Φ̃nm(a)|2]1/2 ≤

≤ max
x

( x

1 + αx2
)‖Φδ − Φ‖L2(Π(a)) ≤ C

δ√
α(δ)

(27)

Let us estimate the difference (25) when δ = 0 and (19)

‖σα − σ‖L2 = [ 4

lx ly

∞∑

n,m=1

( αK 2
nm(a)

1 + αK 2
nm(a)

)2|Φ̃nm(a)Knm(a)|2]1/2 =

=
[

4

lx ly

∞∑

n,m=1

( αK 2
nm(a)

1 + αK 2
nm(a)

)2
σ2
nm

]1/2

.

For the resulting series, a convergent numerical series
∞∑

n,m=1
σ2
nm is majorant and thus

‖σα − σ‖L2 = o(α) → 0, for α → 0. (28)

From (26), (27), (28) and (23) and conditions of the theorem we obtain

‖σδ
α − σ‖L2 ≤ ‖σδ

α − σα‖L2 + ‖σα − σ‖L2 ≤ C
δ√
α(δ)

+ o(α(δ)) → 0, δ → 0.

The proof of the theorem is complete.

In the case where σ(M) = σ0χD(M), let us construct the approximation Dδ
λ to

the set D, based on the formulas (20) and (25):

Dδ
λ = {(x, y) : 1

σ0
σδ

α(x, y) > λ, 0 < λ < 1}. (29)
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Theorem 2 Under the conditions of theorem 1 measure of the divided difference
μ(Dδ

λΔD) → 0 when δ → 0.

Proof Under the conditions of theorem 1 the function

χδ
D = 1

σ0
σδ

α(x, y),

obviously, converges in L2(Π(0)) for δ → 0. From the convergence χδ
D to χD to

l2(Π(0)) follows the convergence by measure [5]. This means that for any numbers
ε > 0 and τ > 0 there exists δ > 0, that the measure μ of set

Ωτ = {(x, y) : (x, y) ∈ Π(0), |χδ
D(x, y) − χD(x, y)| ≥ τ }

less than ε, that is
μ(Ωτ ) < ε.

Let us choose the number τ so that τ < λ < 1 − τ , that is 0 < τ < min[λ, 1 − λ].
If the point (x, y) ∈ D \ Dδ

λ, then (x, y) ∈ χD and χD(x, y) = 1. Moreover, (x, y)
does not belong to the set Dδ

λ according to (29)

χδ
D(x, y) ≤ λ < 1 − τ = χD(x, y) − τ ,

that is χδ
D(x, y) − χD(x, y) ≤ −τ and therefore, the point (x, y) ∈ Ωτ . If the point

(x, y) ∈ Dδ
λ \ D, then (x, y) is outside of D and χD(x, y) = 0. In addition, (x, y) ∈

Dδ
λ according to (29)

χδ
D(x, y) > λ > τ = τ + χD(x, y),

therefore, χδ
D(x, y) − χD(x, y) > τ , i.e. (x, y) ∈ Ωτ .Thus, from the condition

(x, y) ∈ Dδ
λΔD = (Dδ

λ \ D) ∪ (D \ Dδ
λ)

it follows that (x, y) ∈ Ωτ , i.e. Dδ
λΔD ⊂ Ωτ and

μ(Dδ
λΔD) ≤ μ(Ωτ ) < ε.

Thus, for any ε > 0 there is δ > 0 that

μ(Dδ
λΔD) < ε.

The proof of the theorem is complete.

On the basis of proven theorems it can be argued that formulas (25), (22) and (29)
solve the inverse problem.
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Stabilization of the Two Degree
of Freedom Linear Milling Model

R. I. Shevchenko

Abstract In this paper we propose procedure of optimal stabilization of the planar
linear milling model described by the system of two second-order retarded differen-
tial equations with periodic coefficients. The problem is solved in the set of piecewise
constant state feedback controls. Approach based on the idea of canonical decom-
position of the function state space leads to the finite-dimensional approximation of
the initial problem. The approximating continuous stabilization problem is replaced
by the equivalent discrete one. Special numeric scheme is used to design the optimal
stabilizing control of the latter problem.

Keywords Periodic hereditary differential system · Periodic discrete-time Riccati
equation · Canonical decomposition of the state space

1 Introduction

Mathematical models of milling are studied in order to explain and to predict the
vibrations arising during the cutting process. Milling is modeled by retarded differ-
ential equations with periodic coefficients [1]. The unperturbed tool motion is stable
if all the eigenvalues of the monodromy operator of the system called characteristic
multipliers are inside the unit circle. The conditions the technological parameters of
the model must meet, for the cutting process to be stable, are determined in [1, 2].
These results allow to solve the problem of parametric stabilization.

In this paper we solve the problem of active stabilization for the two degree of
freedom linear milling model. Two-dimensional control is added to the model. It
can be interpreted as the planar force, acting on the cutter. We introduce the infinite-
horizon quadratic performance index into the problem. It is required to find a state
feedback control, so that the zero solution of the closed-loop system is asymptotically
stable and the cost function is a minimum.
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We turn to the problem statement in a Hilbert function state space. It is well-
known that under stabilizability and detectability conditions the optimal control law
is characterized by the solution of the operator Riccati differential equation [3]. There
exist approximation techniques to solve the operator Riccati differential equation.
One of them was proposed by Delfour [3]. Here we construct the finite-dimensional
approximation of the initial stabilization problem based on the decomposition of the
state space by the spectral projections. This idea was first proposed by Shimanov [4].

For the approximating optimal stabilization problem we consider piecewise con-
stant stabilizing controls. Such approach allows to replace the continuous approx-
imating stabilization problem by the equivalent discrete one. Piecewise constant
controls are appropriate for digital controllers when the state is measured at discrete
instants of time. Optimal stabilizing control of the discrete periodic optimal stabiliza-
tion problem is given by the periodic positive definite solution of the discrete-time
periodic Riccati equation [5]. We solve the discrete-time periodic Riccati equation
numerically.

2 Optimal Stabilization Problem in the Function State
Space

Let x(t) and y(t) denote tool perturbations from the nominal motion in two orthog-
onal directions. For the symmetric tool we consider the following two degree of
freedom linear milling model [1]

ẍ(t) + 2ζωn ẋ(t) +
(

ω2
n + whxx (t)

mt

)
x(t) + whxy(t)

mt
y(t)

= whxx (t)

mt
x(t − τ ) + whxy(t)

mt
y(t − τ ) + 1000ux (t), (1)

ÿ(t) + 2ζωn ẏ(t) + whyx (t)

mt
x(t) +

(
ω2
n + whyy(t)

mt

)
y(t)

= whyx (t)

mt
x(t − τ ) + whyy(t)

mt
y(t − τ ) + 1000uy(t), t ∈ R+, (2)

where ωn is the angular natural frequency, ζ is the damping ratio, w is the depth
of cut, mt is the modal mass of the tool, τ is the tooth passing period, ux (t), uy(t)
are the control components. Functions hxx (t), hxy(t), hyx (t), hyy(t) are τ -periodic.
They are given by the expressions

hxx (t) =
N∑
j=1

g
(
φ j (t)

)
sin

(
φ j (t)

) (
Kt cos

(
φ j (t)

) + Kn sin
(
φ j (t)

))
,
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hxy(t) =
N∑
j=1

g
(
φ j (t)

)
cos

(
φ j (t)

) (
Kt cos

(
φ j (t)

) + Kn sin
(
φ j (t)

))
,

hyx (t) =
N∑
j=1

g
(
φ j (t)

)
sin

(
φ j (t)

) (−Kt sin
(
φ j (t)

) + Kn cos
(
φ j (t)

))
,

hyy(t) =
N∑
j=1

g
(
φ j (t)

)
cos

(
φ j (t)

) (−Kt sin
(
φ j (t)

) + Kn cos
(
φ j (t)

))
.

Here, N is the number of teeth, Kt and Kn are the tangential and normal cutting force
coefficients, respectively, φ j (t) is the angular position of tooth j defined as

φ j (t) = 2πΩt

60
+ 2π j

N
, j = 1, N ,

where Ω is the spindle rotational speed. The so-called screen function g is given by
the formula

g(ϕ) = 0.5 (1 + sgn (sin(ϕ − ψ) − p)) ,

where sgn is the sign function and

tanψ = sinϕs − sinϕ f

cosϕs − cosϕ f
, p = sin (ϕs − ψ) .

Angles ϕs and ϕ f determine the start and exit angles of the cutting tooth.
Quadratic performance index has the form

J =
∫ ∞

0

[
x2(t) + y2(t) + u2x (t) + u2y(t)

]
dt. (3)

In terms of vector equations, the model (1), (2) can be represented as

dz(t)

dt
= A1(t)z(t) + A2(t)z(t − τ ) + Bu(t), t ∈ R+,

where
z(t) = (

x(t) ẋ(t) y(t) ẏ(t)
)�

, u(t) = (
ux (t) uy(t)

)�
,

A1(t) =

⎛
⎜⎜⎜⎝

0 1 0 0
−ω2

n − whxx (t)
mt

−2ζωn −whxy(t)
mt

0
0 0 0 1

−whyx (t)
mt

0 −ω2
n − whyy(t)

mt
−2ζωn

⎞
⎟⎟⎟⎠ ,
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A2(t) =

⎛
⎜⎜⎜⎝

0 0 0 0
whxx (t)

mt
0 whxy(t)

mt
0

0 0 0 0
whyx (t)

mt
0 whyy(t)

mt
0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎝

0 0
1000 0
0 0
0 1000

⎞
⎟⎟⎠ .

The performance index (3) becomes

J =
∫ ∞

0

[
z�(t)Cxz(t) + u�(t)Cuu(t)

]
dt,

where

Cx =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ , Cu =

(
1 0
0 1

)
.

We choose as a function state space Hilbert space H = L2
(
[−τ , 0) , R4

) × R4

with the inner product (x(·), y(·))H = y�(0)x(0) + ∫ 0
−τ y

�(ϑ)x(ϑ)dϑ, x, y ∈ H . In
the function space H we obtain the optimal stabilization problem

dxt
dt

= A(t)xt + Bu(t), t ≥ 0, (4)

J =
∫ ∞

0

[
x�
t (0)Cxxt (0) + u�(t)Cuu(t)

]
dt. (5)

Linear operatorsA(t) : H → H and B : R2 → H in the above formulas are defined
by the expressions

(A(t)x)(ϑ) = dx(ϑ)

dϑ
,ϑ ∈ [−τ , 0), (A(t)x)(0) = A1(t)x(0) + A2(t)x(−τ ),

(Bu)(ϑ) = 0,ϑ ∈ [−τ , 0), (Bu)(0) = Bu.

3 Approximating Continuous Stabilization Problem

We follow the technique of canonical decomposition of the function state space
proposed first by Shimanov [4] and further developed by Hale [6]. The main idea is
that in the function state space there exists a special canonical basis which determines
finite-dimensional invariant subspaces with respect to the evolutionary operator of
the state equation (4). An arbitrary solution of (4) can be decomposed as a sum of
divergent term, belonging to the finite-dimensional subspace, and decaying term. For
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the divergent termwe formulate the finite-dimensional optimal stabilization problem
as in [7].

Implementation of this technique requires the solution of the spectral problem for
the completely continuous monodromy operator U : H → H given by

(Uϕ)(ϑ) = X (ϑ)ϕ(0) + X (ϑ)

∫ ϑ

−τ

X−1(s)A2(s)ϕ(s)ds,ϑ ∈ [−τ , 0],

where X (·) is fundamental matrix of the system dz
dt = A1(t)z, X (−τ ) = I4. In addi-

tionwe need to solve the spectral problem for the formal adjointmonodromy operator
Ũ : H1 → H1, H1 = R4 × L2

(
(0, τ ], R4

)
, such that

(
Ũψ

)
(Θ) = X−�(Θ)

(
X�(τ )ψ(0) +

∫ τ

Θ

X�(s)A�
2 (s)ψ(s)ds

)
,Θ ∈ [0, τ ].

Projecting method based on Chebyshev polynomials of the first kind is exploited to
solve the above spectral problems [2, 8].

We choose characteristic multipliers ρi , i = 1, N , with the largest magnitudes.
All the multipliers that have magnitudes greater than 1 lie among the taken ones.

Then we construct Floquet solutions x(i)
t (ϑ) = ρ

t+ϑ
τ

i ϕ(i)
t (ϑ),ϑ ∈ [−τ , 0], i = 1, N ,

of the equation (4) subject to u(t) ≡ 0. Canonical decomposition of an arbitrary
function element xt ∈ H has the form [4, 7]

xt (ϑ) =
N∑
i=1

ai (t)ρ
ϑ
τ

i ϕ(i)
t (ϑ) + zt (ϑ),ϑ ∈ [−τ , 0],

where zt (·) is rapidly damped function. In terms of bilinear form

〈ϕ,ψ〉t = ψ∗(0)ϕ(0) +
∫ 0

−τ

ψ∗(ϑ + τ )A2(t + ϑ)ϕ(ϑ)dϑ, t ≥ 0,ϕ ∈ H,ψ ∈ H1,

scalar functions ai (t) can be written as

ai (t) =
〈
xt , y

(i)
t ρ

t
τ

i

〉
t
, i = 1, N . (6)

In the formula (6) function elements y(i)
t (Θ) = ρ

− t+Θ
τ

i ψ(i)
t (Θ),Θ ∈ [0, τ ], i = 1, N ,

denote Floquet solutions of the formal adjoint equation

dy(t)

dt
= −A�

1 (t)y(t) − A�
2 (t)y(t + τ ).

Leta(t) = {a1(t) a2(t) ... aN (t)}� , t ≥ 0.Approximatingfinite-dimensional
optimal stabilization problem is described by the vector equation
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da

dt
= ÂNa + B̂N (t)u(t), t ≥ 0, (7)

with the performance index

ĴN =
∫ ∞

0

[
a∗(t)CxN (t)a(t) + u∗(t)Cuu(t)

]
dt. (8)

Here, ÂN = τ−1diag (ln ρ1 ln ρ2 ... ln ρN ),CxN (t) =
{
ϕ(i)
t

∗
(0)Cxϕ

( j)
t (0)

}N

i, j=1
and if the columns of B are B1, B2, then

B̂N (t) =
(

ψ(1)
t

∗
(0)B1 ψ(2)

t
∗
(0)B1 ... ψ(N )

t
∗
(0)B1

ψ(1)
t

∗
(0)B2 ψ(2)

t
∗
(0)B2 ... ψ(N )

t
∗
(0)B2

)�
.

4 Approximating Discrete Stabilization Problem

For a given k we specify the division of the time interval [0, τ ] by points

0 = Θ0 < Θ1 < ... < Θk = τ , k ≥ 1.

Let us extend this partition periodically on the whole time axis so that

tn =
[n
k

]
τ + Θp(n), p(n) = n − k

[n
k

]
, n ≥ 0.

It is proposed to solve the continuous-time approximating problem (7), (8) within
the class of piecewise constant controls of the form

u(t) ≡ un, t ∈ [
tn, tn+1) , n ≥ 0. (9)

To each solution a(t), t ≥ 0, of the system (7) we associate a sequence an =
a(tn), n ≥ 0. Solution a(t) of the system (7) over an interval

[
tn, tn+1

]
with the

condition a(tn) = an is given by the formula

a(t) = X̂(t − tn)an +
∫ t

tn

X̂(t − s)B̂N (s)unds, (10)

where X̂(t) = eÂN t = diag
(
ρ

t
τ

1 ρ
t
τ

2 ... ρ
t
τ

N

)
.

If we let t = tn+1 in the expression (10) we obtain the recurrent relation

an+1 = ˆ̂Anan + ˆ̂Bnun, (11)
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ˆ̂An = X̂ (tn+1 − tn) ,
ˆ̂Bn =

∫ tn+1

tn

X̂(tn+1 − s)B̂N (s)ds.

By construction matrices ˆ̂An,
ˆ̂Bn are k-periodic.

The discrete form of the performance index (8) also follows from the expression
(10). It is defined by the formula

ˆ̂JN =
∞∑
n=0

[
a∗
n Ĉxxnan + a∗

n Ĉxunun + u∗
nĈ

∗
xunan + u∗

nĈuunun
]
, (12)

where k-periodic matrices Ĉxxn, Ĉxun, Ĉuun are given by

Ĉxxn =
∫ tn+1

tn

[
X̂∗(t − tn)CxN (t)X̂(t − tn)

]
dt,

Ĉxun =
∫ tn+1

tn

[
X̂∗(t − tn)CxN (t)

∫ t

tn

X̂(t − s)B̂N (s)ds

]
dt,

Ĉuun =
∫ tn+1

tn

[∫ t

tn

B̂∗
N (s)X̂∗(t − s)dsCxN (t)

∫ t

tn

X̂(t − s)B̂N (s)ds + Cu

]
dt.

Optimal control in feedback form for the discrete optimal stabilization problem
(11), (12) is associated with the hermitian k-periodic solution Xn , n = 0, ..., k − 1,
of the periodic discrete Riccati equation [5]

Xn = Ĉxxn + ˆ̂A∗
n Xn+1

ˆ̂An −
( ˆ̂A∗

n Xn+1
ˆ̂Bn + Ĉxun

) (
Ĉuun + ˆ̂B∗

n Xn+1
ˆ̂Bn

)−1

×
( ˆ̂B∗

n Xn+1
ˆ̂An + Ĉ∗

xun

)
.

Once this solution is computed, the optimal control law for the problem (11), (12)
takes the form

u0n = −
(
Ĉuun + ˆ̂B∗

n Xn+1
ˆ̂Bn

)−1 ( ˆ̂B∗
n Xn+1

ˆ̂An + Ĉ∗
xun

)
an, n ≥ 0. (13)

The required solution of the periodic discrete Riccati equation is obtained numer-
ically by the method from the paper [9]. We adopted this method for the case of
nonzero matrices Ĉxun = 0, n ≥ 0, in the same way as in [10]. Let us give short
description of the algorithm for solving the periodic discrete Riccati equation. We
start by introducing the following k-periodic matrices
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Ln =
( ˆ̂An − ˆ̂BnĈ−1

uunĈ
∗
xun 0

Ĉxxn − ĈxunĈ−1
uunĈ

∗
xun −IN

)
, Mn =

(
IN

ˆ̂BnĈ−1
uun

ˆ̂B∗
n

0 ĈxunĈ−1
uun

ˆ̂B∗
n − ˆ̂A∗

n

)
.

Further, k-periodic matrix Sn is computed according to the formula

Sn = S(n+k−1)S(n+k−2) · ... · S(n+1)S(n), S(i) = M−1
i Li .

Let Vn be the matrix formed by basis vectors of the stable invariant subspace of the
matrix Sn . Once the matrix Vn is represented in the block form

Vn =
(
V1n

V2n

)
,

we obtain the required solution of the periodic discrete Riccati equation as Xn =
V2nV

−1
1n .

To summarize, formulas (9), (13) determine the stabilizing control of the problem
(4), (5). Entries of the vector an are computed by the formula (6) with t = tn .

5 Simulation Results

Our approach was tested on the model (1), (2). Here we report the simulation results
for the model parameters ζ = 0.011, ωn = 5793 rad/s, w = 0.3 mm, mt = 0.03993
kg, Ω = 10000 rpm, N = 20, τ = 0.3 ms, Kn = 2 × 108 N/m2, Kt = 6 × 108

N/m2, ϕs = 0, ϕ f = 3.14159. In this case, the largest multipliers are ρ1,2 =
−1.097443952 ± 1.297027872i and therefore the zero solution of themodel is unsta-
ble. Controls are chosen to switch at time instants tn = n × 0.06 ms. Figure1 shows
the stabilized solution and the corresponding controls of the system (1), (2).

Fig. 1 Solution and control plots for tn = n × 0.06 ms
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Stochastic Sensitivity Analysis
and Control in the Bistable Electronic
Generator

I. A. Bashkirtseva and T. D. Belyaeva

Abstract We consider a van der Pol model of the electronic oscillator with hard
excitement. The bifurcation analysis is carried out, and zones ofmono- and bistability
are described. A limit cycle and equilibrium can be attractors of thismodel. Under the
random disturbances, in bistability zone, noise-induced transitions between basins
of these attractors can occur. To analyze these noise-induced effects, we apply the
stochastic sensitivity function technique and confidence domainsmethod. It is shown
how to predict changes in the dynamics of the electronic oscillator taking into account
a mutual arrangement of confidence domains and separatrices. For the solution of the
stabilization problem, we use a method of the synthesis of the stochastic sensitivity
of attractors. It is shown how to form an assigned random distribution with the help
of the feedback regulator.

Keywords Electronic generator · Bistability · Stochastic sensitivity · Stabilization

1 Introduction

At present, the development of the theoretical methods of the analysis of stochastic
phenomena in nonlinear systems is an extremely topical problem that attracts many
researchers [1–3]. In engineering devices, electronic generators are one of the most
important elements. The stability of the operation modes of generators is the main
factor determining the reliability of any engineering device. Mathematical models of
self-oscillating systems are nonlinear differential equations [4]. Inevitably presented
random disturbances can lead to disruptions of the operating modes. An analysis of
the response of nonlinear self-oscillatory systems to random forcing is a very difficult
problem. A rigorous mathematical description of the behavior of such systems is
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possible only in terms of the dynamics of probability distributions given by the
Fokker-Planck-Kolmogorov equation [5]. Since an analytic solution of this equation
is impossible even in the case of the simplest stochastic models, the methods of
approximations and computer modeling are widely used.

In the paper, a new semi-analytic approach is used to describe stochastic dynamics,
combining the technique of stochastic sensitivity functions and computer visualiza-
tion of confidence domains [6–9]. The constructive possibilities of this approach
are demonstrated using the van der Pol model of an electronic oscillator with hard
excitation of oscillations.

In Sect. 2, we briefly discuss the basic dynamic properties of the determinis-
tic model. Here, mono- and bistability zones are detected and illustrated by phase
portraits. In Sect. 3, the influence of random perturbations on the equilibrium and
limit cycle is analyzed. The stochastic sensitivity functions technique and confi-
dence domains method is applied to the description of the dispersion of random
trajectories near attractors.

In Sect. 4, we show how this technique can be used in the analysis of noise-
induced generation and suppression of stochastic oscillations. Section5 is devoted
to the control problem [10] for stochastically forced equilibrium. Here, the feedback
regulator for preventing noise-induced excitement is constructed.

2 Deterministic Model

Consider a van der Pol equation

ẍ − δ(α + βx2 − γ x4)ẋ + x = 0,

which describes the electronic generator with hard excitement. Here, the coefficient
δ characterizes the nonlinearity of this model.

We fix α = −1, β = 2, and rewrite this equation as a system:

ẋ = y
ẏ = δ(−1 + 2x2 − γ x4)y − x .

(1)

This system has a trivial equilibrium (0, 0). For this equilibrium, the Jacobi matrix
is

F =
(

0 1
−1 −δ

)
.

The equilibrium (0, 0) is exponentially stable for δ > 0, and for γ > 0.5 this equi-
librium is a single attractor of system (1). If δ > 0, γ < 0.5, the system is bistable:
along with the stable equilibrium, there exists an exponentially stable cycle separated
from this equilibrium by the unstable cycle.
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Fig. 1 Parametric zones of mono- and bistability of system (1)

Fig. 2 Equilibrium and cycles in the zone of bistability of system (1) with γ = 0.3 and a δ = 0.4,
b δ = 3. Stable cycles are plotted by solid lines, and unstable cycles are shown by dashed lines

In Fig. 1, we show parametric zones with qualitatively different phase portraits.
In the zone (I), the equilibrium (0, 0) is a single attractor of system (1). In the zone
(II), the equilibrium (0, 0) is unstable. In the zone (III), the equilibrium (0, 0) is
also unstable, but there exists a stable limit cycle. In the zone (IV), the system (1)
is bistable and exhibits a coexistence of the stable equilibrium and the stable cycle
separated by the unstable cycle (separatrix).

Examples of themutual arrangement of attractors in the bistability zone are shown
in Fig. 2.

3 Stochastic Model

It is known that any real system operates in presence of the inevitable perturbations
of different nature. The paper deals with the case when the oscillator is influenced
by random disturbances. As the stochastic model, we will use the following system
in Ito’s sense:
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Fig. 3 Random trajectories of system (2) with for a ε = 0.2, δ = 0.1, γ = 0.2, b ε = 0.1, δ =
0.1, γ = 0.3

ẋ = y
ẏ = δ(−1 + 2x2 − γ x4)y − x + εξ(t).

(2)

Here, ξ(t) is a standard uncorrelated Gaussian white noise, ε is the noise intensity.
Under the random disturbances, stochastic trajectories leave the deterministic

attractor and form the corresponding distribution around it. In Fig. 3, random trajec-
tories around the equilibrium and limit cycle are shown.

The magnitude of the dispersion of random trajectories around attractors depends
on the noise intensity ε, and on the important characteristics thatwe call the stochastic
sensitivity of the attractor (equilibrium or cycle). We first consider the case of stable
equilibrium.

3.1 Stochastic Sensitivity of the Equilibrium

For the general system
ẋ = f (x) + εσ (x)ξ(t), (3)

the stochastic sensitivity matrix W of the stable equilibrium x̄ is a unique solution
of the matrix algebraic equation [6]:

FW + WF� + S = 0,

where

F = ∂ f

∂x
(x̄), S = GG�, G = σ(x̄).
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Eigenvalues λ1, λ2 and corresponding normalized eigenvectors ν1, ν2 define a con-
fidence ellipse around the equilibrium

z21
λ1

+ z22
λ2

= 2k2ε2,

where
z1 = (x − x̄, ν1), z2 = (x − x̄, ν2), k2 = − ln(1 − P).

Here, P is a fiducial probability.
For the stochastic model of the electronic generator, we have

F =
(

0 1
−1 −δ

)
, S =

(
0 0
0 1

)
.

So, elements of the stochastic sensitivity matrix

W =
(

w11 w12

w21 w22

)

can be found from the following system

(
0 1

−1 −δ

)(
w11 w12

w21 w22

)
+

(
w11 w12

w21 w22

)(
0 −1
1 −δ

)
+

(
0 0
0 1

)
= 0.

This system has the solution W =
( 1

2δ 0
0 1

2δ

)
with eigenvalues λ1,2 = 1

2δ and eigen-

vectors ν1 =
(
0
1

)
, ν2 =

(
1
0

)
. In Fig. 4, random trajectories and confidence ellipse

for the equilibrium of system (2) with δ = 0.1, γ = 0.2 are plotted. As one can see,
this ellipse agrees with results of the direct numerical simulation.

Fig. 4 Random trajectories
and confidence ellipse for the
equilibrium of system (2)
with δ = 0.1, γ = 0.2 and
fiducial probability P = 0.99
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3.2 Stochastic Sensitivity of Limit Cycle

In the general case, when the attractor of system (3) is a limit cycle defined by
T -periodic solution x̄(t), the stochastic sensitivity is given by T -periodic matrix
W (t). For two-dimensional case, this matrix has the representation [6]: W (t) =
m(t)p(t)p�(t). Here, the scalar function m(t) is a solution of the boundary value
problem

ṁ = a(t)m + b(t), m(0) = m(T ), (4)

where
a(t) = p�(t)(F�(t) + F(t))p(t), b(t) = p�(t)S(t)p(t),

p(t) is a normalized vector that is orthogonal to f (x̄(t)).
The scalar stochastic sensitivity functionm(t) > 0 is a T -periodic function defin-

ing the dispersion of random trajectories around the limit cycle.
In Fig. 5a, the stochastic sensitivity functionm(t) is plotted for δ = 0.1, γ = 0.3.

As one can see, the stochastic sensitivity is non-uniform and exhibits high peaks.
Using m(t), one can construct a confidence band around the cycle. The borders

x1,2(t) of this confidence band has the following explicit representation:

x1,2(t) = ξ(t) ± kε
√
2m(t)p(t),

where the parameter

k = er f −1(P), er f (x) = 2√
π

∫ x

0
e−t2dt.

In Fig. 5b, random trajectories of the stochastic system with the corresponding con-
fidence band are shown. As one can see, this band well reflects the main geometrical
features of the random distribution.

Fig. 5 Stochastic sensitivity of the limit cycle for for δ = 0.1, γ = 0.3: a function m(t), b confi-
dence band
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4 Noise-Induced Transitions

Using the stochastic sensitivity technique one can analyze noise-induced transitions
in bistable systems.

Let us consider the phenomenon of noise-induced excitation of stochastic oscilla-
tions. In a system with small noise, random trajectory starting from the equilibrium
resides near this equilibrium (see Fig. 6, grey curve for ε = 0.05, δ = 0.1, γ = 0.2).
But if the noise exceeds a certain threshold value, random trajectories can cross the
separatrix (unstable cycle shown by red dashed) and fall into the basin of attraction
of the limit cycle. In this case, large-amplitude stochastic oscillations are observed
(see Fig. 6, green curve for ε = 0.3, δ = 0.1, γ = 0.2).

For the parametric analysis of this transition, we can use the mutual arrangement
of the confidence domain and the separatrix. Figure6 shows that for ε = 0.05, the
ellipse (small blue curve) is entirely contained in the basin of attraction of the stable
equilibrium. For ε = 0.3, the extended ellipse (large ellipse) occupies points of the
basin attraction of the limit cycle. Therefore, an exit to this limit cycle can occur.

Analogous noise-induced transitions from the cycle to the equilibrium can occur.
For small noise, stochastic trajectories are concentrated near the limit cycle and
exhibit noisy large-amplitude oscillations. For increasing noise (see Fig. 7, γ =
0.49, δ = 0.1, ε = 0.15, stochastic trajectories, starting from the deterministic cycle,
cross the separatrix (red dashed line) and concentrate near the trivial stable equi-
librium. Then in the system small-amplitude oscillations near this equilibrium are
observed. It can also be analyzed using a confidence band.As one can see, the internal
boundary of this band is already located in the basin of attraction of the equilibrium.
So, a transition from the cycle to equilibrium occurs.

In this bistable system, under certain conditions, a trigger trigger mode with
multiple transitions between the cycle and equilibrium can be observed. In Fig. 8,
this scenario is shown for γ = 0.4, δ = 0.1 and ε = 0.35.

Fig. 6 Noise-induced excitement of self-oscillations for δ = 0.1, γ = 0.2 and ε = 0.05 (grey), and
ε = 0.3 (green). We plot phase trajectories (a) and time series (b)
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Fig. 7 Noise-induced suppression of large-amplitude oscillations for δ = 0.1, γ = 0.49 and ε =
0.15. We plot phase trajectories (a) and time series (b)

Fig. 8 Noise-induced trigger regime for δ = 0.1, γ = 0.4 and ε = 0.35

5 Controlling Stochastic Equilibrium

Consider a problem of the preventing noise-induced generation of large-amplitude
stochastic oscillations. Here, the following system with control is used:

ẋ = y
ẏ = δ(−1 + 2x2 − γ x4)y − x + u + εξ.

(5)

To stabilize the equilibrium (0, 0), the feedback regulator

u = k1x + k2y (6)

is constructed. We will choose the coefficients k1, k2 of the regulator (6) in such a
way that the system (5) has the small assigned stochastic sensitivity. It could provide
a small dispersion of random trajectories around the equilibrium.
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Fig. 9 Random states of uncontrolled (black) and controlled system for: a δ = 1, γ = 0.6 b δ =
−1, γ = 0.3

The stochastic sensitivity matrix W and the matrix K of the coefficients of the
regulator (6) are connected by the equation

BKW + WK�B� + S + FW + WF� = 0, (7)

where for (5), (6)

F =
(

0 1
−1 −δ

)
, S =

(
0 0
0 1

)
, B =

(
0
1

)
, K = (k1, k2) .

Let us assign the stochastic stochastic matrix as W =
(

w11 0
0 w22

)
with small diag-

onal elements. Then for coefficients k1 and k2, explicit formulas can be derived:

k1 = 1 − w22

w11
, k2 = δ − 1

2w22
.

Results of the control are shown in Fig. 9, for various matrices W . In Fig. 9a, for
δ = 1, γ = 0.6 and ε = 0.1, the system possesses the stable equilibrium only. Here,
by black color, random states of the uncontrolled system (5) with u = 0 are shown.
Random states for control system with regulators synthesizing the matrices

W1 =
(
0.05 0
0 0.5

)
, W2 =

(
0.5 0
0 0.05

)
, W3 =

(
0.05 0
0 0.05

)

are plotted by blue, red, and light blue color, respectively.
As one can see, a variation of the assigned matrix W results in the changes in the

spatial distribution of random states around the equilibrium.
What is more, using this control procedure one can prevent noise-induced gen-

eration of large-amplitude stochastic oscillations discussed above. In Fig. 9b, for
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δ = −1, γ = 0.3 and ε = 0.1, by black color, these large-amplitude stochastic oscil-
lations of the uncontrolled system (5) with u = 0 are shown. Random states of
the system with control corresponding to the same stochastic sensitivity matrices
W1, W2, W3 are shown by blue, red, and light blue color, respectively.

In the present paper, the standard Euler-Maruyama scheme was used for the
numerical simulations of the stochastic system.

6 Conclusion

In the present paper, we have shown how the stochastic sensitivity function tech-
nique and confidence domains method can be effectively used in the study of the
dynamic behavior of the electronic generator under the random disturbances. Using
this technique, we have analysed the dispersion of random trajectories near equilib-
rium and limit cycle. By the comparing of the arrangement of confidence domains
and separatrices, we have studied noise-induced transitions between small- and large-
amplitude oscillations. Our approach was effectively applied to the solution of the
control problem and prevention of noise-induced excitement.
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Noise-Induced Effects in Goldbeter
Model

I. A. Bashkirtseva and S. S. Zaitseva

Abstract The influence of noise on the Goldbeter model of the enzymatic reac-
tion is observed. We study phenomenon of the stochastic excitability in the stable
equilibrium zone. It is demonstrated that the noise results in a sharp transition from
low-amplitude stochastic oscillations to large-amplitude spike oscillations. For the
parametric analysis of this phenomenon, the stochastic sensitivity functions tech-
nique is used. It is shown that the model is highly sensitive to variations of param-
eters and initial conditions. For a detailed analysis of the frequency properties of
stochastic oscillations, a statistical analysis of the interspike intervals is carried out.

Keywords Enzyme kinetics · Goldbeter model · Stochastic disturbances ·
Noise-Induced transitions

1 Introduction

A study of biochemical systems with complex oscillations attract attention of many
researchers [1–3]. One of the first examples of the oscillatory behavior was discov-
ered in the glycolysis [4–6]. Mathematically, self-sustained oscillations in the yeast
glycolytic system have been explained by bifurcations with the birth of a limit cycle.

In subsequent studies, many biochemical models have been proposed and ana-
lyzed [7–10]. A main tool of the mathematical analysis of complex dynamic phe-
nomena in nonlinear biochemical models is the bifurcation theory [11, 12]. An
inevitable presence of random disturbances can drastically change system dynamics
[13–18]. Stochastic models of biochemical oscillations were considered in [19–21].
In the analysis of the stochastic dynamics of complex nonlinear systems, asymptotics
and approximations play an important role [22]. Recently, a constructive approach
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based on the stochastic sensitivity analysis is developed [23–26]. This approach was
successfully used in the investigation of various stochastic nonlinear phenomena
[27–31].

In the present paper, we study stochastic effects in the kinetics of enzymatic reac-
tions on the base of the model proposed by Goldbeter [32]. This two-dimensional
model describes the mechanism of the oscillatory synthesis of cyclic adenosine
monophosphate in a cell. We focus on the study of the noise-induced excitement
in a zone of stable equilibria. For the parametric analysis of this phenomenon, we
apply the stochastic sensitivity function technique andmethod of confidence ellipses.
For the study frequency properties of noise-induced large-amplitude stochastic oscil-
lations, a statistical analysis of the interspike intervals is carried out.

2 Deterministic Model

Consider the following Goldbeter model [32]

ẋ = v − σϕ(x, y)

ẏ = αϕ(x, y) − ky,
(1)

where ϕ(x, y) = x(1 + x)(1 + y)2

L + (1 + x)2(1 + y)2
.

This system represents themechanism of the oscillatory synthesis of cyclic adeno-
sine monophosphate (AMP) in a cell.

Variables x, y are responsible for the concentrations of intracellular adenosine
triphosphate (ATP) and extracellular AMP, respectively. Following [32], we fix σ =
1.2, q = 100, k = 0.4, h = 10, α = qσ

h
= 12, L = 106 and study the dynamics of

system (1) under the variation of the parameter v which relates to the constant ATP
input.

System (1) possesses one equilibrium. Figure1 shows the bifurcation diagram
of deterministic system (1). Here, solid lines indicate stable equilibria and extreme
values of limit cycles, and dashed lines indicate unstable equilibria. The value v∗ =
0.531184 marks the Andronov–Hopf bifurcation point: in the interval v∗ < v < 0.8
the equilibrium is stable, and in the interval 0.4 < v < v∗ the system possesses the
unstable equilibrium and stable limit cycle.

Here and below, for numerical simulations we use the Runge–Kutta fourth-order
scheme with time step Δt = 0.001.

The investigated model is highly sensitive to variations of the initial conditions
and parameter v. For a small change in v, the limit cycle vastly changes its shape
and size (see Fig. 2a). In the stable equilibrium zone v∗ < v < 0.8, the features of
the phase portrait depend on the position of the starting point of the trajectory (see
Fig. 2b). Below we will show that these features of the deterministic system have an
influence on its dynamics in the presence of random perturbations.
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Fig. 1 Bifurcation diagram of deterministic system (1). Stable equilibria are plotted by green solid
lines, extreme values of limit cycles are shown by blue solid lines, and unstable equilibria are plotted
by green dashed lines
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Fig. 2 Deterministic Goldbeter model: a limit cycles for various v, b phase portrait for v = 0.535

In this paper, we focus on the study of stochastic effects in the zone v∗ < v < 0.8
where the system possesses a stable equilibrium as a single attractor. Results of the
analysis of the influence of noise on this equilibrium are presented in the next section.

3 Stochastic Dynamics

Toanalyse the influence of randomdisturbances,we consider the following stochastic
system (in Ito’s sense)

ẋ = v − σϕ(x, y) + εξ(t),

ẏ = αϕ(x, y) − ky,
(2)

where ξ(t) is an uncorrelated standard Gaussian white noise, and the value ε is a
noise intensity.

In the stable equilibriumzone (v∗ < v < 0.8), the deterministic attractor is blurred
in the presence of random perturbations. Stochastic trajectories of system (2) demon-
strate random oscillations.
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For the constructive description of the stochastic phenomena, we will use the
stochastic sensitivity function technique and method of confidence domains (see
details in Appendix).

For system (2) (see notations in Appendix), the Jacobi matrix F at the equilibrium
(x, y) and thematrix Swhichdescribes a structure of the stochastic forcing arewritten
as

F =
⎡
⎣

−σϕ
′
x −σϕ

′
y

αϕ
′
x αϕ

′
y − k

⎤
⎦ , S =

⎡
⎣
1 0

0 0

⎤
⎦ .

Elements of the stochastic sensitivity matrix W can be found explicitly from the
Eq. (4)

w11 = detF + (k − αϕ
′
y)

2

2σdetF · trF , w12 = w21 = kα − α2ϕ
′
y

2kσ · trF , w22 = α2ϕ
′
x

2kσ · trF ,

where
trF = −σϕ

′
x + αϕ

′
y − k, detF = kσϕ

′
x .

Eigenvalues λ1(v), λ2(v) and eigenvectors of the stochastic sensitivity matrix
W (v) reflect spatial features of the probability distribution of random states of
stochastic system (2) around the stable equilibrium of deterministic system (1).
Figure3 shows graphs of λ1,2(v). As we see, when the parameter v approaches
the bifurcation point v∗, the stochastic sensitivity of the equilibrium indefinitely
increases.

Alongwith the stochastic sensitivity, there aremore factors affecting the dynamics
of stochastic system (2). Here, peculiarities of the deterministic phase portrait can

0.6 0.7 v

1

102

104

λ

Fig. 3 Eigenvalues of the stochastic sensitivity matrix W (v) of the equilibrium
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play an important role. Since equilibrium is a stable focus, trajectories gradually tend
to the attractor. However, the type of the transient trajectories depends essentially on
the initial deviations. Indeed, for small initial deviations, the trajectorymonotonically
tends to equilibrium along a spiral. If the deviation exceeds a certain threshold, the
trajectory first goes far enough from equilibrium, and then begins to approach it.
On the phase plane, the initial data corresponding to the small- and large-amplitude
oscillations are separated by a numerically found curve called the pseudo-separatrix.

In Fig. 4, for v = 0.535, this pseudo-separatrix is plotted by red dashed line. Here,
we also show deterministic phase trajectories and confidence ellipses for ε = 0.02
(small) and ε = 0.045 (large).

Figure5 represents random trajectories and time series of system (2) for these val-
ues of the noise intensity. For small noise (ε = 0.02), stochastic trajectories are con-

60 64 68 x
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y

Fig. 4 Confidence ellipses (blue dash-dotted lines) of the stochastic system with v = 0.535 and
noise intensity ε = 0.02 (small) and ε = 0.045 (large). The pseudo-separatrix is plotted by red
dashed line. The deterministic phase trajectories of system (1) are represented in gray
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Fig. 5 Stochastic system: a random trajectories for v = 0.535 and noise intensity ε = 0.02 (red),
ε = 0.045 (blue); b corresponding time series
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centrated near the stable equilibrium. In this case, the system (2) solutions x(t), y(t)
demonstrate small-amplitude stochastic oscillations around the equilibrium coordi-
nates. Corresponding time series are presented in Fig. 5b in red. Note that small
ellipse in Fig. 4 does not intersect the pseudo-separatrix.

With increasing noise, stochastic trajectories begin to make long-range ejections
corresponding to the appearance of spike oscillations of large amplitude alternating
with small-amplitude oscillations near the equilibrium. Corresponding time series
are presented in Fig. 5b in blue. A transition to this new stochastic regime can be
predicted by the position of the confidence ellipse: the large ellipse in Fig. 4 intersects
the pseudo-separatrix.

Frequency characteristics of large-amplitude spiking oscillations can be anal-
ysed via statistics of interspike intervals τ (ISI). Results of statistical analysis of ISI
are presented in Fig. 6. Here, mean value M = 〈τ 〉 and the coefficient of variation

Cv =
√〈(τ − M)2〉

M
are plotted as functions of the noise intensity ε. As was noted

earlier, for small noise, in system (2), only small-amplitude oscillations are observed.
This corresponds to an infinite mean value of ISI. With increasing noise, the average
time interval between spikes sharply decreases, and the system produces spike oscil-
lations of large amplitude. The coefficient of variation characterizes the coherence
of oscillations.

The phenomenon of the noise-induced generation of large-amplitude oscillations
is also illustrated in Fig. 7 where the density distribution of random trajectories of
stochastic system (2) is plotted in the phase plane. As can be seen in Fig. 7a, under the
weak noise (ε = 0.02) random states are localised near the deterministic attractor.

0.05 0.1 ε
0

2000

4000

M

0.05 0.1 ε
0

1

2

Cv

Fig. 6 Interspike statistics: mean value M and coefficient of variation Cv for the stochastic sys-
tem (2) with v = 0.535
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Fig. 7 Density distribution of random trajectories of the system (2) with v = 0.535 and noise
intensity a ε = 0.02, b ε = 0.1

10−2 10−1 ε
50

70

90

x

a)

10−2 10−1 ε
50

70

90

x

b)

Fig. 8 Stochastic excitement: x-coordinates of random states of system (2) for different values of
the noise intensity ε and a v = 0.535, b v = 0.54

When the system switches to the excitation mode, random trajectories are concen-
trated in the zone of long-range ejections (see Fig. 7b for ε = 0.1). It should be noted
that the form of the closed curve with the high concentration of random states is sim-
ilar to the form of limit cycles which appear beyond the Andronov–Hopf bifurcation
point (compare Fig. 7b with Fig. 2a).

Additional details of the stochastic excitability in the stable equilibrium zone are
shown in Fig. 8. As can be seen, the noise intensity corresponding to the onset of
the large-amplitude oscillation regime depends on the proximity of the parameter v

to the bifurcation point v∗. The closer v to the bifurcation point v∗, the less noise is
required to generate the large-amplitude stochastic oscillations.

4 Conclusion

We can summarize that the investigated Goldbeter model exhibits a high sensitivity
to the variation of parameters, initial conditions, and to random disturbances. For
this model, we have found and studied the phenomenon of the noise-induced tran-
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sition from small- to large-amplitude spiking oscillations. We have shown that our
stochastic sensitivity function technique and confidence ellipses method adequately
correlate to numerical results and statistical analysis.

Acknowledgements The work was supported by Russian Science Foundation (project no. 16-11-
10098).

Appendix

Consider a general nonlinear system of stochastic differential equations

ẋ = f (x) + εσ (x)ξ(t). (3)

Here, x is an n-vector, f (x) is a smooth n-dimensional function, ε is a scalar
parameter of the noise intensity, σ(x) is a smooth n × n matrix function, ξ(t) is
an n-dimensional Gaussian white noise with parameters Eξ(t) = 0, Eξ(t)ξ(τ ) =
δ(t − τ)I , and I is an identity n × n-matrix.

Let the corresponding deterministic system (3) (ε = 0) have an exponentially
stable equilibrium x . For small noise, the Gaussian approximation of the stationary
probabilistic distribution ρ(x, ε) of random states can be written as

ρ(x, ε) ≈ K · exp
(

−
(
x − x,W−1(x − x)

)
2ε2

)
.

Here, the covariance matrix ε2W describes a dispersion of random trajectories of the
stochastic system (3) around the equilibrium x . The stochastic sensitivity matrix W
is a unique solution of the matrix equation

FW + WF� + S = 0, (4)

where

F = ∂ f

∂x
(x), S = σ(x)σ (x)�.

The stochastic sensitivity matrixW of the equilibrium x describes the spatial dis-
tribution of the random trajectories of the stochastic system (3) around the determin-
istic equilibrium x . Using this matrix one can construct the corresponding confidence
domain around the equilibrium. In the two-dimensional case, the confidence ellipse
is given by the equation

(x − x,W−1(x − x)) = 2k2ε2,
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where ε is the noise intensity, k2 = − ln(1 − P), and P is the fiducial probability.
Let λ1, λ2 be eigenvalues, and u1, u2 be normalized eigenvectors of the matrix W .
Then the equation of the confidence ellipse can be written in the standard form:

z21
λ1

+ z22
λ2

= 2k2ε2,

where z1 = (x − x, u1), z2 = (x − x, u2).
Confidence ellipses are fairly simple and demonstrative geometric models of the

spatial description of random states near the deterministic equilibrium x .
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Piecewise Smooth Map of Neuronal
Activity: Deterministic and Stochastic
Cases

A. V. Belyaev and T. V. Ryazanova

Abstract In this paper we consider a Rulkovmodel of the neuronal dynamics, given
by a piecewise smooth discontinuous one-dimensional map with random perturba-
tion. The purpose of this study is to analyze the possible regimes and bifurcations
of the deterministic system, as well as to study the influence of external random
impact on attractors of the system. Using the stochastic sensitivity function, stochas-
tic phenomena are described, such as noise-induced transitions between attractors
and noise-induced large-amplitude oscillations.

Keywords Piecewise smooth discontinuous map · Random dynamical systems ·
Stochastic sensitivity function technique

1 Introduction

At present, a lot of attention of researchers is attracted by models describing the
dynamics of a neuron. The activity of biological neurons is the result of high-
dimensional dynamics of nonlinear processes responsible for the generation and
interaction of various ionic currents due to membrane channels. Usually, studies of
this neuronal activity are based on either physiological or phenomenological mod-
els. Most of the phenomenological models under consideration are described by
systems of differential equations of order 3 and higher (Hodgkin-Huxley model [1],
Hindmarsh-Rose model [2]). Such systems allow simulating the complex behavior
of a neuron, such as the generation of spikes and bursts. From a mathematical point
of view, this means a transition from the equilibrium to the periodic and chaotic
regimes.
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At the same time, for modeling different oscillationmodes using discrete systems,
one can limit them to lower dimensions. In this case, the neuronal activity is the most
often can be described by a map of at least two time scales: fast, corresponding to
action potentials, and a slow one, corresponding to a change of concentration of the
channels [3–7]. Also themodels where the second slow variable is taken as a constant
are often studied. This assumption makes the system one-dimensional [6, 8, 9].

In this paper we investigate a variant of the Rulkov map (as in [5]) with yn = β =
const when the system is a one-dimensional piecewise smooth map. In Chap. 2, we
study the existing attractors and their bifurcations. Here the main attention is paid to
describe border collision bifurcation, which is distinctive for piecewise smoothmaps.
The third chapter is devoted to the investigation of the effect of random noise, which
always accompanies neuronal activity. Based on the stochastic sensitivity function
technique, we study the noise-induced phenomena.

2 Deterministic Model

Let’s consider a family of one-dimensional piecewise smooth discontinuous maps
in the following form:

xn+1 = f (xn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α
1−xn

+ β, xn ≤ 0,

α + β, 0 < xn < α + β,

−1, α + β ≤ xn,

(1)

where α and β are real parameters satisfying α > 0, β > −α.
Figure1 shows all possible cases of the mutual arrangement of function graphs

y = x and y = f (x):

– in subfigure (1) there is no equilibrium,
– in subfigures (2)–(4) there is one equilibrium x̄ = 1

2 (1 + β),

– in subfigures (5)–(9) there are twoequilibria x̄1,2 = 1
2

(
1 + β ∓ √

(β − 1)2 − 4α
)
,

– in subfigure (10) there is one equilibrium x̄ = 1
2

(
1 + β − √

(β − 1)2 − 4α
)
.

So, the map (1) has two equilibria if the following conditions are satisfied: α > 1
and −α < β < 1 − 2

√
α. Moreover, equilibrium x̄1 is stable and x̄2 is unstable on

the entire parameter area of their existence. If β = 1 − 2
√

α and α > 1 then the
map (1) has one equilibrium x̄ = 1

2 (1 + β) which is stable if α = 4 and β = −3,
otherwise semi-stable. If β = −α then the map (1) has one stable equilibrium x̄1.

In Fig. 2 the bifurcation diagram of equilibria is constructed in the parameter plane
(α, β). Here:

http://dx.doi.org/10.1007/978-3-030-42176-2_2
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Fig. 1 Typical cases of mutual arrangement of function graphs y = f (x) and y = x . Parameter
values: (1) α = 4, β = −2; (2) α = 8, β = 1 − 4

√
2; (3) α = 4, β = −3; (4) α = 2, β = 1 − 2

√
2;

(5) α = 12, β = −6.2; (6) α = 8, β = −5; (7) α = 6, β = −5; (8) α = 2.5, β = −2.25; (9) α = 2,
β = 1.9; (10) α = 3, β = −3

Fig. 2 Existence of the
equilibria of the map (1)

– the green line (β = −α) is boundary of the domain of significance of the map (1);
– the red solid and dotted lines (β = 1 − 2

√
α) are boundaries of existence of two

equilibria:
if β > 1 − 2

√
α there is no equilibria,

if β = 1 − 2
√

α there is one equilibrium x̄ ,
if β < 1 − 2

√
α and β > −α there are two equilibria x̄1 and x̄2;

– the blue solid and dotted line (β = −α
2 − 1) is special case when one of the

equilibria is equals to −1 (see subfigures (3), (6) and (8) in Fig. 1).
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It is worth noting that the red solid line in Fig. 2 (β = 1 − 2
√

α, 1 < α < 4)
corresponds to the fold bifurcation with x̄ = 1 − √

α, and the blue solid line (β =
−α

2 − 1, α > 4) comes from the equality x̄2 = −1. As we explain in detail later,
the stability regions of cycles of increasing periods accumulate from above towards
these lines (see Fig. 4). Any of these cycles has always period n � 3 and two periodic
points (among others): x̄1 = −1 and x̄n = α + β > 0.

To check the stability of the cycles mentioned above, note that since the derivative
of the right side of the Eq. (1) has the form:

f ′(x) =
{

α
(1−x)2 , x � 0,

0, x > 0,

and there is always at least one positive element of the cycle (x̄n = α + β > 0),
then there is always the value f ′(x̄n) = 0. Formally, the derivative at the point of
discontinuity x = α + β does not exist, but since the derivative on the right is equal
to the derivative on the left and equals to zero, we can state that, the multiplier of
the cycle is λ = 0. So, if the map (1) has a cycle then it is always superstable. Since
the map (1) is invertible almost everywhere, chaotic behavior is not observed for any
values of the parameters.

Definition:Border collisionbifurcation (BCB)occurswhen apoint of the invariant
set merges with a border at which the system changes the function in its definition,
and this collision leads to a qualitative change in the topological structure of the state
space (see [10–12]).

The theory of border collision bifurcation for various types of maps is widely
developed, for example in [12–15].

The peculiarity of map (1) is such that any cycle is always in the BCB state,
since one element always coincides with the point of discontinuity (x = α + β).
In addition to this, one more BCB can happen when cycle element intersects with
the break point (x = 0). In Fig. 3 with α = 3 we show an example of a BCB at
which a cycle of a larger period appears: Fig. 3a shows for β = −1.4 the state of the
system before bifurcation, there is a cycle of period 3; Fig. 3b shows for β = −1.5
the moment of bifurcation, i.e. x̄2 = 0; and Fig. 3c for β = −1.55 shows the state
after bifurcation, there is a cycle of period 4.

Thus, the condition for the appearance of a cycle of period n from the cycle of
period n − 1 for the system (1) is:

f n−3(−1) = 0, n > 3. (2)

Below are the analytically found conditions for increasing the cycle period from 3
to 4 and from 4 to 5 correspondingly:

3 → 4 : β = −α
2 ,

4 → 5 : β = 1
4 (2 − α − √

4 + 12α + α2).
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Fig. 3 Border collision bifurcation with α = 3 for: a β = −1.4, b β = −1.5, c β = −1.55

Fig. 4 Bifurcation diagram in the parameter plane (α, β)

Fig. 5 Bifurcation diagram for: a α = 3, b α = 8

In Fig. 4 in the parameter plane (α, β) various dynamicmodes are presented by the
different color. The black lines in this figure correspond to the BCBs, found earlier
analytically using the formula (2). When the values of the parameters approach from
above to the line of fold bifurcations (the upper boundary of the green zone) the period
of the cycle increases by one to infinity. Moreover, as one can see the periodicity
regions associated with the cycles of given period become narrower.
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In Fig. 5 bifurcation diagrams are shown with the change of parameter β and for
two fixed values of α. Here the red line shows the unstable equilibrium, which defines
the basin boundary of equilibrium and cycle. In Fig. 5a for α = 3 the map always
has a single stable attractor—equilibrium or cycle. As the parameter β increases, the
cycle whose period tends to infinity, is born at the point of the fold bifurcation of the
equilibrium x̄2, and then by the BCB period of cycle decreases by one. In Fig. 5b for
α = 8 there is a zone of the parameter β, where two attractors coexists: equilibrium
and cycle. In the cycle zone, a bifurcation of a decrease of cycle period, generated
at the point β = −5 with an infinite period, is also observed.

3 Stochastic Model

In this paperwe consider also a stochasticmodification of themap (1) in the following
form:

xt+1 = f (xt ) + εξt , (3)

where ε is noise intensity and ξt is the random variable that has normal distribution
with parameters (0, 1).

To approximate the probability distribution of random states ofmap (3) (stochastic
equilibriumor cycle), one can use themethod of stochastic sensitivity functions (SSF)
[16]. This semi-analytical technique and based on it confident domain method were
successfully applied for different maps [4, 8, 17–20].

In the case of an exponentially stable equilibrium x̄ , the approximation of the
distribution density has the form:

ρ(x, ε) ≈ 1

ε
√
2πw

exp

(

− (x − x̄)2

2wε2

)

,

here w is the SSF which can be found explicitly (for the details see [16]):

w = 1

1 − ( f ′(x̄))2
.

As long for the system (3) stable equilibrium has always negative coordinate we have
f ′(x̄) = α

(1−x̄)2 and then:

w =
(
1 − β + √

(β − 1)2 − 4α
)4

−16α2 +
(
1 − β + √

(β − 1)2 − 4α
)4 .



Piecewise Smooth Map of Neuronal Activity: Deterministic and Stochastic Cases 189

In the case when the attractor of the system is an exponentially stable cycle of
period k with elements {x̄1, x̄2, . . . , x̄k}, the probability density function ρ(x, ε) can
be approximated as (for the details see [8]):

ρ(x, ε) ≈ 1

εk
√
2π

k∑

i=1

1√
wi

exp

(

− (x − x̄i )2

2wiε2

)

,

where for w1 the explicit formula can be written as follows:

w1 = b2n + b2n−1a
2
n + . . . + b21a

2
2 · . . . · a2n

1 − a2
,

here ai = f ′(x̄i ) and bi = 1. The other values w2, . . ., wk can be found recursively:

wi = a2i−1wi−1 + b2i−1, (i = 2, . . . , k).

For the system (3) SSF for cycle of period 3 and 4 can be written as:

w =
(

1,
α2 + 16

16
, 1

)T

, (4)

w =
(

1,
α2 + 16

16
, 1 + α2

(
16 + α2

)

(α + 2β − 2)4
, 1

)T

. (5)

In Fig. 6 the SSF of equilibrium (black) and cycles (blue) for two different values
of the parameter α are presented. There are two different patterns: one is that SSF of
equilibria tends to infinity at the point of loss its stability, and another is that SSF of
cycle converges to a finite number at BCB point. For example, these finite values for
cycle of period 3 and 4 can be easily found by corresponding formulas (4) and (5).

Fig. 6 SSF of attractors for: a α = 3, b α = 8
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Fig. 7 Confidence bands for ε = 0.01 and α = 3: a equilibrium, b cycles up to period of 11

Fig. 8 Noise-induced transition from equilibrium to cycle with α = 8 for: a ε = 0.1, b ε = 0.3

Figure7 shows the confidence bands (green color) for the equilibrium (Fig. 7a)
and the cycles (Fig. 7b), constructed as x∗

1,2 = x̄ ± 3ε
√

w (for the details see [8]).
Here, the stable equilibrium of the deterministic system is shown in blue. As can be
noticed, the confidence band well describes the distribution of the random states in
the stochastic attractor.

Based on themethod of confidence bands it is possible to predict the combinations
of the map parameters and the intensity of noise for which stochastic phenomena
will be observed.

In Fig. 8 with α = 8 for two values of noise intensity ε = 0.1 (Fig. 8a) and ε = 0.3
(Fig. 8b) noise-induced transition from equilibrium to cycle are presented: stable
equilibrium and cycles (blue color) and unstable equilibrium (red color) of the deter-
ministic model, random states of the stochastic attractors (grey color), and the con-
fidence bands (green color). It can be seen, when the band crosses an unstable equi-
librium, transitions from equilibrium to cycle are realized.

Similarly, using the confidence bands for the cycle one can predict the transition
from the cycle to the equilibrium. In Fig. 9 the confidence bands for element of the
cycle with the smallest coordinate are shown with α = 8 for ε = 0.01 (Fig. 9a) and
ε = 0.05 (Fig. 9b). As demonstrated, even the band around one element of the cycle
is enough to predict the transitions from the cycle to the equilibrium.
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Fig. 9 Noise-induced transition from cycle to equilibrium with α = 8 for: a ε = 0.01, b ε = 0.05

Fig. 10 Large-amplitude oscillations with α = 3: a diagram for ε = 0.2, b time series with β =
−2.5 for ε = 0.2 (blue), ε = 0.05 (red)

In the case when the map (1) has only one stable equilibrium, SSF technique can
be used to show the phenomenon of generation of large-amplitude oscillations. In
Fig. 10a for α = 3 and ε = 0.2 this phenomenon is presented in the diagram: as soon
confidence band (green color) crosses the unstable equilibrium (red color) stochastic
states jump over the unstable equilibrium and create large-amplitude oscillations. In
Fig. 10b this phenomenon is shown by time series for two intensity values: ε = 0.2
(blue), ε = 0.05 (red). Here, spikes occur for larger noise intensity.

We denote the critical noise intensity, greater than in the system noise-induced
transition are observed, as ε∗. In our case of a one-dimensional map, the value of ε∗
can be found analytically:

– from equilibrium to cycle and for large-amplitude oscillations:

ε∗ =
√

γ (1−β+√
γ )4−16α2γ

3(1−β+√
γ )2

,

– from cycle to equilibrium: ε∗ = 1
6 |3 + β + γ |,

here γ = (β − 1)2 − 4α.
In Fig. 11 graphs of critical intensity for two values of the parameter α are shown.

For α = 8 in Fig. 11a the blue line is the critical intensity for the transition from
equilibrium to cycle, and the red line—from cycle to equilibrium. For α = 3 in
Fig. 11b the blue line is the critical intensity for the appearance of large-amplitude
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Fig. 11 Critical noise intensity for: a α = 8, b α = 3

oscillations. The presented results are consistent with the results of the numerical
experiments shown in the Figs. 8 and 9.

4 Conclusion

Thus, in the present paper a parametric analysis of an one-dimensional piecewise
smooth map that describes the simplest dynamics of neuronal activity is given. For
deterministic map, the existence of attractors and their bifurcations are described.
The main attention is paid to describe the border collision bifurcation, as special
type of bifurcation for piecewise smooth maps. The sensitivity of attractors to exter-
nal stochastic impacts is studied as well. Based on the method of confidence bands,
stochastic phenomena such as noise-induced transitions between attractors and noise-
induced large-amplitude oscillations are described. In this paper, the stochastic sen-
sitivity function technique was successfully applied to piecewise smooth map.
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Analysis of Spatial Patterns in the
Distributed Stochastic Brusselator

A. P. Kolinichenko and L. B. Ryashko

Abstract Stochastic Brusselator model with the diffusion is studied. We show that
in the zone of Turing instability a plethora of heterogeneous wave-like structures is
formed. The influence of randomperturbations is analyzed.We consider the scenarios
of pattern formation in the zone of Turing stability as well as transitions between
coexisting patterns in the instability zones.

Keywords Brusselator · Diffusion · Random disturbances · Spatial patterns

1 Introduction

The study of self-organization processes is an actual research problem. Various phe-
nomena studied in the modern science are linked with these processes [1–6]. One of
the first works on the self-organization was Alan Turing’s “Chemical basis of mor-
phogenesis” [7]. He considered the phenomenon of homogeneous state dissipation
under the effect of diffusion in distributed systems. This phenomenon was named
as Turing instability. Such dissipation leads to the formation of a time-stationary
spatially heterogeneous pattern.

In this paper, we consider the distributed Brusselator with the diffusion. In the
deterministic case, we analyze the dynamics of the pattern formation in zones of Tur-
ing instability. It is shown that the resulting pattern depends on the system’s starting
state, so the multistability is observed. In these zones, spatial structures with various
forms coexist. In what follows, we study the influence of random perturbations on
the system dynamics [8–10].We investigate the noise-induced heterogeneous pattern
formation in the stability zones. The possibility of noise-induced transitions between
coexisting patterns is discussed.
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2 Turing Bifurcation in the Distributed Brusselator

We consider the distributed Brusselator model represented as a system of two diffu-
sion equations

∂u

∂t
= a − (b + 1)u + u2v + Du

∂2u

∂x2

∂v

∂t
= bu − u2v + Dv

∂2v

∂x2
.

(1)

Here, u(t, x), v(t, x) are concentrations of the reagents, parameters a and b are
positive. Terms Du

∂2u
∂x2 and Dv

∂2v
∂x2 characterize the diffusion flux. The spatial variable

x changes in the [0, L] interval. Boundary conditions

∂u

∂x
(t, 0) = ∂u

∂x
(t, L) = 0

∂v

∂x
(t, 0) = ∂v

∂x
(t, L) = 0

(2)

are zero-flux conditions.
The spatially homogeneous state is the state in which system variables are time-

stationary and uniform through space. In this model, such state is characterized
by the fixed point (u∗, v∗) = (a, b

a ). A homogeneous state is called stable if small
disturbances cause the solution to have only insignificant deviations from it. For
investigation of the stability, we use a linearized system.

Let P(u, v) = a − (b + 1)u + u2v, Q(u, v) = bu − u2v, and ξ(t, x) = u − u∗,
η(t, x) = v − v∗ are small deviations from the fixed point. For these deviations, we
can write the following linearization of system (1)

∂ξ

∂t
= m11ξ + m12η + Dξ

∂2ξ

∂x2

∂η

∂t
= m21ξ + m22η + Dη

∂2η

∂x2
,

(3)

whereDξ = Du ,Dη = Dv ,m11 = ∂P(u∗,v∗)
∂u ,m12 = ∂P(u∗,v∗)

∂v
,m21 = ∂Q(u∗,v∗)

∂u ,m22 =
∂Q(u∗,v∗)

∂v
.

Here, solutions have the following form ξ(t, x) = Aept eikx , η(t, x) = Bept eikx .
A substitution in system (3) gives two linear equations for A and B:

(m11 − p − Duk
2)A + m12B = 0

m21A + (m22 − p − Dvk
2)B = 0

(4)
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System (4) has a non-trivial solution if its determinant equals zero. This leads to
the dispersion equation

p2 − σ p + Δ = 0

σ = m11 + m22 − k2(Du + Dv)

Δ = k4DuDv − k2(m11Dv + m22Du) + m11m22 − m12m21.

(5)

The Turing instability is observed when the non-dimensional system is stable,
while the roots of (5) are real numbers of different signs. Therefore, following con-
ditions must be met:

1. m11 + m22 < 0
2. m11m22 − m12m21 > 0
3. Δ < 0

One of the roots will always be negative, while the other is a positive value for a
certain interval of k. This interval will also include values that match wave numbers
of some of the system’s eigenfunctions.

As a result, the Turing instability takes place in the Brusselator when b > bT ,
where

bT =
(
1 + a

√
Du

Dv

)2

(6)

sets the Turing bifurcation boundary (see Fig. 1).

Fig. 1 Brusselator with a = 3, Dv = 10: a bifurcation diagram with Turing and Andronov–Hopf
boundaries; b values of the largest root of the dispersion equation
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3 Deterministic Model Analysis

3.1 Multistability

The Brusselator with the following parameter values a = 3, b = 9, Dv = 10 is con-
sidered. The spatial variable x varies in the interval [0, 40]. Using numerical mod-
eling, we get system’s solutions and investigate spatial pattern formation under the
variation of the parameter Du . Note that with chosen parameters the Turing bifurca-
tion value is Du

∗ = 4.(4). The initial state is the following

u(0, x) = u∗ + εcos
(2πxλ

L

)

v(0, x) = v∗ + εcos
(2πxλ

L

) (7)

Here, (u∗, v∗) matches fixed point of the system without diffusion, ε and λ are
controlled parameters. Values u j,i = u(t j , xi ), v j,i = v(t j , xi ) are found using the
explicit difference scheme (8) with step of temporal variable τ and step of spatial
variable h

u j+1,i = u j,i + τ Pj,i + τDu
u j,i−1 − 2u j,i + u j,i+1

h2

v j+1,i = v j,i + τQ j,i + τDv

v j,i−1 − 2v j,i + v j,i+1

h2
,

(8)

where Pj,i = P(u j,i , v j,i ), Q j,i = Q(u j,i , v j,i ), τ = 10−4, h = 0.2.
In Fig. 2, results of the numerical simulation are presented.
On these examples the phenomenon of multistability can be observed. The result-

ing pattern depends on the starting state of the system. We examined the temper
of multistability for different values of the diffusion coefficient Du . The results of
numerical experiments are listed in the Table1. For every value of ε and λ, result-

(a) Du = 4 (b) Du = 2

Fig. 2 Structures generated for different Du values
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Table 1 Modeling results

λ

Du , ε 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

1.0, 0.1 5↓ 6↑ 8↑ 5↑ 6↑ 7↑ 8↑ 9↑ 5↓ 5.5↓ 6↓ 6.5↓ 7↓ 7.5↓ 8↓ 8.5↓ 9↓
1.0, 0.5 6↑ 4.5↓ 8↑ 5↑ 6↑ 7↑ 8↑ 7.5↓ 5↓ 5.5↓ 6↓ 6.5↓ 7↓ 7.5↓ 8↓ 8.5↓ 9↓
2.0, 0.1 5↓ 4.5↓ 6↑ 5↑ 6↑ 7↑ 6↓ 4.5↓ 5↓ 5.5↓ 6↓ 6.5↓ 7↓ 7.5↓ 6↑ 5.5↑ 6↑
2.0, 0.5 6↑ 6↑ 6↑ 5↑ 6↑ 7↑ 5↓ 4.5↓ 5↓ 5.5↓ 6↓ 6.5↓ 7↓ 7.5↓ 6↑ 5.5↑ 5↑
3.0, 0.1 5↑ 4.5↓ 4↑ 5↑ 6↑ 5.5↓ 4↓ 4.5↓ 5↓ 5.5↓ 6↓ 5.5↑ 5↑ 4.5↑ 5↑ 4.5↑ 5↑
3.0, 0.5 5↑ 6↑ 4↑ 5↑ 6↑ 5.5↓ 4↓ 4.5↓ 5↓ 5.5↓ 6↓ 5.5↑ 5↑ 4.5↑ 5↑ 4.5↑ 5↑
4.0, 0.1 4↑ 4.5↓ 4↑ 5↑ 4↓ 4.5↓ 4↓ 4.5↓ 5↓ 4.5↑ 4↑ 4.5↑ 4↑ 4.5↑ 4↑ 4.5↑ 4↑
4.0, 0.5 4↓ 4.5↑ 4↑ 5↑ 4↓ 4.5↓ 4↓ 4.5↓ 5↓ 4.5↑ 4↑ 4.5↑ 4↑ 4.5↑ 4↑ 4.5↑ 4↑

Fig. 3 Analysis of pattern amplitudes

ing pattern characteristics are shown. The patterns appear as wave-like structures,
each with a certain amount of peaks and behaviour on the left edge of the interval:
ascending (↑) or descending (↓).

As seen in the table, the lesser Du values the more various patterns are observed:

Du = 4.0–6 patterns
Du = 3.0–10 patterns
Du = 2.0–11 patterns
Du = 1.0–15 patterns

So, when the parameter Du moves away the bifurcation boundary into the Turing
instability zone the level of the multistability increases.

Next, the amplitude of the wave-like patterns is investigated. For example, we
observe the 4.5-peak pattern, which can be generated for any Du value. In Fig. 3,
we show how the extrema of the 4.5-peak patterns deviate from the homogeneous
equilibrium depending on Du .

As one can see, under themoving away from the bifurcation boundary, an increase
in spatial patterns amplitude is observed.
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3.2 Pattern Formation Dynamics Analysis

Temporal dynamics of the pattern formation is a separate matter worth looking into.
From the starting state the system relatively quickly transits to a heterogeneous
stationary state. However, during this transient process temporary spatial structures
can be formed. Due to their instability, these temporary patterns exist only for a
limited amount of time.

The temporal dynamics is shown in Figs. 4 and 5. The spatial variable varies across
the horizontal axis and the temporal one across the vertical axis. The system variable
u is represented by color.

3.3 Pattern Formation in the Zone of the Unstable Fixed
Point

In the zone of the fixed point instability, the Brusselator possesses a limit cycle. If
the diffusion effect is excluded, every point in space will oscillate on its own. Let us
analyze an influence of the diffusion on these oscillations. If Turing instability condi-

Fig. 4 Monophasic 5-peak pattern formation for λ = 5, ε = 0.3, Du = 2

(a) λ = 4, ε = 0.3 (b) λ = 8, ε = 0.3

Fig. 5 Examples of multiphasic pattern formation for Du = 2
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Fig. 6 Pattern formation for Du = 2, b = 11, λ = 2

tions are not satisfied, the oscillations will become spatially homogeneous. However,
in the instability zone this transition is suppressed by diffusion, and stationary het-
erogeneous patterns are formed instead (see Fig. 6).

4 Analysis of Model with Random Perturbations

Consider the following stochastically forced Brusselator model [11]:

∂u

∂t
= a − (b + 1)u + u2v + Du

∂2u

∂x2
+ γ1w1

∂v

∂t
= bu − u2v + Dv

∂2v

∂x2
+ γ2w2,

(9)

where w1(t, x), w2(t, x) are random Gaussian perturbations, γ1, γ2 are the noise
intensity coefficients. The boundary conditions were introduced in (2). Equation (9)
and its solution are interpreted in the sense of Ito. In this paper the solutions of this
system are modelled as follows:

u j+1,i = u j,i + τ Pj,i + τDu
u j,i−1 − 2u j,i + u j,i+1

h2
+ γw1, j,i

v j+1,i = v j,i + τQ j,i + τDv

v j,i−1 − 2v j,i + v j,i+1

h2
+ γw2, j,i ,

(10)

where, w1, j,i , w2, j,i ∼ N(0,1) are normally distributed random variables, and γ is the
noise intensity.
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4.1 Noise-Induced Patterns

Let us assume Du = 4.46, so the system belongs to the Turing stability zone. For
this value of the parameter, the heterogeneous pattern generation in the deterministic
model is impossible. However, in stochastic models, structures similar to previously
seen wave-like patterns may be generated. Figure7 shows patterns formed during
numericalmodeling,where the homogeneous state is assumed as the system’s starting
state.

Note that due to the stochastic nature of these structures, temporal stationarity
can not take place. Additionally, the formation dynamics shows some "competition"
between 4- and 4.5-peak waves. These patterns exist in the deterministic model for
4.43 < Du < 4.(4), close to the bifurcation value.

4.2 Noise-Induced Transitions

The competition of two patterns, existing near the bifurcation value, can be also
observed in the Turing instability zone. It occurs due to multistability of the system.
In the instability zone, where the many patterns coexist, noise may interfere with
the pattern formation process. In the example below (see Figs. 8 and 9), results of
the simulation with the same starting conditions and Du = 2.0, λ = 4.0, ε = 0.3 are
shown for the deterministic and stochastic cases.

Fig. 7 Noise-induced structures Du = 4.46, γ = 0.005



Analysis of Spatial Patterns in the Distributed Stochastic Brusselator 203

Fig. 8 Deterministic model dynamics for Du = 2.0, λ = 4.0, ε = 0.3

Fig. 9 Pattern formation in the stochastic model γ = 0.005

(a) Du = 1, from 9 ↓ to 6.5 ↑ γ = 0.008 (b) Du = 3, from 5 ↓ to 4 ↑ γ = 0.015

Fig. 10 Noise-induced pattern transitions

The first case displays faster formation of the same pattern. In the second case, ran-
dom perturbations cause formation of the 5.5-peak pattern, whilst the deterministic
model generates the 5-peak wave.

In the Fig. 10, patterns generated by deterministic models are used as starting
conditions. Here, noise-induced transitions between different patterns are observed.

Acknowledgements The work was supported by Russian Science Foundation (N 16-11-10098).
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Stochastic Splitting of Oscillations
in a Discrete Model of Neural Activity

V. M. Nasyrova and L. B. Ryashko

Abstract The effect of the splitting of oscillations under the influence of noise in a
discrete neural model is studied. The phenomenological map-based Rulkov system
is used as a conceptual model. The zone of quasiperiodic oscillations with closed
invariant curves of the Canard type is considered. Using direct numerical simulation
and the stochastic sensitivity function technique, we show the details of the splitting
effect for different values of the bifurcation parameter.

Keywords Neural excitability · Rulkov model · Stochastic disturbances · Splitting

1 Introduction

Recently, the study of the dynamics of neural activity attracts the interest of specialists
in mathematical modeling. Models of neural activity can demonstrate a large number
of different regimes and phenomena. Among the phenomenological models, the
Rulkov system is frequently used [1]. Dynamics and different regimes of the two-
dimensional deterministic Rulkovmodel on the parametric plane are presented in [2].
Under the influence of random disturbances, this model exhibits a variety of effects
such as a transition from a state of rest to excitement [3, 4], a transition from tonic
spiking to stochastic bursting [5], and non-trivial effects in the zone of quasiperiodic
oscillations [6]. In the present paper, we investigate the parametric zone, where the
Rulkov model has quasiperiodic oscillations with closed invariant curves (CICs) of
the Canard type. The aim of the paper is to study the effects of splitting of CICs
under the influence of random disturbances. Using direct numerical simulation and
the stochastic sensitivity function technique [7], we show transitions from unimodal
oscillations to bimodal oscillations, demonstrate the influence of the bifurcation
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parameter value on the threshold value at which the splitting effect appears, and find
the epicenter of the Canard explosion.

The stochastic sensitivity function technique (SSF) forCICs is described inSect. 2.
In Sect. 3, the splitting phenomenon is studied on the basis of the phenomenological
Rulkov model.

2 Stochastic Sensitivity of Closed Invariant Curves

Consider a stochastic system:

xt+1 = f (xt ) + εσ (xt )ξt , (1)

where x is an n-vector, f (x) is a sufficiently smooth n-vector-function, σ(xt ) is an
(n × m)-matrix-function, ε is a noise intensity, and ξt is anm-dimension uncorrelated
Gaussian random process with parameters Eξt = 0, Eξtξs

T = 0 (t �= s), Eξtξt
T =

I (I is an identity matrix with dimension m × m).
Let the deterministic system (1) (with ε = 0) have an exponentially stable closed

invariant curve γ .
When the closed curve is formed by the family of k-cycles of the unforced deter-

ministic system, then we can fix an arbitrary point x̄ ∈ γ and consider the solution x̄t
(t = 1, 2, . . . , k) of the deterministic systemwith the initial condition x̄1 = x̄ . Under
the random disturbances, around this curve, a probabilistic distribution p(x, ε) is
formed. For the approximation of this distribution, the stochastic sensitivity function
technique was proposed in [7].

The stochastic sensitivity of the CIC at the points {x̄1, . . . , x̄1} is described by
the matrices W1, . . . ,Wk .

The first element W1 of the set {W1, . . . ,Wk} is a solution of the equation

W1 = P1[ΦW1Φ
T + Q]P1, (2)

where
Φ = Fk Pk Fk−1 · . . . · P2F1, Q = Q(k).

Here, matrix Q(k) can be found recurrently:

Q(0) = 0,
Q( j) = Pj+1[Fj Q( j−1)Fj

T + G j ]Pj+1 ( j = 1, . . . , k − 1),
Q( j) = FkQ(k−1)Fk

T + Gk .

(3)

Other elements W2, . . . ,Wk are found also recurrently:

Wt+1 = Pt+1[FtWt Ft
T + Gt ]Pt+1. (4)
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Here, Ft = ∂ f
∂x (x̄t ), G j = σ jσ j

T and Pt is a matrix of the projection onto the
hyperplane Πt . Here, Πt is orthogonal to the curve γ at the point x̄t .

The set of matrices {W1, . . . ,Wk} characterize the stochastic sensitivity of the
k-cycle {x̄1, . . . , x̄k}.

For the two-dimensional case, one can use the formulaW1 = μ1 p1 p1T , where p1
is the vector orthogonal to the curve γ at the point x̄1. For the scalar function μ1, the
following formula holds:

μ1 = p1T Qp1
1 − (p1TΦp1)2

. (5)

If the closed invariant curve is formed by the family of quasiperiodic solutions,
one can use k-cycles as approximations.

3 The Splitting Effect in the Two-Dimensional Rulkov
Model

Consider the stochastic two-dimensional Rulkov model:

xt+1 = α

1 + xt 2
+ yt + εξt

yt+1 = yt − σ xt − β

, (6)

where x is the fast dynamic variable, y is the slow variable, α, σ and β are some
positive parameters, ξt are the uncorrelated Gaussian processes, and ε is the noise
intensity.

We fix parameters σ = β = 0.005 and consider system (6) under the variation of
the parameter α.

In Fig. 1a, the bifurcation diagram of the deterministic model (ε = 0) is repre-
sented. The system has the single equilibrium A(−1;−1 − α/2), which is stable
on the interval 0 < α < αNS (αNS = 1.99). When parameter α passes through the
value αNS , the Neimark-Sacker bifurcation with the birth of a closed invariant curve

Fig. 1 a Bifurcation diagram of the deterministic system, b deterministic CICs
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Fig. 2 Stochastic CICs: a α = 1.994, b α = 1.995277, c α = 1.9952775, d α = 1.995278 and
e α = 1.998

occurs in deterministic system. Figure1a shows that the amplitude of oscillations
sharply increases in the region of the parameter α close to value α∗ = 1.9952775.
So, the Canard explosion effect is observed. This effect can be considered in more
detail in the Fig. 1b, where deterministic CICs are presented for different values of
the parameter α. As you can see, at first the invariant curves gradually increase in size
as the bifurcation parameter α increases. When parameter reaches value α∗, CICs
sharply increase in size and qualitatively change their form. Value α∗ is the epicenter
of the Canard explosion.

In this paper, we will consider a behavior of the system (6) under the influence of
random disturbances in the zone of CICs, where the Canard explosion is observed.

Stochastic CICs constructed using direct numerical simulation are presented in
Fig. 2. When α = 1.994 (Fig. 2a), for the noise ε = 2 × 10−4, random states of sys-
tem (6) are localized near the invariant curve. When the noise intensity increases
(ε = 10−3), a large-amplitude stochastic trajectory appears along with the small-
amplitude trajectory. Notice, that the small-amplitude trajectory is observed in the
deterministic system forα = 1.994. The splitting effect occurs.Whenα = 1.994 and
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Fig. 3 Probability density functions of random states of the stochastic system (6): a α = 1.994,
b α = 1.995277, c α = 1.9952775, d α = 1.995278, e α = 1.998

α = 1.995277 (Fig. 2a, b), a small-amplitude trajectory splits and larger-amplitude
loops are added. On the contrary, for α = 1.995278 and α = 1.998 (Fig. 2d, e), large-
amplitude trajectory splits and small-amplitude fragments appear. In the epicenter
of the Canard explosion when α = α∗ (Fig. 2c) splitting occurs in both directions.

Figure3 shows a change of the probability density functions of random states of
system (6) with increasing noise intensity for different values of the parameter α. On
these figures, the probability density functions are constructed for the lower part of
CICs. Consider the change in probability density by the example of the parameter
α = 1.994 (Fig. 3a). When the noise intensity ε is small, we observe one narrow
peak in the region y = −2.018. When ε increases, this peak decreases in size and
becomes wider, and also one more peak is formed in region y = −2.176. Thus, the
probability density functions of the random states of the system (6) transforms from
the unimodal to bimodal. The same transformation is observed in Fig. 3b, d, e. At
the epicenter of the Canard explosion (Fig. 3c), the probability density function also
changes its form, but here we see that when the noise intensity increases, the left
peak becomes smaller and significantly shifts to the left.



210 V. M. Nasyrova and L. B. Ryashko

Fig. 4 Random states of the stochastic system (6): a α = 1.994,bα = 1.995277, c α = 1.9952775,
d α = 1.995278, e α = 1.998

It should be noted that the splitting effect begins at different values of the noise
intensity ε for different values of the parameter α. For example, when α = 1.994, this
effect is observed for ε = 10−3, whereas for α = α∗ the splitting can be observed
even at ε = 3 × 10−8. In Fig. 4, the plots of the dependence of the variable y on
the noise intensity ε are presented. The plots are constructed using direct numerical
simulation in the x = −1 section for the lower part of the CICs. As one can see, for
the epicenter of the Canard explosion α∗, the noise intensity threshold at which the
splitting effect begins to occur, is the smallest. Also the farther the parameter α from
α∗, the greater the value of this threshold.

Such a change in the threshold value of the noise intensity ε with the variation
of the parameter α is explained by the stochastic sensitivity of the CICs. In Fig. 5,
the dependence of the maximum of stochastic sensitivity M = maxϕ μ(ϕ, α) on the
bifurcation parameter α is presented.When the parameter α approaches the epicenter
of the Canard explosion α∗, the stochastic sensitivity of CICs increases. As can be
seen, the peak of SSF is just about α = 1.9952775.
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Fig. 5 Stochastic sensitivity
function:
M(α) = maxϕ m(ϕ, α)

Thus, we considered the phenomenon of the splitting of stochastic oscillations
caused by random disturbances. Using direct numerical simulation and the technique
of the SSF, we show that the threshold value of the noise intensity, at which this
phenomenon begins to be observed, depends on the bifurcation parameter.
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Stochastic Deformation of Invariant Tori
In Neuron Model

L. B. Ryashko and E. S. Slepukhina

Abstract The study is devoted to noise-induced effects in the parameter zone of
torus canards of the stochastic Hindmarsh–Rose neuron model. We show that an
addition of Gaussian noise to the system can lead to a transformation of invariant tori
fromone type to another, namely, from torus-canard-type into a large amplitude torus.
In the context of neural activity, this corresponds to a transition from the oscillatory
mode of amplitude-modulated spiking type to the bursting one. This phenomenon
is confirmed statistically by changes in mean values and coefficient of variation of
interspike intervals. Furthermore, we show that this stochastic effect is accompanied
by the anticoherence resonance.

Keywords Neuron dynamics · Toroidal oscillations · Random forcing ·
Stochastic deformation

1 Introduction

Computational models of neural activity are known to exhibit a variety of complex
dynamic solutions: excitable regimes, different types of limit cycles representing
tonic spiking and bursting oscillations, coexistence of several attractors, canard limit
cycles, chaotic regimes. Moreover, recently it was shown that neuron models can
have so called torus canards [1, 2]. Torus canard is a three-dimensional case of
the well-known two-dimensional canard phenomenon [3], which is observed in the
slow-fast nonlinear dynamic systems.

Due to its biological nature, a neuron is very susceptible to noise. In these circum-
stances, it is very important to study noise-induced phenomena in neuron models.
The constructive role of random disturbances in the dynamics of nonlinear systems
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is widely acknowledged. Particularly, such phenomena as stochastic and coherence
resonances [4–8], noise-generated bursting activity [9–11], stochastic mixed-mode
oscillations [12, 13], suppression of oscillations due to random disturbances [14],
chaos–order transformations [10, 15], noise-driven transition from tonic spiking to
bursting [16, 17], stochastic quasiperiodic oscillations [18–20] were revealed in neu-
ron models.

In this paper, we focus on the modified three-dimensional Hindmarsh–Rose neu-
ron model [2, 21, 22] and study how random disturbances can affect the system
dynamics in the parameter region of torus canards. In what follows, we show that
noise can transformoscillations of a torus canard type (that corresponds to amplitude-
modulated spiking activity) into a large amplitude quasiperiodic ones (bursting activ-
ity). We describe this phenomenon statistically by means of interspike intervals.

2 Deterministic Dynamics

Consider the following variant [22] of the deterministic Hindmarsh–Rose (HR) neu-
ron model [21]:

ẋ = sax3 − sx2 − y − bz

ẏ = ϕ(x2 − y)

ż = r(sαx + β − kz),

(1)

where variable x stands for the membrane potential, y and z are the gating and the
recovery variables correspondingly.

Here, we fix parameters a = 0.5, b = 10, α = −0.1, ϕ = 1, k = 0.2, s = −1.95,
r = 10−5, as in [2], and study the dynamics of the system (1) varying the bifurcation
parameter β. For the numerical solution of the system (1), we apply the standard
Runge–Kutta fourth-order method with the time step 0.0001. The transition process
of the duration t = 106 is skipped for a calculation of attractors.

Figure1 shows the bifurcation diagram of the deterministic system (1). There
exists one stable equilibrium in the region β < β1 ≈ −0.1927. At the point β1, the
equilibrium loses stability via the supercritical Andronov–Hopf bifurcation, and a
stable limit cycle emerges. The stable limit cycle exists in an extremely narrow
parameter interval: close to the point β1, the Neimark–Sacker bifurcation occurs,
resulting in the emergence of an invariant torus. Stable torus is the attractor of the
system for−0.1927 � β < β2 ≈ −0.16026. As the parameter increases, the second
Neimark–Sacker bifurcation at the point β = β2 occurs, and in the region β > β2,
the attractor is the stable limit cycle.

Close to the Neimark–Sacker bifurcation, torus canard explosion is observed in
this system [2]. During the canard explosion, the invariant torus abruptly changes
its size and form (see the blow-up of the bifurcation diagram in Figs. 1b and 2).
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Fig. 2 Deterministic attractors: a β = −0.16045 (canard-type invariant torus), b β = −0.162
(large amplitude invariant torus)

The limit cycles in the parameter region β > β2 correspond to uniform amplitude
spiking oscillations. The Neimark–Sacker bifurcation at β = β2 results in the emer-
gence of the torus canards which describe a small amplitude modulated spiking
activity (see Fig. 2a). The decrease of β first leads to a significant increase of the
amplitude modulation near the point β ≈ −0.16047, then the amplitude-modulated
spiking transforms into the bursting regime modeled by the large amplitude torus
(see Fig. 2b).
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3 Noise-Induced Deformation of Invariant Tori

Consider how random disturbances change the system dynamics. Here, wewill study
the following stochastic system:

ẋ = sax3 − sx2 − y − bz + εẇ,

ẏ = ϕ(x2 − y)

ż = r(sαx + β − kz),

(2)

where w is a standard Wiener process with characteristics E(w(t) − w(s)) = 0,
E(w(t) − w(s))2 = |t − s|, and ε is a noise intensity parameter. Here, we use Itô
interpretation of the stochastic differential equation.

In what follows, we focus on the region of the parameter space −0.16047 < β <

0.16026, corresponding to the torus canards zone of the deterministic system (1). For
the numerical simulation of the stochastic system (2), the standard Euler-Maruyama
method with the time step 0.0001 was used, and a transition process of time duration
t = 106 was skipped.

Consider the valueβ = −0.16045, forwhich the attractor of the deterministic sys-
tem is the invariant torus of canard type. It corresponds to the amplitude-modulated
spiking neuron activity. Figure3 displays random trajectories that start from this
deterministic torus. For a relatively low noise level, the stochastic trajectories are
located close to the deterministic torus, and the oscillations remain spiking (see
Fig. 3a for ε = 10−6). For higher noise level, random trajectories depart far from the
deterministic canard-type torus, forming the large amplitude torus (see Fig. 3b for
ε = 10−5). Thus, the noise-induced transition from the spiking mode to the bursting
one is observed. When the noise intensity is increased further, the amount of bursts

Fig. 3 Noise-induced
deformation of the invariant
torus for β = −0.16045: a
ε = 10−6, b ε = 10−5
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Fig. 4 Time traces x(t) for β = −0.16045: a ε = 10−6, b ε = 10−5, c ε = 10−4, d ε = 10−3.
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Fig. 5 Interspike intervals: a mean value, b coefficient of variation

during a fixed time interval increases, while the duration of both spiking and rest
phases in the bursting mode decreases (see Fig. 4).

For a study of changes in stochastic dynamics, it is helpful to examine interspike
intervals statistics. Consider the mean value m = 〈τ 〉 and the coefficient of variation
CV =

√
〈(τ−m)2〉

m of interspike intervals τ in dependence on the noise intensity. In
Fig. 5, these characteristics for different values of β in the torus canard region of the
system (2) are plotted. One can see that for small noise intensities, the mean valuem
changes insignificantly and matches the period of spiking oscillations. The increase
of the noise intensity leads to a growth of m. This is caused by the appearance of
long intervals corresponding to the rest phase in the noise-generated bursting regime.
The coefficient of variation shows a significant increase of the ISIs variability under
random disturbances. This corresponds to the anticoherence resonance phenomenon,
which reflects the stochastic transition to the bursting mode. Figure5 allows us to
estimate critical levels of noise intensity for the onset of the noise-induced spiking–
bursting transition. One can see that when the parameter β is closer to the boundary
of torus canards region (β ≈ −0.16047), smaller noise intensities are needed for the
transition to the bursting mode.
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4 Conclusion

Westudied the noise effect on theHindmarsh–Rose neuronmodel in the torus canards
region of the parameter space. We showed that the noise can transform the torus
canard into the large amplitude torus, which in neuron models corresponds to a
transition from the amplitude-modulated spiking mode to the bursting one. These
qualitative changes in dynamics are accompanied with a growth of the mean dura-
tion of interspike intervals. Furthermore, we show that the coefficient of variation
of interspike intervals sharply increases, which corresponds to the anticoherence
resonance.
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Resolvability of Pseudocompact Spaces
at a Point

A. E. Lipin

Abstract A topological space X is called resolvable at a point x0 if X \ {x0} contains
two disjoint subsets A, B such that x0 ∈ A, x0 ∈ B. In this paper we prove that if a
regular topological space X is irresolvable at some non-isolated point x0 ∈ X , then
X contains an infinite discrete in X family W = {Wα} of non-empty open subsets
of X . Therefore, every feebly compact regular space is resolvable at any non-isolated
point. Consequently, every pseudocompact space is resolvable at any non-isolated
point.

Keywords Topology · Resolvability · Resolvability at a point ·
Pseudocompactness

1 Introduction

The notion of resolvability of a topological space at a point was introduced by E.
G. Pytkeev in 1983 [8].

Definition 1 A topological space X is k-resolvable at a point x0 (resolvable if k=2)
if X \ {x0} contains k disjoint subsets {At }t≤k such that x0 ∈ At for any t ≤ k.

A space X ismaximally resolvable at a point x0 if X isΔ(x0, X)-resolvable, where
Δ(x0, X) = min{|U | : U is an open subset of X, x0 ∈ U } is the dispersion character
of X at the point x0.

Definition 2 A topological space which is not resolvable at a point x0 is called
irresolvable at a point x0.

E. G. Pytkeev defined a wide class of spaces (he called them π Re-spaces) that are
maximally resolvable at any non-isolated point. We do not formulate the definition
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of π Re-space here, for more details see [8]. In particular, all compact Hausdorff
spaces, ordered spaces, pseudoradial spaces, first-countable spaces, k-spaces are
maximally resolvable at any non-isolated point x ∈ X.

The concept of resolvability was first defined by E. Hewitt in 1943 [5] and Kate-
tov [7]. A topological space X is called k-resolvable (E. Hewitt [5]) if X contains
k disjoint dense subsets At (At = X, At ′ ∩ At ′′ = ∅ if t ′ �= t ′′). If k = 2 then X
is called resolvable; if X is not resolvable then X is called irresolvable. A space
X is maximally resolvable if X is Δ(X)-resolvable, where Δ(X) = min{|U | :
U is non-empty open subset of X} is the dispersion character of X . When dealing
with resolvability, all the spaces are assumed to be without isolated points.

Note that if X is k-resolvable, then X is k-resolvable at any point x0 ∈ X. There-
fore, studying resolvability at a point is meaningful in the following cases:

1. X contains isolated points;
2. the resolvability of X is unknown;
3. X is irresolvable.
A. Bella and V. I. Malykhin studied the relationship between some variations the

classical notion of tightness and resolvability of a topological space [2]. They defined
a space with disjoint tightness as follows:

Definition 3 A point x of a space X has disjoint tightness if, whenever x ∈ A \ A,
there exist two disjoint subsets B1, B2 ⊂ A such that x ∈ B1 and x ∈ B2.

Definition 4 A topological space X is called a space with disjoint tightness if every
point x ∈ X has disjoint tightness.

A. Bella and V. I. Malykhin constructed an example of a countable Hausdorff
irresolvable space with disjoint tightness [2]. Under Continuum hypothesis (CH)
assumption there exists a countable regular irresolvable space with disjoint tight-
ness [2].

Note that if a point x ∈ X has disjoint tightness, then the space X is resolvable at
the point x (this is obvious). We shall now prove the following statement:

Proposition 1 Let x ∈ X have disjoint tightness, then X is ω-resolvable at x.

Proof By induction on n we construct the sequence {An}∞n=1 of pairwise disjoint
subsets of X \ {x} and the sequence {Bn}∞n=0 of subsets of X \ {x} such that

(1) x ∈ An for all n ≥ 1;
(2) x ∈ Bn for all n ≥ 0;
(3) An ⊂ Bn−1 for all n ≥ 1.
Let B0 = X \ {x}. Since the point x has disjoint tightness and x ∈ B0 \ B0 then

there exist two disjoint subsets A1, B1 ⊂ B such that x ∈ A1 and x ∈ B1.
From the definition of disjoint tightness, there exist two disjoint subsets A2, B2 ⊂

B1 such that x ∈ A2 and x ∈ B2, and so on.
By inductive process we construct the sequence {An}∞n=1 of pairwise disjoint

subsets of X \ {x} such that x ∈ An for all n ≥ 1. Therefore, X is ω-resolvable
at x . �
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Consequently, there exists a countable Hausdorff irresolvable space which is ω-
resolvable at any point and in CH there exists a countable regular irresolvable space
which is ω-resolvable at any point [2].

Note that a countable regular space without isolated points which is not resolvable
was constructed by E. K. van Douwen in [3].

Definition 5 A Tychonoff space X is called pseudocompact if every continuous
real-valued function on X is bounded.

Definition 6 A family {Aα} of subsets of a topological space X is called locally
finite (discrete) in X if any point x ∈ X has a neighborhood that intersects only
finitely many of the sets (no more than one of the sets) in the family {Aα}.
Definition 7 A topological space X is called feebly compact if every locally finite
family {Uα} of open subsets of X is finite.

A question on resolvability (in ZFC) of a pseudocompact space is still open. How-
ever, the following interesting and important partial answers to this question were
received by István Juhász and Zoltan Szentmiklossy [6]: every crowded pseudocom-
pact space X with c(X) < (2ω)+ω is 2ω-resolvable; if V = L , then every crowded
pseudocompact space is 2ω-resolvable.

In this paper we prove that if a regular topological space X is irresolvable at some
non-isolated point x0 ∈ X , then X contains an infinite discrete in X familyW = {Wα}
of non-empty open subsets of X . Therefore, every feebly compact regular space is
resolvable at any non-isolated point. Consequently, every pseudocompact space is
resolvable at any non-isolated point.

Throughout this paper, for a subset A of a topological space X , the closure of A
is denoted by A (or [A]). Notation and terminology are taken from [4].

2 Resolvability of Pseudocompact and Regular Feebly
Compact Spaces at a Point

The following theorem is the main result of this paper.

Theorem 1 If a regular topological space X is irresolvable at some non-isolated
point x0 ∈ X, then X contains an infinite discrete in X family W = {Wα} of non-
empty open subsets of X.

Proof (Of Theorem 1) Let us denote the set X \ {x0} as X0. Throughout the proof
an arbitrary set A ⊆ X0 is called significant if x0 ∈ A; otherwise (i.e. if x0 /∈ A) a
set A is called insignificant.
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Let us note that

• any closed subset of X0 is insignificant, and, in particular, an empty set is insignif-
icant;

• if the set contains a significant subset, then it is significant;
• any subset of an insignificant set is insignificant;
• X0 is significant because x0 is a limit point of X .

We have divided the proof of Theorem 1 into a sequence of lemmas and a propo-
sition.

Lemma 1 The union of a finite number of insignificant sets is insignificant.

Proof This follows from the properties of closed sets and the definition of insignif-
icance. �

Lemma 2 Under the assumptions of Theorem 1, if A and B are two disjoint subsets
of X such that X0 = A ∪ B, then exactly one of these sets is significant.

Proof If both A and B are significant, then the space X is resolvable at x0, which
contradicts the assumption of Theorem 1.

If both A and B are insignificant, then X0 = A ∪ B is insignificant. �

Proposition 2 Under the assumptions of Theorem 1, the following assertions are
true.

(1) The intersection of a finite number of significant sets is significant and,
therefore, non-empty.

(2) If, for A ⊆ X0, the set A ∪ {x0} is open, then A is significant.
(3) If a set A ⊆ X0 is significant, then there exists an open set U such that

x0 ∈ U ⊆ A ∪ {x0}.
Proof (1) Let the sets A1, . . . , An be significant. Then, according to Lemma 2,
the sets X0 \ A1, . . . , X0 \ An are insignificant. By Lemma 1, the union of X0 \
A1, . . . , X0 \ An is insignificant. Let C =

n⋃

k=1
(X0 \ Ak), B = X0 \ C . Since C is

insignificant, B is significant by Lemma 2. We proved that B =
n⋂

k=1
Ak and B is

significant.
(2) Since X0 \ (A ∪ {x0}) is closed, X0 \ (A ∪ {x0}) is insignificant.
(3) The set B = X0 \ A is insignificant. LetU = X \ B. ThenU is open, x0 ∈ U

and U ⊆ A ∪ {x0}. �

Lemma 3 Under the assumptions of Theorem 1, there exists an infinite disjoint
family σ = {Uα : α < γ} (γ ≥ ω) of open subsets of X, such that:

(1) ∀ α < γ x0 /∈ Uα;
(2) x0 ∈ [ ⋃

α<γ
Uα];

(3) the union
⋃

α<γ
Uα ∪ {x0} is open subset of X.
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Proof LetF ={δ ⊆τ : δ is a disjoint family of non-empty insignicant open subsets
of X}.
It is easy to see that the familyF is non-empty. Indeed, since the space X is regular,

any point y �= x0 has a neighborhoodW (y) such that x0 /∈ W (y), that is {W (y)} ∈ F.
We consider the partial order defined on F by the inclusion relation. It is easy to

see that each chain in (F,⊆) has an upper bound that is equal to the union of families
of this chain. Then, by Zorn’s lemma, in (F,⊆) there exists a maximal element
σ = {Uα : α < γ}.

Now we show that the family σ is the desired one.
Property (1) follows from the definition of the family σ.
(2)We show that every neighborhood of the point x0 has a non-empty intersection

with the union
⋃

α<γ
Uα. LetU be the neighborhood of x0, y ∈ U, y �= x0. There exist

open sets V0, V1 such that x0 ∈ V0, y ∈ V1 and V0 ∩ V1 = ∅. Let V2 = V1 ∩U . Since
the familyσ ismaximal and x0 /∈ V 2, then ∃V ∈ σ such that V ∩ V2 �= ∅. Then since
V2 ⊆ U , we get (

⋃

α<γ
Uα) ∩U �= ∅. Therefore, x0 ∈ [ ⋃

α<γ
Uα].

(3) It follows immediately from (2) of Lemma 2 and (1) of Proposition 2.
It remains to show that the family σ is infinite. Assume the contrary that σ is finite.

Then, by Lemma 1, the union
⋃

α<γ
Uα is insignificant. This contradicts (2). �

We continue the proof of Theorem 1.
Let σ = {Uα : α < γ} (γ ≥ ω) be an infinite disjoint family of open subsets of X

with the properties (1), (2) and (3) of Lemma 3. The set U = ⋃

α<γ
Uα is open, then

G = X \U is closed. The setG0 = G \ {x0} is insignificant by Lemma 2.Moreover,
G0 is closed because x0 is an isolated point of G.

We now consider the construction of an infinite discrete in X family W =
{Wα : α < ς} of non-empty open subsets of X .

Since X is regular, there are disjoint neighborhoods of a point x0 and a closed set
G0. Let Y be an open neighborhood of the point x0, Z be an open neighborhood of
the set G0. We denote Y \ {x0} as Y0. It is obvious that Y0 ⊆ ⋃

α<γ
Uα. Moreover, Y0

is significant, since the set X \ Y is closed.
For any ordinal α < γ consider the set Iα = Uα ∩ Y . It is not difficult to see that

Y0 = ⋃

α<γ
Iα.

Note, that the set Υ = {α : Iα �= ∅} is infinite. Indeed, if the set Υ is finite, then
the significant set Y is equal to the union of a finite number of insignificant sets. By
Lemma 1, this is impossible.

It is clear that the family {Iα : α ∈ Υ } is a disjoint family of open subsets of X .
We partition the family {Iα : α ∈ Υ } into two infinite families and denote them as
{Jλ : λ < β1} and {Kλ : λ < β2}.
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Since the set Y0 is significant and Y0 = ⋃

α<γ
Iα = (

⋃

λ<β1

Jλ) ∪ (
⋃

λ<β2

Kλ), there is

just one significant set in the pair { ⋃

λ<β1

Jλ,
⋃

λ<β2

Kλ}.
Without loss of generality, let

⋃

λ<β2

Kλ be significant. Then the set K = (
⋃

λ<β2

Kλ) ∪
{x0} is open.

Consider a family of non-empty open sets {Jλ : λ < β1} ∪ {K } and denote it by
W = {Wα : α < ς}. It is clear that the familyW is infinite and disjoint.

We show that the family W is discrete in X . Let x ∈ X . We show that there is a
neighborhood of the point x intersecting at most one set in the family W.

There are three possible cases:
1. x ∈ G0. Then Z is the desired neighborhood.
2. x = x0. Then K is the desired neighborhood.
3. ∃α < γ : x ∈ Uα. Then Uα is the desired neighborhood.

Thus, the family W = {Wα : α < ς} is constructed and Theorem 1 is
proved. �

Now we can use a necessary and sufficient condition for pseudocompactness
from [1].

Theorem 2 A Tychonoff space X is pseudocompact if and only if every discrete
family of open subsets of X is finite.

In fact, it is known that for a Tychonoff space the properties of being feebly
compact and pseudocompact are equivalent. Therefore the following theorem is true.

Theorem 3 Every pseudocompact space is resolvable at all non-isolated points.
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Fast Algorithms for Function
Decomposition Based on n-Separate
Periodic Wavelets

E. A. Pleshcheva

Abstract In this paper we give the definition and construction of a theory of peri-
odic n-separate MRA and wavelets on the base of several scaling functions. We
give effective numerical algorithms for decomposition of the function applying con-
structed periodic wavelets and scaling functions.

Keywords Wavelet · Multiresolution analysis · Scaling function · Periodic
wavelet

1 Introduction

In applications the functions are often given on finite time or space interval. We
would like to have an adapted to the segment wavelet theory. But in that case there
may be problems at the endpoints. Therefore, most often the signal is periodized in
a “good” way, i.e. so that there is no bad place of joining.

We need the periodic wavelet bases to work with a periodic signal. There are two
ways of construction of periodic wavelet bases:

(1) One way to construct periodic wavelets is periodisation of known wavelets
(see, for example, [1, Chap. 9.3]). This method based on summation of shifts of
scaling functions and wavelets from one level j .

(2) The second way is axiomatic way of building of periodic wavelet bases. This
method was considered, for example, in [2–4, 6].

The aim of this paper is to construct new periodic wavelets by the first way. We
construct the periodic wavelets on the base of our n-separate wavelets introduced in
the paper [5].
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2 n-Separate MRA and Wavelets

Let us construct periodic n-separate wavelet bases on the base of introduced earlier
in the paper [5] biorthogonal bases of n-separate MRA and wavelets. Let we have
biorthogonal n-separate MRA in L2(R):

Definition. The system of embedded subspaces of L2(R)

. . . ⊂ V n
−1 ⊂ V 1

0 ⊂ V 2
1 ⊂ V 3

2 ⊂ . . . ⊂ V n
n−1 ⊂ V 1

n ⊂ V 2
n+1 . . . ;

. . . ⊂ V 1
−1 ⊂ V 2

0 ⊂ V 3
1 ⊂ V 4

2 ⊂ . . . ⊂ V 1
n−1 ⊂ V 2

n ⊂ V 3
n+1 . . . ;

. . .

. . . ⊂ V n−1
−1 ⊂ V n

0 ⊂ V 1
1 ⊂ V 2

2 ⊂ . . . ⊂ V n−1
n−1 ⊂ V n

n ⊂ V 1
n+1 . . . (1)

is called n-separate multiresolution analysis (n-MRA), if it satisfies to the following
conditions:

(a)
⋃

j V
1
nj = ⋃

V 2
nj = ... = ⋃

V n
nj = L2(R);

(b)
⋂

j V
1
nj = ⋂

V 2
nj = ... = ⋂

V n
nj = {0};

(c) f (x) ∈ V s
j ⇔ f (x + l/2 j ) ∈ V s

j ∀ j, l ∈ Z, s = 1, 2, ..., n;
(d) f (x) ∈ V s

0 ⇔ f (2 j x) ∈ V s
j ∀ j ∈ Z, s = 1, 2, ..., n;

(e) for every s, s = 1, n, there exists a functionϕs(x) ∈ L2(R), such that the system
{ϕs(x + k)}k∈Z forms a Riesz basis of the space V s

0 (s = 1, 2, ..., n). Functions
ϕs(x), s = 1, n are called scaling functions.

Dual Riesz bases to the bases {ϕs(x + k)}k∈Z consist of integer shifts of functions
ϕ̃1(x), ϕ̃2(x), ..., ϕ̃n(x). The systems {ϕr (x − k)}k∈Z and {ϕ̃r (x − l)}l∈Z are called
biorthogonal, if

〈ϕr (x − k), ϕ̃r (x − l)〉 =
∫

R

ϕr (x − k)ϕ̃r (x − l)dx = δk,l, k, l ∈ Z, r = 1, k.

(2)
Dual basis together with analogs of (a)–(e) generates the system of embedded

subspaces

. . . ⊂ Ṽ n
−1 ⊂ Ṽ 1

0 ⊂ Ṽ 2
1 ⊂ Ṽ 3

2 ⊂ ... ⊂ Ṽ n
n−1 ⊂ Ṽ 1

n ⊂ Ṽ 2
n+1 ⊂ . . . ,

. . . ⊂ Ṽ 1
−1 ⊂ Ṽ 2

0 ⊂ Ṽ 3
1 ⊂ Ṽ 4

2 ⊂ ... ⊂ Ṽ 1
n−1 ⊂ Ṽ 2

n ⊂ Ṽ 3
n+1 ⊂ . . .

. . .

. . . ⊂ Ṽ n−1
−1 ⊂ Ṽ n

0 ⊂ Ṽ 1
1 ⊂ Ṽ 2

2 ⊂ ... ⊂ Ṽ n−1
n−1 ⊂ Ṽ n

n ⊂ Ṽ 1
n+1 ⊂ . . . (3)
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of the space L2(R), witch called dual n-separate MRA. The system (3) satisfies to
conditions (a)–(e) of definition of n-MRA.

Let we have a function g(x). We define g j,k(x) as

g j,k(x) := 2 j/2g(2 j x − k).

The condition of embedding of spaces n-MRA is provided by the following equal-
ities:

ϕs(x) =
∑

k∈Z
hs,psk ϕ

ps
1,k(x), s = 1, n, (4)

where

ps =
{
s + 1, s = 0, 1, 2, . . . , n − 1,

1, s = n.

These equalities are called scaling equations. The dual scaling equations are:

ϕ̃s(x) =
∑

k∈Z
h̃s,psk ϕ̃

ps
1,k(x), s = 1, n. (5)

Let the spaces Ws
j and W̃ s

j satisfies to the conditions

V s
j

⊕
Ws

j = V ps
j+1, Ṽ s

j

⊕
W̃ s

j = Ṽ ps
j+1,

V s
j ⊥W̃ s

j , Ṽ s
j ⊥Ws

j .

If the bases of the spacesWs
j (W̃

s
j ) are formed by the functions {ψs

j,k}k∈Z ({ψ̃s
j,k}k∈Z),

then we can represent these functions with coefficients of (4), (5):

(∼)

ψs(x) =
∑

ν∈Z
(−1)k

(∼)

hs,ps1−ν

(∼)

ϕ
ps
1,ν(x),

where
(∼)
g(x) is notation for brevity g(x) or g̃(x). It follows from the obvious nestings

(∼)

Ws
j ⊂

(∼)

V ps
j+1. The conditions V

s
j ⊥W̃ s

j , Ṽ s
j ⊥Ws

j are satisfied due to biorthogonality of
systems {ϕs

j,k(x)} and {ϕ̃s
j,k(x)}.
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3 Construction of Periodic Bases

Let we have biorthogonal bases of spaces of n-MRA and relevant wavelet spaces,

and let the functions
(∼)

ψs(x),
(∼)

ϕs(x) ∈ L2(R)
⋂

L(R). Now we construct the different

functions
(∼)

Φs
j,k (x),

(∼)

Ψ s
j,k (x) (enough for k = 0, 1, . . . , 2 j − 1):

(∼)

Φs
j,k(x) =

∑

ν∈Z

(∼)

ϕs
j,k(x − ν);

(∼)

Ψ s
j,k(x) =

∑

ν∈Z

(∼)

ψs
j,k(x − ν), (6)

where as usual the series converge almost everywhere (from
(∼)

ϕs(x) ∈ L(R)). For each
j ≥ 0 exist 2 j of such different functions.

For each j ≥ 0 we define the spaces Vs
j and Ṽs

j :

(∼)

Vs
j := Span{

(∼)

Φs
j,k (x), k = 0, 1, . . . , 2 j − 1}.

These spaces Vs
j form periodic n-MRA.

Definition. The system of embedded subspaces

V1
0 ⊂ V2

1 ⊂ V3
2 ⊂ . . . ⊂ Vn

n−1 ⊂ V1
n . . . ;

V2
0 ⊂ V3

1 ⊂ V4
2 ⊂ . . . ⊂ V1

n−1 ⊂ V2
n . . . ;

. . .

Vn
0 ⊂ V1

1 ⊂ V2
2 ⊂ . . . ⊂ Vn−1

n−1 ⊂ Vn
n . . . (7)

of L2[0, 1] is called n-separate periodic multiresolution analysis (n-PMRA), if it
satisfy to conditions:

(1) dim(Vs
j ) = 2 j , j ∈ Z, s = 1, . . . , n;

(2)
⋃∞

k=0 V
s
k j = L2[0, 1];

(3) f (x) ∈ Vs
j ⇒ f (2x) ∈ Vs

j+1, s = 1, . . . , n, j = 0, 1, 2, . . .;
(4) f (x) ∈ Vs

j+1 ⇒ f ( x2 ) + f ( x+1
2 ) ∈ Vs

j , s = 1, . . . , n, j = 0, 1, 2, . . .;

(5) the functions Φs
j,k(x), k = 0, 2 j − 1, j = 0, 1, 2, . . . form Riesz bases of the

spaceVs
j , s = 1, . . . , n. Functions Φs

j (x) are called periodic n-separate scaling
functions.

Analogously we define dual periodic n-MRA with the bases formed by dual
periodic n-separate scaling functions:
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Definition. The system of embedded subspaces

Ṽ1
0 ⊂ Ṽ2

1 ⊂ Ṽ3
2 ⊂ . . . ⊂ Ṽn

n−1 ⊂ Ṽ1
n . . . ;

Ṽ2
0 ⊂ Ṽ3

1 ⊂ Ṽ4
2 ⊂ . . . ⊂ Ṽ1

n−1 ⊂ Ṽ2
n . . . ;

. . .

Ṽn
0 ⊂ Ṽ1

1 ⊂ Ṽ2
2 ⊂ . . . ⊂ Ṽn−1

n−1 ⊂ Ṽn
n . . . (8)

of L2[0, 1] is called dual n-PMRA, if:

(1) dim(Ṽs
j ) = 2 j , j ∈ Z, s = 1, . . . , n;

(2)
⋃∞

k=0 Ṽ
s
k j = L2[0, 1];

(3) f (x) ∈ Ṽs
j ⇒ f (2x) ∈ Ṽs

j+1, s = 1, . . . , n, j = 0, 1, 2, . . .;

(4) f (x) ∈ Ṽs
j+1 ⇒ f ( x2 ) + f ( x+1

2 ) ∈ Ṽs
j , s = 1, . . . , n, j = 0, 1, 2, . . .;

(5) the system of functions {Φ̃s
j,k(x)}k=0,2 j−1, s = 1, . . . , n, j = 0, 1, 2, . . . is dual

to {Φs
j,k(x)}k=0,2 j−1 in L

2[0, 1] and form Riesz bases of Ṽs
j .

Let us verify that introduced by the formulas (6) Φs
j,k(x) and Φ̃s

j,k(x), s =
1, . . . , n, j = 0, 1, 2, . . . are biorthogonal. Indeed, for every k = 0, 2 j − 1

〈Φs
j,k, Φ̃

s
j,l〉L2[0,1] =

∫ 1

0

∑

ν∈Z
ϕs

j,k(x − ν)
∑

μ∈Z
ϕ̃s

j,l(x − μ)dx

=
∑

ν∈Z

∫ 1

0
ϕs

j,k(x − ν)
∑

μ∈Z
ϕ̃s

j,l(x − μ)dx

=
∑

ν∈Z

∫ ν+1

ν

ϕs
j,k(x)

∑

μ∈Z
ϕ̃s

j,l(x − μ)dx

=
∫

R

ϕs
j,k(x)

∑

μ∈Z
ϕ̃s

j,l(x − μ)dx

=
∑

μ∈Z

∫

R

ϕs
j,k(x)ϕ̃

s
j,l(x − μ)dx =

∑

μ∈Z
δk,l−2 jμ = δk,l .

Analogously,wecanprove that spaces
(∼)

Ws
j := Span{

(∼)

Ψ s
j,k (x), k = 0, 1, . . . , 2 j − 1}

have the properties of pairs of dual wavelet spaces, i.e. Ws
j ⊂ V

ps
j+1, W̃

s
j ⊂ Ṽ

ps
j+1,

Ws
j⊥Ṽs

j , W̃
s
j⊥Vs

j .
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Further, we write down the scaling equations for the spaces of n-PMRA and dual
n-PMRA:

(∼)

Φs
j−1,l=

2 j−1∑

k=0

(∼)

Hs,ps
j,l,k

(∼)

Φ
ps
j,k , j = 1, 2, . . .

here Hs,ps
j,l,k = 〈Φs

j−1,l , Φ̃
ps
j,k〉L2[0,1], and H̃ s,ps

j,l,k = 〈Φ̃s
j−1,l , Φ

ps
j,k〉L2[0,1], k = 0, 1, . . . ,

2 j −1.

We will express
(∼)

Hs,ps
j,l,k via

(∼)

hs,psk from the formulas (4), (5):

Hs,ps
j,l,k = 〈Φs

j−1,l , Φ̃
ps
j,k〉L2[0,1]

=
∫ 1

0

∑

ν∈Z
ϕs

j−1,l(x − ν)
∑

μ∈Z
ϕ̃

ps
j,k(x − μ)dx

=
∑

ν∈Z

∑

μ∈Z

∫ 1

0
ϕs

j−1,l(x − ν)ϕ̃
ps
j,k(x − μ)dx,

H̃ s,ps
j,l,k = 〈Φ̃s

j−1,l , Φ
ps
j,k〉L2[0,1]

=
∫ 1

0

∑

ν∈Z
ϕ̃s

j−1,l(x − ν)
∑

μ∈Z
ϕ

ps
j,k(x − μ)dx

=
∑

ν∈Z

∑

μ∈Z

∫ 1

0
ϕ̃s

j−1,l(x − ν)ϕ
ps
j,k(x − μ)dx .

After changing the order of summation and replacement 2 j−1(x − ν) on x , and
μ + ν on ν, we get

Hs,ps
j,l,k =

∑

μ∈Z

∑

ν∈Z

∫ −2 j (ν−1)

−2 jν

√
2ϕs(x − l)ϕ̃ps (2x − 2 jμ − 2 jν − k)dx

=
∑

μ∈Z

∫

R

√
2ϕs(x − l)ϕ̃ps (2x − 2 jμ − k)dx =

∑

μ∈Z
hs,ps2 jμ+k−2l ,

H̃ s,ps
j,l,k =

∑

μ∈Z

∑

ν∈Z

∫ −2 j (ν−1)

−2 jν

√
2ϕ̃s(x − l)ϕps (2x − 2 jμ − 2 jν − k)dx

=
∑

μ∈Z

∫

R

√
2ϕ̃s(x − l)ϕps (2x − 2 jμ − k)dx =

∑

μ∈Z
h̃s,ps2 jμ+k−2l .
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Similarly, we get that

(∼)

Hs,ps
ψ, j,l,k =

∑

μ∈Z

(∼)

hs,ps
ψ,2 jμ+k−2l = (−1)k

∑

μ∈Z

(∼)

hs,ps1−2 jμ−k+2l .

Thus, we construct the periodic biorthogonal bases of spaces of n-PMRA and
appropriate wavelets.

4 Fast Algorithms

The coefficients of decomposition of 1-periodic function on bases of spaces of n-
PMRA and corresponding wavelet spaces can be calculated if we know the coeffi-
cients of decomposition of function on bases of spaces of n-PMRA from higher level
j by using cascade algorithm. Using the inverse cascade algorithm, we can calculate
the coefficients of decomposition of function on basis of space of n-PMRA of higher
level j if we know coefficients of decomposition of function on bases of spaces of
n-PMRA and wavelets from level j − 1. Now we describe cascade algorithms for
biorthogonal n-PMRA.

Algorithm.
1. Let we have the coefficients of decomposition of function f (x) on the bases of

space
(∼)

V
ps
j :

f ps
j (x) =

2 j−1∑

k=0

(∼)

C ps
j,k

(∼)

Φ
ps
j,k (x).

2. Since
(∼)

V
ps
j =

(∼)

Ws
j−1

⊕ (∼)

Vs
j−1, then

f ps
j (x) =

2 j−1−1∑

l=0

(
(∼)

Cs
j−1,l

(∼)

Φs
j−1,l (x)+

(∼)

Ds
j−1,l

(∼)

Ψ s
j−1,l (x)).

From the equalities

2 j−1∑

k=0

(∼)

C ps
j,k

(∼)

Φ
ps
j,k (x) =

2 j−1−1∑

l=0

(
(∼)

Cs
j−1,l

(∼)

Φs
j−1,l (x)+

(∼)

Ds
j−1,l

(∼)

Ψ s
j−1,l (x)) (9)

and
Hs,ps

j,l,k = 〈Φs
j−1,l , Φ̃

ps
j,k〉L2[0,1], H̃ s,ps

j,l,k = 〈Φ̃s
j−1,l , Φ

ps
j,k〉L2[0,1] (10)
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we obtain the formulas for coefficients
(∼)

Cs
j−1,l and

(∼)

Ds
j−1,l :

Cs
j−1,l =

2 j−1∑

k=0

C ps
j,k H̃

s,ps
j,l,k; Ds

j−1,l =
2 j−1∑

k=0

C ps
j,k H̃

s,ps
Ψ, j,l,k .

C̃s
j−1,l =

2 j−1∑

k=0

C̃ ps
j,k H

s,ps
j,l,k; D̃s

j−1,l =
2 j−1∑

k=0

C̃ ps
j,k H

s,ps
Ψ, j,l,k .

So, if we know
(∼)

C ps
j,k , we can calculate the coefficients

(∼)

Cs
j−1,k and

(∼)

Ds
j−1,k , and so

on for j ′ < j − 1. Schematically, this can be depicted in the form of a pyramidal
scheme:

(∼)

C ps
j,k −→

(∼)

Cs
j−1,k −→

↘ ↘ · · ·
(∼)

Ds, j−1
j−1,k

3. Similarly, from the equalities (9) and (10), we obtain an expression for
(∼)

C ps
j,k :

(∼)

C ps
j,k =

2 j−1−1∑

l=0

(
(∼)

Cs
j−1,l

(∼)

Hs,ps
j,l,k +

(∼)

Ds
j−1,l

(∼)

Hs,ps
Ψ, j,l,k) .

Thus we obtain the method of calculation of
(∼)

C ps
j,k if the coefficients

(∼)

Cs
j−1,l and

(∼)

Ds
j−1,l

are given. We draw the inverse pyramidal scheme for this case:

(∼)

Cs
j−1,k −→

(∼)

C ps
j,k −→

↗ ↗ · · ·
(∼)

Ds
j−1,k

(∼)

Dps
j,k
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3D Visualization to Analyze
Multidimensional Biological
and Medical Data

V. L. Averbukh, I. O. Mikhailov, M. A. Forghani and P. A. Vasev

Abstract Biological and medical databases continue to grow in size, volume, and
dimension that lead to facing big data issues. The data obtained as a result of com-
plex computer modeling, as well as in analyzing various sources of big data are
complex and poorly structured. Visualization of such data is an important task for
their interpretation that affects a final obtained decision from data. Since traditional
approaches such as projection, the use of pictograms, colors, shapes, etc., are not
enough to demonstrate the multidimensional relationship, it is necessary to develop
a visualization system that is flexible to represent the desired visualization for an
expert, medical professional or researcher. The aim of the current paper is the devel-
opment of visualization systems for multidimensional medical and biological data
with additional reality. The main idea is the set of projections frommultidimensional
space to three- dimensional cube and representation of patients’ data in the form of
points cloud. The remarkable advantage is that the proposed system is user-friendly
andflexible to define visualization axes.Moreover, additional reality provides a better
visualization of the information content. In case of clustering of proteins by genomic
signal processing techniques, physico-chemical properties of amino acids can be
used to convert an alphabetical sequence to numerical. Since there are many possi-
ble conversions using AAindex database, we suggest to use dimensional reduction
methods before genomic signal processing. This decreases the time of computation,
provides the overall picture of physico-chemical changes and increases the quality
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of visualization. A wavelet-based algorithm can represent the relationship between
proteins in different scales. Using this idea, a user is able to define the visualization
scale to see small or large differences between protein sequences.

Keywords Scientific visualization ·Multidimensional visualization · Hyperbox ·
Biological database · Phylogenetic tree ·Wavelet

1 Introduction

Biological databases are growing fast due to progress and development of genetics
technologies such as high-throughput sequencing. Themajor objectives of biological
databases are to store, organize and share data in a structured and searchable manner,
with the aim to facilitate data retrieval and visualization for humans, and also to pro-
vide web application programming interfaces (APIs) for computers to exchange and
integrate data from various database resources in an automated manner [20]. Beside
biological databases,medical are growing in quantity and quality due to the growth of
better measuring in themedical system in recent decades. This leads the researcher or
medical professional to face with interpretation task of a multidimensional database.

Approaches for visualization of the multidimensional databases are considered in
the scientific literature for several decades (see, e.g., the overview in [19]). Consid-
ered as general approaches to the visualization of multidimensional data [5], and spe-
cialized implementations of systems that provide a representation of large amounts
of data obtained as a result of mathematical and computer modeling of complex
phenomena and processes [17]. As an example, a visual analytics framework pre-
sented in [15], that is used for effective treatment decisions from complex genomics
data. Visual data mining techniques play an important role in exploratory data anal-
ysis. Data mining aims to search and analyze data to find useful information. An
idea for such visualization is to represent as many data items as possible by map-
ping each data value to a pixel and arranging the pixel adequately [10]. One of the
most common methods for representing multidimensional data is their projection
onto a two-dimensional or three-dimensional space. For example, back in 1991, the
idea of Hyperbox was considered. A hyperbox is a two-dimensional depiction of an
N-dimensional box (rectangular parallelepiped). The authors [1] defined the visual
syntax of hyperboxes, state some properties, and sketch two applications. Hyper-
boxes can be evocative visual names for tensors or multidimensional arrays in visual
programming languages. They can also be used to display all pairwise relationships
in an N-dimensional data set simultaneously. This can be helpful in choosing a
sequence of dimension-reducing transformations that preserve interesting properties
of the dataset.

To represent, in practice, the multidimensional data arising from the analysis of
dynamic networks, the idea of Matrix Cube is suggested in [2]. Matrix Cube is a
novel visual representation and navigation model for dynamic networks; inspired by
the way people comprehend and manipulate physical cubes. Users can change their
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perspective on the data by rotating or decomposing the 3D cube. Thesemanipulations
can produce a range of different 2D visualizations that emphasize specific aspects of
the dynamic network suited to particular analysis tasks. The closed ideas can be found
in [14], which describes a system designed for visual analysis of multidimensional
data. Developed system can display a multidimensional cloud of data and allows the
user to analyze it in a lower-dimensional space (2D and 3D), propose and test various
hypotheses about the original data, with the possibility of making assumptions for
using calculating techniques, using geometric constructions in interactive mode.

An important factor in visualization is user’s interaction. A human can analyze
complex events within a short time, to find important information to make a deci-
sion. Comparing with a computer, human handles with vague descriptions and inac-
curate knowledge, using general knowledge, easilymakes complex conclusions [10].
The performance of visualization can be improved considering better user’s interac-
tion with a visualization system. A tool called Interaction+ [12] was developed that
enhances the interactive capability. It takes existing visualizations as input, analyzes
the visual objects, and provides userswith a suite of interactions to facilitate the visual
exploration. Another idea of an interactive system had been presented in [9], in which
a set of low-dimensional parallel coordinates plots are interactively constructed by
sampling user-selected subsets of the high-dimensional data space. This allows a user
to specify the most relevant lower dimensional data and provides the visualization of
the most meaningful dimensions. The interactive visual analytics tool, Winnows [3]
had been designed to enable users to easily filter and compare patient subgroups based
on data visualization ofmultiple outcomemeasures. It also provides the investigation
of inter-relationships across outcome measures in various domains or relationships
between multiple disease features and their changes over time.

Recently, two visualization systems have been developed by us, one for medical
and another for biological data. The first system is an interactive visual analytic
system for medical data. It assumes the use of a projection of multidimensional
space into a three-dimensional cube. It provides an ability for a user to choose a set
of measurements to be mapped on cube axes. Furthermore, it allows mapping other
data dimensions onto visual attributes like color, marker shape and, size, etc. [13].
In the second system for biological data, a new dimension was defined and added to
the phylogenetic tree to track the physico-chemical changes in proteins. Moreover
using multidimensional scaling, the physico-chemical properties space dimension is
decreased that presents general changes in the protein. The wavelet-based algorithm
considers the neighbor effect of amino acids in a new dimension. Also, virtual reality
was added to improve the quality of 3D visualization of the phylogenetic tree [7].

2 Visualization of Medical Data

In major of biological systems, we only speculate on the process that reveals the rela-
tionship between different variables and the visual exploration help to understand
relationship, processes or forming a hypothesis. Novel multidimensional visualiza-
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tion techniques enable us to display large, high dimensional data set in a meaningful,
more descriptive manner [4]. Users’ understanding of the visualization and interpre-
tation defines the way that system can interact with the user. Since exploration plays
an important role in diagnostic from medical data and to enhance the interactivity,
our idea is visualization based on user-organizing projections.

As a result of the examination of a large number of patients, significant amounts
of multidimensional data has been obtained. Visualization and analysis of multidi-
mensional data is an important area for many scientific fields. It should be noted
that there are no general approaches to the visualization of multidimensional sets,
although important results have been obtained in special cases and there are many
publications on this subject. In the presented work, methods development for visual-
ization ofmultidimensionalmedical data collected by themedical system “qMS” and
provided by the company SPARMwas considered. The work was carried out as part
of the project to analyze the BigData of theAcademic Partnership Dell EMC (project
healthcare Optimization, Dell EMC External Research and Academic Alliances—
ERAA Dell EMC). Our goal is to support the data analysis for Medical Information

Fig. 1 The interface window of the developed system for 3D-visualization of MIS data (Patients
with type 1 diabetes). The possibility to visualize patients’ data in a three-dimensional virtual space
is shown virtual space can be rotated, and data for a particular patient can be seen separately,
choosing from a set of figures. The vertical axis shows the duration of the hospitalization episode.
The color shows the waiting time for the thyroid ultrasound: yellow color corresponds to the average
expectation of ultrasound, green to the long waiting for ultrasound; red color corresponds to the
absence of ultrasound. This configuration of options allows themedical professional to immediately
take a look at the picture of the distribution of patients for the duration of hospitalization andwait for
an ultrasound of the thyroid gland, in conjunction with age, sex and codes/subsections for ICD-10
clinical diagnoses
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Fig. 2 In this case, the length of the hospitalization episode is mapped both to the vertical axis and
to the color

Fig. 3 The vertical axis is the waiting time of the thyroid ultrasound. The red color of the marker
represents no ultrasound and yellow color represents one examination
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Fig. 4 Quantity and waiting time for monitoring of the electrical activity of the cardiovascular
system with Holter monitor. (Holter monitor is a type a portable device for cardiac monitoring).
The vertical axis is a duration of hospitalization. Front-looking axis (increases from back to front)
indicate the age of patients. The horizontal axis (increases from left to right) indicate waiting time
for the medical procedure. The form of elements indicates the sex of patients (spheres for men,
cubes for women). The color of elements indicates the count of medical procedures: red means no
procedures at all, yellow means one and green means two. Many red elements indicate patients that
don’t have that procedure and their waiting time is zero. These elements can be filtered to improve
visualization

Fig. 5 Radiography of joints/bones of hands and feet
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System (MIS). The records of MIS qMS [11] collected during the period from 2013
to 2017, from Russian hospitals. Patients have Diabetes Mellitus Type 1 and Arte-
rial Hypertension. Patients’ data includes ICD-10 clinical diagnoses, records about
implemented investigation procedures, operations, pharmacological treatment.

In our case, the data represents the results of patients monitoring collected by
one of the clinics. This study aims to analyze the efficiency of treatment. That is
determined by a set of parameters, which can be considered as measurements of the
obtained data space. It is suggested a set of projections of amulti-dimensional discrete
space into a three-dimensional cube and representation of patients’ data in the form
of points cloud (see Fig. 1). The possibilities of this visualization system include the
ability to simultaneously display up to 5 axeswith the ability to interactively highlight
clusters and automatically find the correlation. It is also possible to split the data into
groups according to several characteristics and compare them (see Fig. 2). Thus, the
user, a medical professional in the field, has the opportunity to independently select
the visual mapping, necessary for the analysis and interpretation of real data. The
system is developed by free software products and is cross-platform.

Briefly, an interactive environment for 3D-visualization of MIS data was devel-
oped. Themethod of analysis was applied to a sample of patients with type 1 diabetes.
A multidimensional data space is considered, where the characteristics of patients
and the results of their examination and treatment (columns of the metadata table)
can be used asmeasurements. The developed prototype of the system allows combin-
ing several types of data in a single three-dimensional field. There is the possibility
of scaling and hyperactive detailing information about each specific patient. It is
possible to change the set of measurements during the analysis of data, and visual
space can simply be rotated (see Figs. 3, 4 and 5). In the future, it will be investigated
the possibility of virtual and extended reality (or additional reality) usage within the
system.

3 3D Visualization of Phylogenetic Tree

Evolutionary tree diagrams can be found in even the earliest descriptions of evolution,
and their visualization still plays a key role in modern phylogenetics. However,
although trees visualize an organism’s evolutionary history, tree’s construction is
based on biological data which in turn contains the information that distinguishes
each organism. Sequence alignments are themost common data used in phylogenetic
analysis, and their visualization assists in understanding the molecular mechanisms
that differentiate each species, down to the level of the individual nucleotide bases
and amino acids [16].

To better visualization of the tree with a mass of leaves, it was suggested to use
3D visualization. The idea of visualizing phylogenetic trees in three-dimensional
hyperbolic spaces with the Walrus graph visualization tool was introduced in [8].
This system can visualize and navigate phylogenetic trees with more than 100,000
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nodes. Recently a 3D-visualization of a phylogenetic tree has been developed [7]
by adding obtained information from physico-chemical changes in amino acids as a
new dimension (see Fig. 7).

To apply genomic signal processing methods on proteins data, a primary alpha-
betical sequence is converted to numerical one. The numerical representation should
reflect biological properties in the numerical domain. A way to define such as con-
version is by using an amino acid index that includes 20 numbers of an amino acid
property. A rich collection of such index can be found in AAindex database (www.
genome.jp/aaindex/).

Previous researchers had indicated there is a correlation between amino acid sub-
stitutions and its physico-chemical properties. Each of these physico-chemical prop-
erties gives a viewpoint in the study of biological functions. Taking into account all of
them leads to a multi-viewpoint representation and provides more options to observe
and study the target biological phenomena. In other words, the combination of all

Fig. 6 Two methods for clustering of protein sequences. The method A uses AAindex database for
numerical representation of protein and then applies genomic signal processing techniques, each
index can provide a different result, while method B uses a few indices and gives a general picture
of physico-chemical changes. Method B is considered in this paper

Fig. 7 Ageneral presentation of the 3D phylogenetic tree of influenza virus (without virtual reality)

www.genome.jp/aaindex/
www.genome.jp/aaindex/
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Fig. 8 A general presentation of the 3D phylogenetic tree in virtual reality environment (note that
this tree is different from the tree in Fig. 7)

Fig. 9 2D and 3D representation of clustering of hemagglutinin protein sequences using the
wavelet-based algorithm and physico-chemical properties

amino acid physico-chemical properties would result in a complex high-dimensional
feature space, possibly including redundant features [6] and causes a sophisticated
visualization (Fig. 8).

To handle this issue, before the conversion of protein sequences to numerical,
we suggest considering a dimensional reduction on AAindex using clustering and
principle component analysis (PCA) (see Fig. 6). Beside of AAindex data, new
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indices obtained byAAindex clustering gives the user to choose an individual specific
property from AAindex or a general picture of property changes from new extracted
indices (see Fig. 9).

The system clusters objects of the phylogenetic tree according to the physico-
chemical property of amino acidwhile each leaf has its protein sequence. Information
that is used for clustering includes physico-chemical changes and also neighbor
effect, the effect of adjacent amino acids on a target amino acid in protein primary
sequence. This information is achieved by a new algorithm developed by us based
on the wavelet packet transform. An improvement of visualization can be done by
considering the demonstration of protein relationship in different scale of thewavelet.
This allows seeing the overall picture of changes while it is possible to see small
changes in protein through the evolution. In addition to usual 3D-visualization, virtual
reality is provided (see Fig. 8) [18]. Due to limitation of monitor view, it is difficult to
visualize a complex tree. The virtual reality can dramatically increase the information
content of visualization and provides a wide range of view to see the general picture
of a tree with details.

4 Conclusion and Future Work

Both of the presented systems define visualizationswhich are flexible to interactwith.
Somemedical parameters have priority over others for decisionmaking. Considering
this priority, a medical professional can arrange the visualization to see a specific
relationship between different parameters in data and increase the speed of decision
making.

Taking as example influenzavirus, there are different visualizations, such as phylo-
genetic tree and antigenic cartography, to understand the relationship between strains.
Beside the genetic relationship visualization (in phylogenetic tree) and antigenic rela-
tionship visualization (in antigenic cartography), the physico-chemical changes in
amino acids provide additional information to understand the evolution process bet-
ter. Since this information also includes the neighbor effect extracted by the wavelet-
based algorithm, they can directly be used in mathematical modeling of biological
functions. Clustering of phylogenetic tree leaves and adding virtual reality represen-
tation provides an interactive environment for the researcher to explore and find a
simple interpretation of complex data.

At the next stage of our research and development, it is supposed to try out new
methods of multidimensional visualization for the results of mathematical modeling.
For the visualization of medical data, it is supposed to be translated into web-based
visualizations by using Viewlang (viewlang.ru) system and to provide an interactive
virtual reality presentation. In the phylogenetic tree, we plan to improve the accuracy
of the algorithm by applying the principal component analysis in a different level of
wavelet decomposition. Depend on the wavelet family, the obtained components of
PCA in the level of decomposition can be varied. This provides an option to choose
better wavelet family to represent a better visualization.
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The Peculiarities of Calcium Sparks
Formation in Cardiac Cells in Silico

N. S. Markov and A. M. Ryvkin

Abstract Calcium plays a major role in excitation-contraction coupling providing
a link between action potential generation and a cell contraction. Local spontaneous
calcium releases (spontaneous sparks) from intracellular storage (sarcoplasmic retic-
ulum) are themanifestation of the self-sustaining behavior of theCa2+ release system
so-called Ca2+-clock. Recent experiments show that periodic sparks can turn into
leaky mode in violation of a sustainable Ca2+-clock regime. This paper is a report on
our computer modeling of spontaneous Ca2+ sparks formation-spread-termination
in different conditions. Simulations reveal that conformational interactions as well
as calcium-mediated coupling between Ca2+ releasing ryanodine receptors can lead
to disturbances of the autooscillatory regime of the Ca2+ release system.

Keywords Heart pacemaker cell · Calcium spark · RyR-channels · Calcium leak

1 Introduction

Ca2+-induced Ca2+ release (CICR) is an important effect of the cardiac cell sig-
naling during excitation-contraction coupling in myocytes and membrane potential
formation in heart pacemaker cells [15]. Ca2+ flux through L-type Ca2+channels
(LCCs) triggers the Ca2+ release from the sarcoplasmic reticulum (SR) and initi-
ates a release process via Ca2+ activated ryanodine receptors (RyRs). RyRs form
compact clusters (50–200 RyRs) on the membrane of SR and are separated from the
cell membrane by the small (15-nm) dyadic subspace (Fig. 1). RyRs activity is con-
trolled by Ca2+ concentration in the subspace (Cass) and Ca2+ concentration in the
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Fig. 1 Schematic representation of the intracellular Ca2+-release system in the cardiac cell

SR terminal cisternae (Ca jSR) called lumen or junctional (jSR). Ca2+ concentration
in the SR network (nSR) is increased due to refill by sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA).

Local Ca2+ releases (so-called calcium sparks) are in the basis of a global
Ca2+ release process which increases intracellular calcium level by an order of
magnitude [3].

Talking about a single release unit (RU), which consists of a single jSR and a
subspace, we need to take into account Ca2+-binding proteins (buffers): calmodulin
and calsequestrin which cause a delay of Ca2+ dynamics in subspace and in jSR.
Ca2+ ions released via RyRs can activate nearest neighbors in “domino-like” style
(Ca2+-mediated coupling), so this process also amplifies the Ca2+-release. Thus,
Ca2+ diffusion in the subspace attracts considerable interest due to the complex
RyRs activation process as well as the spark initiation and spread.

As itwas argued recently [6] isolated froma sarcolemmal voltage oscillator (mem-
brane “clock”) RU can operate as a self-sustained oscillator (SR Ca2+ “clock”),
described by a simple “release-pumping-delay” mechanism when a small sponta-
neous Ca2+ release from jSR to the subspace occurs as the primary or initiating
event. When CaSS increases to a sufficient level, it amplifies the Ca2+ release via the
mechanism of the CICR [15]; this relatively strong, secondary Ca2+ release simul-
taneously depletes (i.e., resets) jSR. The released Ca2+ is pumped into the nSR. The
delay between releases is determined by the Ca2+ pumping rate and Ca2+ diffusion
from the subspace to cytosol as well as diffusion from nSR to jSR. As Ca jSR slowly
increases, RyRs get restituted, and the next release is ultimately initiated, beginning
the next calcium cycle. However, disturbances in the periodicity of Ca2+ release may
cause undesirable consequences for the automaticity of the pacemaker cells.

Calcium leak is caused by SERCA disturbances and RyRs dynamics violations.
TheCa2+ leak is frequently found to be arrhythmogenic and contribute toCa2+ waves
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and alternance [17]. Special genetic mutations of RyRs can be a reason of diverse
diseases (e.g. catecholaminergic polymorphic ventricular tachycardia (CPVT)) [16].
Thus, RyRs opening-closing process should be described in details in the Ca2+
dynamics model. The regularity of the channel lattice is questionable [1, 8]; how-
ever, the researchers cope with the conclusion that there is both an allosteric and
conformational interaction between closely enough located channels [8, 16]. Ca2+-
mediated, allosteric or conformational coupling between RyRs cause a cooperative
effect of RyRs opening and closure and further spark formation. By means of com-
puter modeling we tried to find out which mechanism of interaction can lead to Ca2+
leak from the SR.

2 Methods

2.1 Calcium Dynamics Model

In our model we take into account a single RU. Ca2+ dynamics is described by the
system of reaction-diffusion equations:

dCaSS
dt = VjSR

VSS
jrel − CMtot · d fCM

dt
dCa jSR

dt = jre f ill − jrel − CQtot · d fCQ

dt
d fCM

dt = k f CMCaSS (1 − fCM) − kbCM fCM
d fCQ

dt = k f CQCa jSR
(
1 − fCQ

) − kbCQ fCQ

(1)

where jre f ill is the lumen refill flux (constant in the currentmodel), jrel is a release flux
via openRyRs, VSS and VjSR are volumes of the subspace and the lumen respectively,
fCQ and fCM are current concentrations of a bound calsequestrin and calmodulin
respectively, CQtot and CMtot are total concentrations of calsequestrin and calmod-
ulin respectively.

Calcium release flux jrel = Nopen(Ca jSR − CaSS), where Nopen is the number of
open RyRs.

In our model we assume that RyR-channels are arranged on the SR membrane
in closely packed clusters such that their large cytoplasmic domains contact each
other. In future we shall use a random spatial distribution of RyRs (see Discussion).
We describe the activity of a regular 9× 9 compact RyRs cluster located on the jSR
membrane.

2.2 Electron-Conformational Model

Previously developed [9, 13] and modifiable at present Electron-Conformational
Model (ECM) of the stochastic RyRs dynamics [10, 14] is a continuous alternative
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Fig. 2 Adiabatic Electron-Conformational potential of RyR. Left: for p < 0 (Ca jSR < KCa);
right: for p > 0 (Ca jSR > KCa), where KCa is the threshold luminal Ca2+ concentration

to traditional discreteMarkovian chainmodels. ECMdescribes RyRs states and tran-
sitions in terms of two degrees of freedom: slow conformational and fast electronic.
The two-well conformational potential is presented in the Fig. 2. The left minimum
corresponds to the RyRs closed state, the right to the open. The potential is described
by the following formula:

E±(Q) = K

2
Q2

m − pQ ± 1

2
aQ, (2)

where Q is a conformational coordinate, a is an electron-conformational coupling
parameter, p is a parameter of an effective “pressure” of the lumen Ca2+, K is the
RyRs effective “elastic” constant.

Themodel provides three types ofRyRs transitions. I. Slow conformational fluctu-
ations which obey Langevin dynamics. II. Ca2+-induced fast inter-branch electronic
transitions which correspond to Ca2+ ions binding/unbinding to RyRs activation
sites. III. Tunneling through conformational barrier which corresponds to RyR acti-
vation by the luminal Ca2+. The model assumes that RyR activation by Ca2+ ions is
the following: electronic transition probability depends on Ca2+ ions concentration
in subspace:

Pelect =
{

α · CaSS,CaSS ≥ CaSScr
0,CaSS < CaSScr

(3)

where CaSScr is a threshold level of CaSS at which electron transitions start.
We introduce a parameter p, an effective “pressure” of Ca2+ in the lumen. The

form of the potential and the position of each minima in our model depend on
the lumen Ca2+ concentration. For CaSS < KCa (p is negative) closed state is a
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globalminimum,where KCa is the threshold luminal Ca2+ concentration. Vice versa:
for Cass>Kca (p is positive, lumen is full) open state becomes a global minimum.
Integrated to Ca2+ dynamics models of cardiac cells ECM previously revealed that
it is able to describe a number of subtle effects of Ca2+ release from the SR [10, 14].
So, being physiologically reasonable and meeting all the requirements of the RyRs
activation description, ECM can be very useful for Ca2+ sparks modeling.

In Fig. 1, jrel depends on Nopen , the number of opened RyRs in the cluster. Each
RyR in our 9× 9 cluster is described in terms of ECM and Nopen indirectly depends
on local Ca2+ concentrations in subspace near each channel and on the average lumen
Ca2+ concentration.

2.3 Modeling of the Calcium Diffusion in the Subspace

In order to describe the diffusion of calcium ions in the subspace, we assume a
rectangular 2D spaceΩ forCass , fCM , and introduce aLaplacian operator in the right
hand side of first equation of system (1) making it essentially a standard parabolic
diffusion equation:

∂CaSS
dt = d ·

(
∂2u
∂x2 + ∂2u

∂ y2

)
+ VjSR

VSS
jrel − CMtot · ∂ fCM

dt
dCa jSR

dt = jre f ill − jrel − CQtot · d fCQ

dt
∂ fCM

dt = k f CM · CaSS (1 − fCM) − kbCM · fCM
d fCQ

dt = k f CQ · Ca jSR
(
1 − fCQ

) − kbCQ · fCQ

CaSS
∣∣∣
∂Ω

= 0

(4)

with zero Dirichlet boundary conditions used to simulate calcium diffusion from the
subspace to the cytosol.

It is necessary to say a few words about an implementation of the model. We use
an implicit finite-difference five-point stencil numerical scheme utilized for approx-
imation of the diffusion equation (4). This method allows us to calculate diffusion by
solving large-scale systems of linear algebraic equations. Stability of the five-point
stencil discretization is discussed in [5] while convergence of the whole numerical
scheme was tested and verified for different parameters of the grid such as time step
and number of the mesh nodes.

Then, a parallel implementation on C++ with the use of PETSc makes it possible
to set up prolonged experiments on distributed-memory systems. In particular, the
Ural Federal University Computational Cluster has been employed to set up the
experiments.

Hereby, ourmodel describesCa2+ fluxes between the compartments of the isolated
from the cell membrane currents RU, RyRs cluster stochastic dynamics and Ca2+
diffusion in the subspace and the consequently Ca2+-mediated coupling between
RyRs as well.
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3 Results

3.1 The Release Unit Stable Oscillations

We performed a series of computer experiments for the modeling of the Ca2+ release
process and RyRs activation taking into account the Ca2+ diffusion within the
dyadic space. A standard set of the model parameters was taken from the Ca2+-
dynamics model in the rabbit pacemaker cell [6] to compare our previous simu-
lation results [14] with the averaged Ca2+ and buffer concentrations in the cur-
rent work: kbCM = 0.542 m s−1, kbCQ = 0.445 m s−1; k f CM = 227.7 μM−1m s−1;
k f CQ = 0.534μM−1m s−1;CQtot = 10μM;CMtot = 0.045μM; d = 10−10 m2/s,
VjSR/VSS = 1.6.

Parameters of the computational method. Number of mesh nodes mx = my =
240; a single RyR width LRyR = 37 nm, size of a single mesh node Lmesh = 1 nm,
timestep dt = 0.01 ms. Ca2+ concentrations initial values Ca jSR(t = 0) = 1 μM,
CaSS(t = 0) = 0 μM, Nopenrel(t = 0) = 0.

Electron-conformational model parameters a = 5, K = 12, KCa = 500 μM,
CaSS_cri t = 100 μM, α = 0.0012 ms−1μM−1.

Figure3 presents the time series of CaSS(t), Ca jSR(t) and Nopenrel(t). For the
mentioned set of the model parameters and jre f ill < 0.025 μM−1, the Ca2+ RU
behaves as a self-sustaining oscillator [11]. More detailed descriptions of the RU
stable oscillations can be found in [12].

3.2 Calcium Mediated Coupling. Sudden Stop Effect

After the increase of jSR refill, rate the constant influx of calcium in lumen becomes
high enough for the system to enter a quasi-stationary state of release that leads to
a sudden stop of RU oscillation for the entire time frame of conducted experiment.
Figure4 shows Ca2+ dynamics for the previously specified set of parameters with
jre f ill > 0.025 μM.

As can be seen, several sparks were observed at the initial time, and then the
oscillations of the calcium-release system ceased. The arisen spark does not fade out
after the sudden stop as it is constantly supported by calcium entering the subspace
from the lumen. Sufficient amount of calcium fills up the subspace keeping RyR-
channels in the open state.On the other hand, high concentration ofCa2+ between cell
membrane and the SR membrane limits calcium release from RyR-channels. Ca2+
concentration in the subspace fluctuates around the same value which means that the
system reaches a balance between Ca2+ release from the SR lumen and diffusion to
the cytosol. Quasi-stationary leakage occurs through a close to a constant number of
RyR-channels. These opened channels form a consistent cluster in the middle of the
RyRs grid. That is, it was possible to detect the pathological effect of the calcium
release unit associated with the calcium interaction between the RyR-channels.
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Fig. 3 The periodic regime of Ca2+ releases from the SR. a Time series of Ca2+ concentration in
the subspace (CaSS), in SR lumen (Ca jSR) and the relative number of open RyRs (Nopenrel ) during
the mode of stable oscillations. b Density plots of a single calcium spark that illustrate a simulated
time course of RyRs opening and spatial distribution of local Ca2+ concentrations in the subspace.
Blue circles correspond to open RyRs, white to closed

We performed two series of simulations for two values of the diffusion parameter
d (20 experiments for each case) andmeasured the timewhen oscillations terminated
(τsd ) (see Fig. 5). Due to stochastic characteristics of RyRs dynamics, τsd is normally
distributed and the average value of τsd increased with the growth of the diffusion
rate.
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Fig. 4 Sudden stop effect of Ca2+ releases from the SR in case of Ca2+-mediated coupling between
RyRs. A Time series of Ca2+ concentration in the dyadic space (CaSS), in SR lumen (Ca jSR) and
the relative number of open RyRs (Nopenrel ). B Density plots illustrating a simulated time course
of RyRs opening and spatial distribution of local Ca2+ concentrations in the subspace. Blue circles
correspond to open RyRs, white to closed

3.3 Conformational RyRs Coupling Can Cause a Sudden
Stop Effect

One of the most important features of the ECM is its ability to reproduce the con-
formational coupling between RyRs. There is an experimental evidence indicating
that RyRs in a compact groups are conformationally coupled [8].
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Fig. 5 Histograms of time periods of oscillations before terminations τsd for two values of Ca2+
diffusion constants (d)

For the particular diabatic case, the conformational potential (Fig. 2), taking into
account the interaction in the nearest-neighbor approximation for m-th channel with
the interaction with n=1–4 neighbours, takes the form:

E±(Qm) = K

2
Q2

m − pQm ± 1

2
aQm +

4∑

n=1

k(Qm − Qn)
2, (5)

where k is the conformational coupling parameter.
Without taking into account Ca2+ diffusion in the subspace, previously, it was

shown [14] during computer simulations that the conformational coupling between
RyRs in the RU can serve as a stabilizing factor. The strengthening of the confor-
mational cooperativity (k=1) determines the stability of the Ca2+-clock oscillatory
dynamics, as well as fluctuations of the CaSS frequency and amplitude. The study
of violations of the functioning of the Ca2+-clock is especially important for studies
of the arrhythmia. Extraordinary fluctuations of the internal Ca2+-clock can disturb
of self-oscillatory activity of the pacemaker cells, which can be an arrhythmogenic
factor for the entire myocardium.

Thus, based on the integration of the RyR-channel EC model into the model
of calcium dynamics in cardiomyocytes, it can be concluded that the co-operative
dynamics of the RyR channels is a stabilizing factor preventing unwanted disruptions
in the activity of the heart pacemaker cells.

As was established experimentally [2], the cooperativity of RyR channels is deter-
mined by the group of specific proteins FKBP 12.6, which are located between the
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channels and stabilize their dynamics.With theweakening of the action of this protein
with various drugs, a violation of the self-consistent dynamics of the entire cluster
[4], an increase in the duration of local releases of Ca2+ to the dyadic space (duration
of sparks) and abnormalities of the contraction rhythm [7] were observed.

Puzzlingly, an increase of the parameter k (k > 1) leads to spontaneous transitions
of the oscillator to the stationary state, that is, to the establishment of a constant flux
of Ca2+ from the SR.

Thus, in the numerical experiments carried out in this paper, a new effect of
a sudden stop of the Ca2+ oscillator was discovered. A detailed analysis of this
phenomenon has shown that it consists in the emergence of the open channels (2× 2,
3× 2, etc.) stable cluster through which Ca2+ ions stationary flow takes place to the
subspace. Figure7 shows an example of such a transition to the mode of the steady-
state release.

Necessary conditions for the manifestation of the observed stopping effect of
Ca2+-clock are a sufficiently strong interaction between the adjacent channels and
the high level of the critical value of CaSScrit necessary to increase the probability
of electronic transitions to the open state, compared with the average value. In this
case, the concentration of Ca2+ in the dyadic space does not reach a critical value, so
electronic transitions do not occur, which can disrupt the stationarity of the system.

It was noted that as the parameter k is increased, the time of stable oscillations
(τsd ) is reduced (Fig. 6). The fact that a stable cluster of open RyRs appear earlier
with an increased value of k is proved by the shape of distribution histograms of τsd .

4 Discussion

In summary,wehavedemonstrated that the simple biophysically reasonableElectron-
Conformational model is useful for the description of RyRs stochastic dynamics
during sparks initiation-spread-termination process. Integrated to the Ca2+ dynam-
ics model, this theory also can describe conformational and Ca2+-mediated RyRs
coupling.

Clearly, our model has a large number of simplifications and approximations. For
example we do not take into account a complex structure of the Ca2+ release system
as well as RyRs non-uniform spatial arrangement. Solving this problem is already
underway, however, on this stage we are able to describe Ca2+ sparks initiation-
spread-termination process in a single RU and to determine the conditions for the
periodic Ca2+ release disturbances.

In this paper we found out a novel effect of the sudden stop of the periodic Ca2+
releases which can lead to Ca2+ leak and further cell functioning disturbances. We
have shown that both strong enough Ca2+-mediated coupling and conformational
coupling between RyRs can be a reason of Ca2+ leak from the SR. Further studies
should aim at the effect of sudden stop of the whole heart cell functioning taking into
account extracellular ion currents.
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Fig. 6 Histograms of time periods of oscillations before the terminations τsd for two values of the
conformational RyRs coupling (k). There were 20 simulations performed for each case

Fig. 7 Sudden stop effect of
Ca2+ releases from the SR in
case of conformational
coupling between RyRs. On
the top, time series of Ca2+
concentration in the
subspace (CaSS), in SR
lumen (Ca jSR) and the
relative number of open
RyRs (Nopenrel ). On the
bottom, snapshots of RyRs
cluster during a stable cluster
of open RyRs formation
process. Blue circles
correspond to open RyRs,
white to closed. Red numbers
on the plot correspond to
snapshot numbers
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A Configurable Algorithm
for Determining the Mean Sarcomere
Length of a Cardiomyocyte By Discrete
Fourier Transform

T. A. Myachina and O. N. Lookin

Abstract We present here a configurable algorithm for determination of mean
sarcomere length in isolated cardiac cells. The algorithm is based onDiscrete Fourier
Transform and includes special processing of the frequency spectrum in order to
get fundamental frequency more accurately. Our algorithm has been tested on raw
sarcomeric data acquired from isolated cardiac cells and an example of its function
is presented in this work.

Keywords Discrete fourier transform · Sarcomere · Cardiomyocyte

1 Introduction

The studies specifically focused on (patho)physiological myocardial contractility
often are made on the level of single isolated cardiomyocytes. To assess the con-
tractility of a cardiac cell as correct as possible, it is important to measure not only
whole cell length but also how the sarcomeres of the cell change their length during
active shortening/relengthening [1]. If the difference between the changes of cell
length and mean sarcomere length is minor, one can be sure that the cell contracts
homogeneously and its contractile response follows integral sarcomere dynamics
precisely. Otherwise, inaccuracies in sarcomere length detection may be concluded
and these cases may require special (post)processing. Typically for the methods of
sarcomere length determination, the striation pattern of a cell comes as input data
and the mean sarcomere length is defined as the spatial period of this pattern [2–5].
Most of the methods developed to determine the mean sarcomere length are based on
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Fast/Discrete Fourier Transform (FFT/DFT) [3, 5–7] while others implement more
advanced approaches, especially if detecting sarcomeres in a tissue sample where
cells may be biased relatively to the scanning line [2, 4, 6]. Also, the applicability
of an algorithm depends on the size of the striated area of cell image available for
analysis and whether or not a cell is static during image acquisition. A whole cell
image is often used to get the sarcomeric data even for beating cells [4, 5] but in
some cases the only possible way to accelerate data acquisition and improve time
resolution of the recorded data is to scan the cell image along a single line or at least a
long-but-narrow region of interest (ROI) containing just a few lines, not for a whole
frame [7, 8]. We were encountered with such kind of data acquisition, so the purpose
of this work was to develop a controlled algorithm used to determine the average
sarcomere length in a beating cell based on DFT method and implement it in our
software. Our case was featured by that cell ROI always contained the positions of
carbon fibers (see Sect. 2 and [8] for details), which allowed us to determine mean
sarcomere length in the “stretched part” of the striation pattern ignoring the rest of
the signal outside the part. The software (interface andmodules) was designed in IDE
Borland Delphi 6 (Borland International Inc., the environment for object-oriented
programming) using Object Pascal as the programming language.

2 Input Data

In the present study, the mechanical function of cardiomyocytes was directly mea-
sured by the method of carbon fibers (CF), developed in the 90s by Le Guennec with
coworkers [9] and further improved by others [5, 10]. In this method, the fibers are
mounted on the precise micromanipulating devices (each fiber independently) and
then fixed to the ends of the cell primarily due to the electrostatic forces and adhe-
sion to cell membrane. Further, the incremental increase of cell stretch is allowable
(Fig. 1a). To gather the cell image during the stretch protocol, we used a video-port
of the laser confocal scanning microscope system LSM 710 (Carl Zeiss, Germany).

Fig. 1 The profile of sarcomeric striation in an isolated cardiomyocyte as input data for the algo-
rithm. a Image of a cardiomyocyte in unstretched and stretched state. A long narrow region shows
the area in which the image intensity profile is scanned. b An example of the intensity profile of
an image obtained for the narrow scanning region. The areas with minimal intensity correspond to
the positions of the carbon fibers. The intensity signal between the fibers is further analyzed by the
algorithm to retrieve mean sarcomere length
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As the contraction of a cell induces progressive bending of the carbon fibers, the
contractile response can be effectively restored from the time profile of the carbon
fiber bending [3, 8]. To do this, the cell image should be processed appropriately. For
faster scanning, we used the region of interest, which was as narrow as 2-to-3 pixels
in height (∼0.2–0.3 µm)and as long as needed to keep the whole cell including its
edges (∼600–800 pixels, ∼120–170 µm). This allowed us to acquire the data at the
rate of ∼0.3 kHz (∼3 msec per frame).

Each scanned frame of the image contained all the needed information about the
current state of the cell and the value of the fiber bending. To retrieve this for a
given time point, we produced the intensity profile of the cell image as a function of
the distance from the frame edge (Fig. 1b). Within the profile, two areas of minimal
intensity correspond to the positions of the carbon fibers, while the periodic change in
the intensity in the area between these fibers corresponds to the sarcomeric striation
of the cell. Starting from this point, we are able to compare directly how a cell
length change corresponds to changes in sarcomere dynamics. We applied DFT to
the periodic signal to get the information aboutmean sarcomeric length in a cell. Since
the profile of the intensity signal is displayed as a function of the spatial displacement
from the beginning of the frame, the fundamental frequency is a measure of the
distance (i.e. sarcomere length).

3 Initial Settings of the Algorithm for Determining
the Average Sarcomere Length

As can be seen from Fig. 1b, the cell image intensity profile contains two areas
corresponding to the position of the carbon fibers (the distance between the two
is interpreted as a cell length), and a region with sarcomere striation of the cell
in between. The algorithm for determining the average length of the sarcomere
(SLMEAN ) completely excludes the regions outside the fiber positions, since sar-
comere is not stretched in these regions. Sarcomere length is determined between
the positions of the carbon fibers. Moreover, the algorithm provides a measure of
the carbon fibers position. In fact, the distance between the right edge of the left
fiber and the left edge of the right fiber is assumed to be 100% cell length (Fig. 2).
However, a distortion of sarcomeric striation near the carbon fibers can be observed
due to the flexure of the cell membrane, providing the optical distortion of the cell
image. The first step of algorithm configuration is setting of the parameter CF edge
indent (carbon fiber edge indent) which determines the amount of the indentation
from the edge of the carbon fiber in % of the cell length between the fibers. If CF
edge indent is 0%, there is no indent. At a value of 10%, the indent from the edge of
each fiber is 10% of the distance between the edges of the fibers, so the remaining
80% of striation signal is further analyzed by the algorithm (see Fig. 2). The maximal
allowable value of the parameter is 50% (indentation to 50% of each edge), so in this
case the length of the remaining area is 0%.
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Fig. 2 Explanation of the initial conditions for determining themean sarcomere length in the profile
of sarcomeric striation. The parameter CF edge indent determines the offset from the edge of the
carbon fiber (right edge for the left fiber, left edge for the right fiber). Mean sarcomere length is
determined for the region located between these indents

Further, the DFT method is implemented to determine the fundamental of the
periodic signal. This means that we calculate the spectral characteristic of the signal,
i.e. the distribution of the intensity of the harmonics from its frequency. In our case,
the striation signal evolves spatially so the fundamental frequency is a distance and
measured in micrometers.

Prior to the start of the algorithm, the minimum and maximum allowable lengths
of sarcomeres are set (by default, to 1.3 and 2.5µm, respectively, which corresponds
to the physical range of sarcomere lengths). This limits the calculated fundamental of
the striation signal and excludes too high or low spatial “frequency”. Also, proximity
to the peak of the fundamental and themaximum number of calculated harmonics are
set before the algorithm starts. The first parameter (Proximity) specifies how much
the algorithm can deviate from the peak of the fundamental to determine the length
range of the sarcomeres in which the mean length of the sarcomere will be calculated
(Fig. 3a). E.g., with Proximity = 90%, a 10%window of the intensity of the spectrum
is used, the leftmost and rightmost values of sarcomere length are found for this
window, then the mean sarcomere length is computed in this range of lengths. If
Proximity = 0%, the algorithmwill average the lengths of sarcomeres throughout the
preset allowable range of sarcomere lengths. We introduced this parameter because
the spectral profile of the striation pattern may be not unimodal but bimodal with two
closely spaced peaks, each of which fairly accurately describes the average length of
the sarcomere (e.g. if two “populations” of sarcomeres with different mean lengths
exist in the striation signal). In this case, it is expedient to determine not the peak
value itself, but a certain range of sub-peak values, for which we calculate then the
mean sarcomere length. Obviously, the lower the value of the Proximity parameter,
the less precise the calculation of mean sarcomere length.

The second parameter determines the number of harmonics that the algorithm
will retrieve from the periodic signal. This number directly affects the possibility of
determining the correct fundamental frequency, since a decrease in the number of
harmonics leads to a narrowing of the frequency spectrum (Fig. 3b). For example,
when specifying a too small number of harmonics, the spectrum will be limited to
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Fig. 3 Setting the proximity to the fundamental frequency of striation signal (parameter “Prox-
imity”, a and the maximum number of harmonics b in the algorithm for determining the mean
sarcomere length)

the length range not including the fundamental frequency, i.e. the spectral signal in
this case is uninformative.

The lengths of the sarcomeres may be unevenly distributed. In this regard, the
mean sarcomere length in this length range is a weighted average with the weights
(relative amplitude) equal to the intensity of each frequency:

SLMEAN =

N∑

i=1
SLi · Ii
N∑

i=1
SLi

,

where N is the number of calculated harmonics, SL is the “spatial” frequency of the
harmonic, I is the intensity of the harmonic.

4 Low-Frequency Component Filtering

Before applying the DFT method to the signal, one can exclude the low-frequency
component. For example, with uneven illumination of a cell or because of the pres-
ence of subcellular structures in the image recording area, the striation signal may
have an irregular shift in the base level (Fig. 4, black curve). This can affect the deter-
mination of the mean sarcomere length, so sometimes it is better to exclude such
shift. We apply deep filtering (with a selected type and settings) to remove high-
frequency deviations of the striation signal and to keep only low-frequency basal
level. The basal component is then removed from the original signal (see Fig. 4,
light-gray curve) giving high-frequency deviations only.
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Fig. 4 The example of low-frequency component filtering of the striation signal. The black curve
is the original signal; the light-grey curve is the signal after excluding the low-frequency component

5 Discrete Fourier Transform Method

After the application of low-filtering (if the option is selected by user), DFT method
is implemented. The striation signal is an input array, for which a frequency spectrum
consisting of real and imaginary numbers is determined.

If necessary, a separate filtering can be applied to the resulting DFT arrays of real
and imaginary numbers for the frequency spectrum. Typically, there is no need to
use this step but in some cases its use makes it possible to smooth out significant
deviations of numbers, if they exist. If this step is applied, the resulting filtered arrays
of real and imaginary numbers for the frequency spectrum are used to re-assemble
this spectrum and calculate the mean sarcomere length based on this re-assembled
spectrum.

On the basis of the given (calculated) frequency spectrum, the fundamental fre-
quency or the range of frequencies is found in accordance with the values of the
user-predefined parameters: proximity, maximum number of harmonics, minimal
and maximal allowable values of sarcomere length. For this harmonic/set of har-
monics the sarcomere length is calculated.

After the calculation of frequency spectrum, the algorithm constructs the
amplitude-frequency spectrum and can implement separate filtering of the curve.
In the cases where amplitude-frequency spectrum contains two close peaks or has
deviations near one peak, the application of this filter can give a more accurate esti-
mate of mean sarcomere length.

The final stage of the algorithm is the determination of the peak value of the
amplitude-frequency spectrum and all subsequent calculations of the mean sarcom-
ere length (i.e. taking into account the parameters described above) are related to this
peak. Using all three filters (low-frequency component, filter of real and imaginary
numbers of frequency spectrum, filter of amplitude-frequency spectrum), the algo-
rithm calculates three different mean sarcomere lengths that can be compared with
each other to estimate the inaccuracy of calculation when the filter is selected “on”
or “off”.
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6 Conclusions

We developed and tested the configurable algorithm for determining the mean sar-
comere length using striation pattern of the image of cardiac cell. Like many other
methods [3, 5–7, 9], our algorithm utilizes DFT to retrieve the fundamental of the
striation pattern, i.e. to get main spatial period (distance). The principal feature of
data used in our algorithm is that they are obtained for a narrow-but-long ROI. In
this case, we do not need to implement advanced corrections typically needed for
whole cell analysis, e.g. evaluation of biasing a cell relatively to the scanning line
or inhomogeneity of sarcomeres in the different areas of a cell. Therefore, our algo-
rithm has limited applicability compared to the others [2, 4, 6]. On the other hand,
each ROI in our data sets always contained the positions of two carbon fibers, which
required us to do certain pre-evaluation of striation pattern and remove parts of signal
located outside the carbon fibers and nearly to the fibers as well, in order to reduce
inaccuracy in the determination of mean sarcomere length. The filtering procedures
and DFT-based calculations were then applied only for the striation pattern located
between the carbon fibers.

The algorithm was completely implemented in custom-made software (Eqa-
pAll6). There are technical reasons to do this, because the data were initially gath-
ered in a commercial program (ZEN2011, Carl Zeiss, Germany), then converted to
EqapAll6-adapted format and processed by EqapAll6. Compared to other commer-
cially available software specifically implementing sarcomere data analysis (e.g.,
IonWizard 6.0, IonOptix Ltd.), this software has some additional features which
expand its function, e.g. writing arbitrary subprograms to apply specific process-
ing. Also, the EqapAll6-adapted format stores complete striation profiles rather than
mean values of sarcomere length (as IonWizard does) which enables it to do distance-
dependent analysis as well [2, 4, 6].

Uneven illumination of the sample and/or the presence of subcellular structures
introduce irregularities into the striation pattern thus affecting the quality of sar-
comere length determination. As similar to the methods described in [2, 4], we
implemented “detrending” of the raw signal (the removal of low-frequency changes)
before further analysis. However, we introduced also more extended filters applied
independently with user-defined settings and intended to smooth frequency power
spectrum. We found it necessary to improve the detection of dynamic changes in
mean sarcomere length and reconstruction of beat-to-beat records in time-based
manner. Figure5 shows an example of the record of raw sarcomeric data (obtained
using DFT without our improvements) and the data computed by the algorithm.

In conclusion, we developed the adjustable algorithm of determination of mean
sarcomere length in isolated beating cardiac cells. The usefulness of this algorithm
was proved by the comparing the unaffected and affected sarcomeric data.We believe
that the improvement of the sarcomere length calculation by our algorithm will
help obtaining more precise dynamic sarcomere length changes in a beating cell,
especially subjected to the mechanical interventions like stretch.
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Fig. 5 The comparison of the calculations of mean sarcomere length by DFT with and without our
improvements. The grey curve is a DFT without additional settings. The black curve is a DFT with
additional settings (CF indent = 90%, lower frequency component filtering, calculation of weighted
average for length range between 1.3 and 2.5 µm, amplitude-frequency spectrum filtering)
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Simulation of Low-Voltage Cardioversion
in a Two-Dimensional Isotropic Excitable
Medium Using Ionic Cell Models

Sergei Pravdin, Timur Nezlobinsky, Timofei Epanchintsev, Hans Dierckx
and Alexander Panfilov

Abstract Spiral waves in the heart underlie dangerous cardiac arrhythmias; there-
fore, methods of their elimination are of great interest. One way to do this is to
remove the spiral waves using external high-frequency stimulation with a period
smaller than that of the spiral. This type of treatment is called overdrive pacing and
is an example of low-voltage cardioversion-defibrillation. It was studied in our recent
works using a simple cardiac model proposed by Aliev and Panfilov. In this paper,
we simulated low-voltage cardioversion using two biophysical models of the cardiac
cells in an isotropic excitable square. We found stimulation periods that result in the
effective removal of the spiral waves and measured the drift velocities induced by
the stimulation. The effects of reducing of some ionic currents on this process were
also investigated.

Keywords Spiral wave · Cardiac modeling · Defibrillation · Myocardium

1 Introduction

The sources of self-sustained activity in excitablemediamayhave the formof rotating
spirals, called “spiral waves”. Such waves have been detected in excitable media of
physical, chemical and biological natures, for example, in theBelousov–Zhabotinsky
(BZ) reaction, carbon monoxide (CO) oxidation on Pt catalysts, in the morphogen-
esis of Protozoa organisms (amoebas Dictiostelium discoedeum, D.d.), as well as
in the retina, the nervous and cardiac tissue [1–4]. The appearance of these waves
substantially changes the spatial regimes in the media and leads to various important
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phenomena. In particular, such waves determine the spatial organization of patterns
in the BZ reaction and control an aggregation of the amoebae D.d. during the mor-
phogenesis. Spiral waves underlie themechanisms of several pathological conditions
that have a great socio-economic impact, such as cardiac arrhythmias, migraines and
epilepsy. The appearance of spiral waves in the heart leads to tachycardias and may
result in such lethal cardiac arrhythmia as fibrillation. In this regard, it is important
to develop effective ways to remove the spiral waves in the heart and to control the
dynamics and position of the spiral waves, as it will result in the development of
better ways to manage these diseases.

Traditional methods of electrotherapy of paroxysmal tachyarrhythmias and fibril-
lation are defibrillation and cardioversion. In this methods, a short electrical impulse
of very high voltage (hundreds or thousands of volts) is generated, which can reset
the electrical activity of the heart and stop cardiac arrhythmia. There are several
types of defibrillators, such as external (their electrodes are applied to the skin of
the chest and sometimes back), defibrillators used during the operation on the open
heart, in which the electrodes touch the external cardiac surface, the epicardium,
and, finally, implanted devices (they are placed under the patient’s skin, and their
electrodes are placed at the myocardium). A key disadvantage of all classical defib-
rillators is that they use high working voltage and current, which causes pain and can
damage the myocardium. Therefore, an extremely important direction of research
is finding new ways of removing spiral waves in the heart without the application
of high-voltage shocks. This direction of research is often regarded as low-voltage
cardioversion-defibrillation (LVCD).

The idea of the LVCD method is based on the fact that these arrhythmias are
associated with spiral waves of electrical excitation in the myocardium. Thus to stop
an arrhythmia, it is necessary to terminate the spiral waves. One way to do this is to
make the spiral waves drift by a series of pulses given from one or more implanted
electrodes.When the distance between the spiral wave tip and the electrical boundary
of the myocardium (for example, the zone of the fibrous ring, which separates and
isolates the atria and the ventricles) is less than a particular limit, the spiral wave
disappears.

The energy of the LVCD pulses is similar to that of the normal pulses generated by
the sinus node. Therefore, the LVCD produces no damage to the myocardium. The
LVCDmethod is based on a well-known fact from the theory of autowaves: if two or
more sources of excitation (self-oscillating sources, spiral waves, etc.) coexist in the
medium and have different frequencies, then the most frequent source overdrives all
other sources. Hence, the frequency of the LVCD should be somewhat higher than
the frequency of the spiral wave.

The foundations of the theory of LVCD for the case of an extremely dense spi-
ral wave were developed in [21]. Attempts to investigate LVCD theoretically and
experimentally in the case of multiple spiral waves have been made (see for example
[6–8]).

Stimulation from an electrode located inside or near the core of the spiral wave
was considered in [9]. Spiral waves in the real heart are often anchored to anatomical
heterogeneities or obstacles like scars, ischemic zones or blood vessels. Annihilation
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of an anchored spiral wave can be done in two steps. First, the pinned wave has to
be unpinned, which is a complicated problem [10]. Second, the freely rotating spiral
wave has to be superseded by inducing its drift.

The control of autowaves has been studied not only in the myocardium, but also
in chemical media [11–13].

There are reports of some small clinical trials of LVCD, which showed that it was
approximately 70% effective [14]. Nevertheless, the mechanisms that determine the
success or failure of the LVCD remain unclear.

In this paper, we systematically study themechanisms of LVCD by computational
experiments on two-dimensional models of the myocardium. In models of isotropic
excitable biological media, we numerically study the mechanisms of the control of
spiral waves of electrical excitation by external stimulation. The main goal is to
find ways to eliminate such waves, i.e., to determine the stimulation parameters that
induce the drift and disappearance of spiral waves. This research is important for the
development of implantable low-voltage cardioverters-defibrillators.

The modelling of the processes in the myocardium requires solving initial-
boundary value problems for non-linear differential reaction-diffusion equations of
the parabolic type. To solve such problems, we use well-known numerical methods
and our existing software.

This work extends the papers [15, 16] in which two simple cardiac models (by
Aliev and Panfilov [17]) were considered. Here, we study spiral wave superseding
using more complex biophysical models of the cardiac tissue: the Luo–Rudy I model
(LR-I) [18] with the modifications described in [19] and the ten Tusscher–Panfilov
model (TP06) [20]. The former describes a guinea pig cardiomyocyte, and the latter
represents a human ventricular myocyte.

We compared the simulated drift velocities with theories of the drift induced by
the wave trains. We considered three theories: the first one for the case of extremely
dense spirals [21], the second one for the case of extremely sparse spirals [5] and
the third one for the intermediate case [22]. Let the left edge of the square be the
stimulation site. Let us use the coordinate system Oxy where the left edge has the
equation x = 0 and the edge is stimulated. The bottom edge has the equation y = 0.

The dense-spiral theory proposes the following formulas for the velocity V =
(Vx , Vy):

Vx = V1(1 − Tstim/Tspir), Vy = 0, (1)

whereV1 is the planewave speed, Tstim is the stimulation period, Tspir is the spiralwave
period in time. Later, we will call the ratio Tstim/Tspir relative stimulation period.

The sparse-spiral theory proposes the following formulas for the velocity V:

Vx = R

Tc
sinωTc, Vy = R

Tc
(cosωTc − 1), (2)

where R is the core radius, ω is the angular speed of the spiral rotation and Tc is the
time interval between two adjacent wave collisions. Note that the formulas are given
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for our coordinates here, which differ from the coordinates in the cited paper. The
same holds for the third theory.

The intermediate theory proposes the following formulas for the velocity V =
(Vx , Vy):

Vx = R(sin φ + sin θ) − λ cosφ

Tc
, Vy = − R(cosφ − cos θ) + λ sin φ

Tc
, (3)

Tc = T ∗
c

ω
− λ

V1
cosφ,

where R is the core radius, ω is the angular speed of the spiral rotation, Tc is the
time interval between two adjacent wave collisions and λ, θ, T ∗

c and φ = T ∗
c − θ are

the tip trajectory characteristics when the drift is induced (see Fig. 5 in [22] for their
definitions).

2 Methods

The problem is in general identical to that considered in [15].Weuse themonodomain
reaction-diffusion system in the form

∂u

∂t
= DΔu − Iion(u, v) + Istim(r, t)

Cm
,

∂v
∂t

= g(u, v),

where u = u(r, t) is the cell transmembrane potential at points r = (x, y) at time
t , D is the diffusion coefficient, Δu = uxx + uyy is Laplacian in two dimensions,
v = v(r, t) is the vector of the other state variables of a model. In this case, v are
ion concentrations or gating variables describing the state of ion channels in the cell
membrane. f (u, v) and g(u, v) are cell model-specific functions, Istim(r, t) is the
external stimulation current and Cm is the cell membrane capacitance.

In the LR-I model, Iion is the sum of the following ionic currents:

Iion = IK + INa + Isi + IK1.

Here, Isi is the slow inward current.
In the TP06 model, Iion is the sum of 12 ionic currents:

Iion = INa + Ito + IKr + IK1 + INaCa + INaK + IpCa + IpK + IbNa + IbCa + ICaL + IKs .
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Table 1 Mesh, stimulation and diffusion parameters in the simulations

Parameter LR-I model TP06 model

Spatial grid size, mm 0.25 0.4

Time step, ms 0.005 0.02

Stimulation current, μA/cm2 −90 −50

Stimulation duration, ms 1.5 1.5

Diffusion coefficient, mm2/ms 0.154 0.154

Integration domain size, mm 100 160

In this model, the tip trajectory makes a circle but all nodes near the tip become
excited. This means that no unexcited area is present.

The simulation parameters are given in Table1. The stimulation was applied from
one long linear electrode occupying the left edge of the domain. We used the explicit
Euler method for the integration of the system.

3 Results

3.1 Parameters of the Spiral Waves Without External
Stimulation

The important parameters of themodels are given in Table2. Since we aimed to study
the effect of different ion channels, we measured action potential duration at 90%
(APD-90), spiral wave parameters and core radius for various model modifications.
We see that the decrease in the K current lengthens the APD in the both regimes
and broadens the spiral’s core. The decrease in the slow inward (si) current shortens
the APDs and makes the spiral sparser and the core smaller. The decrease in the Na
current weakly shortens the APD in the 1Hz regime, slows the wave propagation
and increases the spiral’s temporal period, making it sparser.

In the TP06 model, the decrease in Na current increases APD in the SW regime
and the spiral’s temporal period. Also, it decreases the wave speed and the spiral’s
spatial period.

Examples of tip trajectories for all values of current conductivities are shown in
Figs. 1 and 2.

In the LR-I model with normal currents and with the Isi or INa decrease, the tip
trajectory has a complex non-circular shape (a phenomenon known as meander).
When IK in LR-I is multiplied by 0.75, the meandering is resonant, which means
that the average drift velocity is not zero (see Fig. 1B).
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Table 2 Parameters of the ionic models of the cardiac cells

Ionic
current
affected

Coefficient APD-90, ms Plane
wave
speed V1,
mm/ms

Temporal
period of
the SW
Tspir , ms

Spatial
period,
mm

Core
radius R,
mm

In 1Hz
stimula-
tion
regime

In SW
regime

LR-I model

Reference 148 40.5 0.74 61 19 5

IK 0.75 170 56.6 0.74 82.8 20 10

Isi 0.75 106 36.7 0.74 50.6 17 4

Isi 0.5 73 32.7 0.74 44.6 14 3

Isi 0.25 55 30.1 0.74 40.8 12 2.5

INa 0.75 146 41.7 0.68 59.8 16 4

INa 0.5 141 41.5 0.58 62 16 4

INa 0.25 97 44.3 0.43 71.8 17 5

TP06 model

Reference 296 218 0.68 240 84 1.6

INa 0.75 296 214 0.67 248 80 1.5

INa 0.5 297 224 0.56 264 76 1.5

INa 0.25 297 247 0.45 304 72 1.4

3.2 LVC Results

We use the following codes for the qualitative results of the LVC.
A, successful superseding. The spiral wave disappeared because of the external

forcing.
B, the spiral wave was shifted to the boundary and drifted along it.
C, the spiral wave was shifted to the boundary, where the drift stopped.
D, effect of LVC was too small to make the spiral annihilate at the boundary

within 1min of simulation.
E, break-up resulting from the external forcing (new spiral waves emerge and

disappear).
A number after a code means that the number of new spiral waves appeared. E.g.,

B2 means that the spiral drifted to the boundary and two new spirals appeared in a
transient way. If more than four spirals appeared, we label the case with suffix ‘n’.

Our results for the LR-I model are given in Table3 and Figs. 3 and 4.
The segment of effective relative stimulation periods had approximately the limits

0.87–0.96 when the membrane current conductivities were normal or suppressed for
IK or Isi . The periods close to the left limit of the segment can cause the break-up
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Reference IK × 0.75

A B

Isi × 0.75 Isi × 0.50 Isi × 0.25

C1 C2 C3

INa × 0.75 INa × 0.50 INa × 0.25

D1 D2 D3

Fig. 1 Tip trajectories in the LR-I model. Tip trajectories shown for the duration of 1 s

or appearance of numerous new spiral waves. The periods close to the right limit are
less effective in terms of time necessary for the superseding.

The successful superseding consists of two phases. During the first phase, the
waves from the electrode occupy a growing part of the medium. This phase ends
when the plane waves approach the spiral wave tip. At the second phase, the plane
waves “push” the spiral wave tip and cause it to drift in a direction, usually away
from the electrode. The second phase can finish by the disappearance of the spiral
wave or by stay of the spiral near the boundary of the medium. The moments of time
when the first phase ended, T1, and when the second phase ended, T2 (see Fig. 3),
grew with the stimulation period. At the same time, they diminished when the Isi
or INa current conductivity was decreased. Time T1 is not shown for the case when
the IK conductivity was suppressed because this suppression led to a spontaneous
drift of the spiral wave. The suppression of the IK current led to a decrease in T2
partly due to the spontaneous drift of the spiral wave. It is noticeable that the time of
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Reference

A

INa × 0.75 INa × 0.50 INa × 0.25

B1 B2 B3

Fig. 2 Tip trajectories in the TP06 model. Tip trajectories shown for the duration of 1 s

the superseding was minimal (less than 10s for all the effective stimulation periods)
when the INa current was suppressed in the maximal degree.

The drift velocity had two components, Vx orthogonal to the electrode and Vy

parallel to it. The more velocity component Vx is, the faster the spiral wave moves
away from the electrode. We analysed the relative velocity Vrel = V/V1. Figure4,
left, shows that the orthogonal component became about 4 times larger when the
INa current conductivity was set 4 times smaller. The velocity component Vx also
increased in 2 times when the Isi conductivity was diminished in 4 times. All other
variations in the conductivities that we tried did not change the first component of
the velocity.

The second component of the velocity, Vy , is displayed in Fig. 4, right. When the
conductivities were normal, diminished for IK , for INa (0.75, 0.50) or for Isi (0.75),
Vy was negative. The sign became positive and Vy grew when the Isi current was
decreased in 2 or 4 times. The behaviour of this variable was the most complex when
the conductivity for INa was decreased in 4 times. In this case, Vy was positive and
large when the relative stimulation period was less than 0.86 and it was negative and
small when the period was more than 0.86.

Generally, the drift velocity was zero when the relative stimulation period was
equal to 1. It is noteworthy that both velocity components were not zero when the
relative stimulation period was equal to 1 and the INa conductivity was decreased in
4 times.

Let us now describe our results for the TP06 model. The qualitative results for the
different degrees of the suppression of Na channels are given in Table4. The times at
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Table 3 Results for the Luo–Rudy I model

Relative stim-
ulation period

Change in the ionic currents

No changes K 0.75 si 0.75 si 0.50 si 0.25 Na 0.75 Na 0.50 Na 0.25

0.80–0.81 D E An E

0.81–0.82 E An

0.82–0.83 E D

0.83–0.84 E E D An An A3

0.84–0.85 An An A2

0.85–0.86 E An D

0.86–0.87 A A2 C3 A3

0.87–0.88 An C1 A

0.88–0.89 A C1 A1

0.89–0.90 A1 A2

0.90–0.91 A A3 A2 A A1 A2

0.91–0.92 A A A2

0.92–0.93 C1

0.93–0.94 A1 A2 A1 A A

0.94–0.95 A1 B C2

0.95–0.96 C A2

0.96–0.97 C A1 B B2 B B1 A2

0.97–0.98

0.98–0.99 D B B1 C4 B B C

0.99–1.00 D A D

1.00–1.01 B D D D D C

1.01–1.02 D

the start and the end of the induced drift are presented in Fig. 5. The relative velocity
components are shown in Figs. 6 and 7.

As we can see from Table4, the partial block of Na channels led to an expected
widening of the segment of effective stimulation periods. The maximal relative
velocity component V rel

x = Vx/V1 increased from 0.004 to 0.01 and the segment of
the effective relative stimulation periods widened from [0.96, 0.99] to [0.945, 0.99]
when the Na conductivity was reduced from 100 to 25%. The least favourable case
is when the coefficient was 75% because the segment of the relative effective periods
was the narrowest.

Figure5 illustrates that the start and end times of the induced drift grew with the
relative stimulation period for all the considered model variants. The normal ionic
current conductivities are shown in blue; the reduced conductivities are shown in red;
the more the Na channel suppressed, the thinner the line. We see that the induced
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Fig. 3 Time (in s) when the spontaneous or induced drift began (T1, shown by the low ends of the
segments) and finished (T2, shown by the top ends) in the LR-I model

Fig. 4 Relative induced drift velocity V rel
x (on the left), V rel

y (on the right) in the LR-I model
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Table 4 Results for the ten Tusscher–Panfilov model

Relative
stimulation
period

Change in the ionic currents

No changes Na 0.75 Na 0.50 Na 0.25

0.94–0.945 D

0.945–0.95 A1

0.95–0.955 D A

0.955–0.96 D D A

0.96–0.965 A A1 D

0.965–0.97 A2 A1 A

0.97–0.975 A2 A A

0.975–0.98 A1 A1

0.98–0.985 A2 D A1

0.985–0.99 A1 A1

0.99–0.995 D D D

drift began and ended sooner when the Na channel was partially blocked. This means
a faster widening of the area controlled by the external electrode and a faster shift of
the spiral wave core toward the boundary, which is a favourable effect of the change
in the membrane properties.

The plot of the relative velocity component orthogonal to the electrode is shown
in Fig. 6. This variable is positive, which means that the spiral wave drifts always
away from the electrode, and it decreaseswith the stimulation period, which indicates
that stimulation with periods close to the spiral wave period is less effective. The
dependence of the lateral velocity component on the stimulation period and Na
channel block is displayed in Fig. 7. The lateral velocity component increased 2–6
times when the Na channel was blocked.

We analysed the trajectories and calculated the predicted velocities according to
the three theories. Plots are shown in Figs. 8 and 9. For the intermediate theory, we
fitted free parameters λ and θ by approximating our experimental data on the drift
velocity and stimulation period:

∑

i

‖Vtheor (λ, θ, Tstim i ) − Vrel
i ‖ →

λ,θ
min,

whereVtheor = (Vx , Vy)was calculated according to formulas (3) and the Euclidean
metric was used. Parameter T ∗

c (θ) was found by solving the non-linear equation

V1(T
∗
c /ω − Tstim) = R(sin(T ∗

c − θ) − sin θ).
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Fig. 5 Moments of time when the spontaneous or induced drift began (shown by the low ends of
the segments) and finished (shown by the top ends) in the TP06 model

Fig. 6 Relative induced drift
velocity V rel

x in the TP06
model

Values of R, V1 and ω = 2π/Tspir were taken from Table2.
For the LR-I model, we see that both velocity components were most accurately

predicted by the intermediate theory. The sign of the component Vy was predicted
correctly by the sparse spiral theory. The absolute value of Vy differed approximately
one order of magnitude between our simulations and the second theory. The error
between the dense spiral theory and the numerical results was also approximately
one order of magnitude.

For the TP06 model, both velocity components expressed relative to V1 were
significantly smaller and had the order V/V1 = 10−3. The intermediate theory made
the best prediction in this case. The predictions of the second theory were opposite
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Fig. 7 Relative induced drift velocity V rel
y in the TP06 model

Fig. 8 Experimental and theoretical velocities in the LR-I model for the normal currents

in sign to the results of the third theory. The first theory gave inaccurate results for
Vx (error in one–two orders of magnitude).

For both models, the first theory was too far from our experimental data. The third
theory made the most precise predictions.

Break-up was observed in the LR-I model with normal ionic currents when the
stimulation period was less than 0.86 of the spiral wave period.
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Fig. 9 Experimental and theoretical velocities in the TP06 model for the normal currents

4 Discussion and Conclusions

Previous numerical experiments [16] used the Aliev–Panfilov simple cell model and
isotropic tissue. It was shown that boundary electrodes are most effective when they
are placed the closest to the spiralwave core. The effective relative stimulation periods
make a segment approximately [0.8, 0.99]. The LVCD is effective but dangerous
when the period is near the left limit of the segment due to the risk of break-up. The
LVCD is less effective when its period increases.

In contrast to the APmodel, the considered ionic models never showed drift along
the boundary.

In [16], theTP06modelwas also examinedwith positive but unreliable results. In a
wide range of stimulation periods [0.8, 1.04], LVCwas successful, but itsmechanism
was based on the emergence of several new spirals near the electrode because the
external stimulation crossed the wave back of the spiral, and a stimulus of LVCD
acted as the S2 stimulus in the S1–S2 protocol. New spiral waves drifted from the
electrode, annihilated with the initial spiral and with each other. Finally, no spirals
were left. At the same time, we cannot guarantee that all spirals will annihilate if a
parameter changes.

In this study, we found that an increase in the stimulation current from 17 to
50 µA/cm2 changes the mechanism from the breakup and annihilation to the super-
seding of the spiral wave by flat waves.

The velocity component Vx orthogonal to the electrode was well predicted for the
AP model by the simplest theory [21] of dense spirals [15]. However, the LR-I and
TP06 ionic models showed smaller drift velocity components than the AP model.
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The simplest theory was wrong for the ionic models; the theory [22] of spirals with
intermediate densities demonstrated good results for the ionic myocardium models.

The induceddrift canbe combinedwith the spontaneousdrift causedbyanisotropy,
heterogeneity, surface curvature or other factors such as gradient of the 3D medium
thickness. LVCD in 2D anisotropic media with curved fibres was studied [23], and
spontaneous drift caused by the curvature of the fibres was found. Comparing the
results of the present study with the results of the paper [23], we can conclude that
the segments of effective stimulation periods are similar, and the velocity component
Vx orthogonal to the electrode is approximately twofold smaller in the case with the
curved fibres.
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The Influence of Left Ventricle Wall
Thickness and Scar Fibrosis on
Pseudo-ECG

A. A. Razumov and K. S. Ushenin

Abstract Some cardiac diseases lead to an increase or loss of excitable myocardial
tissuemass and volume. In this short conference paper, the influence of ventricle wall
thickness and fibrosis size on pseudo-ECGwill be evaluated. This study includes two
parts: first, a simple mathematical framework is used to suggest linear dependency
between the activemyocardial volume/mass and pseudo-ECGamplitude. Second, the
bidomain model and ventricular geometry model surrounded by a volume conductor
will be used in order to evaluate the influence of left ventricles wall thickness and
scar radius on pseudo-ECG. The simulation study shows inconsistency within the
proposed linear relationship, as only 80% of the surface boundary has significant
determination coefficients for linear regressions between myocardial and pseudo-
ECG properties.

Keywords Mathematical modeling · Heart electrophysiology · Monodomain
equation · Bidomain equation · Cardiomyocyte · Fibrosis · Ventricle wall
thickness · Pseudo-ECG

1 Introduction

Some cardiac diseases lead to an increase or loss of the excitable myocardial tissue
mass and volume. For example, the myocardial wall may become thicker with the
progression of a dilated cardiomyopathy. Myocardial infarct causes the death of
cardiomyocytes and the replacement of some excitable tissue regions with a non-
conductive fibrotic scar. In this case, changes in the excitable tissue volume and
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changes in myocardial mass can be noted. These definitions are almost equivalent,
because myocardium density is close to 1.05–1.06 g/ml and does not usually vary.
Changes in themyocardiummass/volume influence the potentials of the body surface
and electrocardiogram (ECG).

An in-silico study of the influence of wall thickness on ECGwas performed in [8].
In this work, a 1500-dipoles model was used to simulate ECG in V1–V6 standard
leads under normal activation conditions. The results showed linear changes in the
QRS-complex related to myocardial wall thickness. This observation suggests the
existence of simple criteria for clinical LV hypertrophy diagnostics based on QRS-
complex amplitude, width or area under it.

Unfortunately, clinical studies indicate that ECG criteria for LV hypertrophy diag-
nostics show bad sensitivity and specificity [7, 9]. All criteria are based on QRS
length and width. Thus, additional studies for analysis of changes induced by LV
hypertrophy are required.

Recent studies have proposed criteria for LV scar quantification [4] and algorithms
for non-invasive reconstruction of scar regions [2]. Scar regions are included in this
study due to the similarities between effects of scar and LV wall thickness on ECG.

Our theoretical and in-silico study evaluates the influence of ventricularwall thick-
ness and size of the fibrotic scar on ECG. A theoretical study with a simple mathe-
matical frameworkwas first conducted. This study proposed the linear dependency of
ECG properties on a myocardial volume. However, a more complex relationship was
revealed through further simulation, which included realistic cardiomyocyte electro-
physiology model, the bidomain model of myocardium, a volume conductor around
the myocardium, and a geometrical model of the two ventricles. This approach takes
into account the correct boundary conditions on the myocardial surface and the vol-
ume conductor. Myocardium is activated from one point, which corresponds with
activation from an ectopic source or the tip of a pacemaker electrode. Analyses of
the simulation results are performed on all volume conductor surface.

2 Theoretical Analysis

This study began with a theoretical analysis of pseudo-ECG obtained from a 1D
myocardium model. The excitation wave in the 1D myocardial model was approx-
imated by a trapezoid similar to a classical theoretical framework [5] that approx-
imates the action potential as a triangle. The notations a, b, and c are fixed as the
trapezoid segments projected on the OX axis and B, C are fixed as the slopes of the
excitation wave depolarization and repolarization front. Figure1a shows the approxi-
mation and mathematical notations through space-voltage coordinates. The absolute
values of the approximated excitation wave in millivolts are not important in the
following analysis.

Let x0 denote the point of pseudo-ECG registration. Allow l1, l2 to denote the left
and right bounds of the 1Dmyocardial model, and r1, r2 to denote left and right edge
of the trapeze, respectively. For the sake of simplicity, we omit the process of excita-
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(a) (b)

Fig. 1 The excitation wave approximated by the trapezoid (a) and the corresponding pseudo-ECG
on a 1D myocardial model in the different points of measurements (b)

tion wave activation and boundary collision from consideration. The approximated
excitation wave appears from the left boundary and disappears at the right boundary.
Parts of the excitation wave outside of the 1D model were not considered.

Under the condition of an infinite homogeneous volume conductor surrounding
the myocardial tissue, pseudo-ECG Φ in the point of registration r0 = (x0, y0, z0) is
described by the following equation [5]:

Φ(r0, t) = −κ

∫
Ω

∇Vm(t) · ∇ 1

|r − r0|dr, (1)

where Ω is the myocardial domain, Vm is the transmembrane potential, κ is the
conductivity ratio. This formula can be rewritten for the 1D model in the following
way:

Φ(x0, t) = −κ

∫ l2

l1

∂Vm(t)

∂x

∂

∂x

( 1

|x − x0|
)
dx . (2)

For the approximated excitation wave, ∂Vm
∂x (t) is equal to zero on c segment of the

trapezoid plate and outside the trapezoid. ∂Vm
∂x (t) is equal to B in the repolarization

front on a, and equals to C in the depolarization front on c. Thus, the pseudo-ECG
are described by the following formula:

Φ(x0, t) = −κB
∫ r1(t)+a

r1(t)

∂

∂x

( 1

x − x0

)
dx − κC

∫ r2(t)

r2(t)−c

∂

∂x

( 1

x − x0

)
dx . (3)

Figure1b shows the pseudo-ECGs for three points x0. The mathematical deriva-
tion for the 3D myocardial slab model in the 3D space can be repeated. The
3D myocardial slice is denoted as Ω = [lx , lx + Lx ] × [ly, ly + Ly] × [lz, lz + Lz],
Lx � Ly, Lx � Lz . In a 3D space, Formula (1) could be expanded to the following:

Φ(r0, t) = −κ
lz+Lz∫
lz

ly+Ly∫
ly

lx+Lx∫
lx

∂Vm (t)
∂x

∂
∂x

(
1

|x−x0|
)

+ ∂Vm (t)
∂y

∂
∂y

(
1

|y−y0|
)

+ ∂Vm (t)
∂z

∂
∂z

(
1

|z−z0|
)
dxdydz.

(4)
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If an excitation wave front propagates perpendicularly to myocardium borders, the
derivatives ∂Vm/∂y, ∂Vm/∂z equal to zero. Thus, under condition Lx � Ly, Lx �
Lz , the expression (4) is transformed to the following form:

Φ(r0, t) = −κLyLz

∫ lx+Lx

lx

∂

∂x
Vm(t)

∂

∂x

1

|x − x0|dx . (5)

According to Formula (5), the pseudo-ECGamplitude linearly depends on the area
of the myocardial tissue section S = LyLz . Thus, the increase of LV wall thickness
should linearly increase pseudo-ECG amplitude. By analogy, replacing part of the
myocardiumwith non-conductive scar fibrosis should linearly decrease pseudo-ECG
amplitude.

TheQRS-complex is similar to a triangle. Under the condition of its fixed base, the
area of the triangle depends linearly on its height. Thus, an integral under the QRS-
complex almost linearly depends on the amplitude maximum, myocardial mass, or
volume. A more realistic model of myocardium excitation and geometry will be
utilized in the following section of this study in order to verify the statements made
thus far

3 Methods

3.1 Model of Cardiac Electrophysiology

In our simulations, the excitation wave propagation was described by the bidomain
model governing the extracellular potential φe and intracellular potential φi :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ · Gi (∇Vm + ∇φe) = βm(Cm
∂Vm

∂t
+ iion + iapp), in Ω × (0, T ],

∇ · ((Gi + Ge)∇φe) = −∇ · (Gi∇Vm), in Ω × (0, T ],
∇ · Gb∇φe = 0, in Ωb × (0, T ],
Vm

def= φi − φe,

(6)

where Ω is the myocardial domain, Ωb is the bath domain, T = 600ms is simulation
duration, Cm = 1 mF

cm2 is the membrane capacitance per area unit, βm = 1400 1
cm is

the membrane surface-volume ratio, Gi = 12mSm
cm and Ge = 45mSm

cm are intra- and
extracellular conductivities in the myocardium, and Gb = 7mSm

cm is the conductivity
in the bath domain. The transmembrane ionic current iion is described by the human
ventricular cardiomyocyte model TP06 [10].

The initial conditions are as follows: φe = 0 mV in Ω and Ωb; Vm = −86.7 mV
in Ω; iapp = −50 µA during 3 ms as stimulus of myocard.
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Fig. 2 The longitudinal, the transverse section, and the position of heart in the volume conductor
of the heart geometry model

These equations are complemented with boundary conditions (7). There is no
charge flow from an intracellular domain and the charge flow from extracellular
domain equals the flow into the bath domain.

⎧⎪⎨
⎪⎩
n · (Gb∇φb) = 0, on ∂Ωb × (0, T ],
n · (Gi∇φi ) = 0, on ∂Ω × (0, T ],
n · (Ge∇φe) = n · (Gb∇φb), on ∂Ω × (0, T ].

(7)

3.2 Geometry Model

The heart geometry model includes the left and the right ventricles. This simplified
geometry is based on the model of truncated ellipsoids [1]. This model is described
by the following parameters: R1—the external radius of the LV, H—the height of
the LV cavity, dLV—the thickness of the LV wall on the base of the heart, dapex—the
thickness of the apex, A—the distance between the LV axis and the farthest point
from the RV subepicardium, and dRV—the thickness of the RV wall. The thickness
of interventricular septum is fixed. All model parameters are presented in Fig. 2.
The heart is placed in a homogeneous volume conductor with a shape of the cube
30× 30× 30 cm.

3.3 Parameters of the Geometry Model

A set of parameters representing the geometry of the heart is fixed and based upon a
physiologically realistic range as the reference geometry [3]. This reference model
was used to build 7 computational meshes with varying LV wall thickness, and 12
meshes with varying scar radius.

Increased LV wall thickness was defined by the variable P. We increased the LV
radius R1 by P/3, increased dLV and dapex by P, and increased the LV height by P.
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The scar radius was determined by the intersection of a sphere with a radius Rscar

with myocardium, as non-excitable tissue, that is, the intercellular conductivity was
equal to Gi = 0, and the sphere was located in the center of the LV anterior wall.
The values of this model are shown in Tables1 and 2.

Simulations were performed on 20 models with open-source Oxford Chaste soft-
ware [6]. Tetrahedral computational mesheswere built withAni3D andGMSHopen-
source programs. Mesh size was less than 1.5mm in the myocardial domain, and
less than 5mm in the bath domain. Each computational mesh had approximately
3,117,800 elements and 539,620 points.

Table 1 LV wall thickness variation

No R1 (mm) dLV (mm) dapex (mm) dRV (mm) A (mm) H (mm)

0 39 10 10 4 69 78

1 40 13 13 4 69 79

2 41 16 16 4 69 80

3 42 19 19 4 69 81

4 43 22 22 4 69 82

5 44 25 25 4 69 83

6 45 28 28 4 69 84

7 46 31 31 4 69 85

Table 2 Scar radius variation No Rscar (mm)

0 0

1 7

2 10

3 13

4 16

5 19

6 22

7 25

8 28

9 31

10 34

11 37

12 40
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3.4 The Properties of the Pseudo-ECG

The peaks of the QRS-complex and T-wave, along with their integrals, were used
as parameters of pseudo-ECG. These parameters were dependent on the myocar-
dial mass and volume. Boundaries of the QRS-complex and T-wave were selected
manually based upon the results of each simulation. QRS interval was denoted as
[0, TQRS], and T-wave interval was denoted as [TQRS, TT-wave]. Peaks were defined as
the values of a signal within the interval [t1, t2] with the maximum absolute value.

P[x(t)] = x(argmax
t∈[t1,t2]

|x(t)|). (8)

Areas under the QRS-complex and T-wave were evaluated as:

A[x(t)] =
∫ t2

t1

|x(t)|dt. (9)

It should be noted that while A[x(t)] is always positive, P[x(t)] can be either positive
or negative under the scope of this study. If A[x(t)] for the T-wave increases and
P[x(t)] decreases, then T-wave is negative.

4 Results

4.1 Left Ventricle Thickness Variation

The pseudo-ECG was simulated for the series of heart geometries with different
LV wall thickness in order to verify the linear relationship between the thickness
of myocardium and pseudo-ECG properties. For this purpose, the linear regressions
yi (P) = ki P + bi were built into each mesh point i on the surface of the volume
conductor (Fig. 3). The thickness of the myocardium was selected as an explanatory
variable.

The amplitudes of the T-waves and QRS-complexes (T, QRS), and areas under
T-waves and QRS-complexes (AUC_T, AUC_QRS) were sequentially selected as
dependent variables for the linear regressions (Fig. 4). The R-square (R2) was cal-
culated for each approximation. Following this, maps of the R2 and ki slopes on the
surface of the volume conductor were analyzed (Figs. 4 and 5).

The amplitudes of the QRS-complexes and T-waves were not explained well
enough by the linear model on the part of the surface that is close to the activation
point (R2 < 0.8). The areas under QRS-complex and T-wave showed non-linear
behaviors only in a small region, which looked like a ring on the volume conductor
surface. The amplitude of QRS-complexes increased linearly almost everywhere on
the volume conductor surface when the LV wall thickness increased. In contrast, the
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Fig. 3 Pseudo-ECGs from different leads and effect of LV thickness (dLV) on the T-wave peak.
Left to right: near the LV base, near the LV apex, in the volume conductor vertex near the LV apex

Fig. 4 Box plots of slope and R2 for LV wall thickness variation

Fig. 5 Maps of R2 and ki for LV wall thickness variation. The orientation of the heart is shown in
the center
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amplitude of T-waves increased only near the activation point, decreasing in other
regions of the volume conductor surface. The surface map, which explains the areas
under QRS-complex and T-wave, is divided into two parts by slopes of the linear
regression. These maps are very similar to one another.

4.2 Scar Radius Variation

The influence of fibrotic scar on pseudo-ECG was evaluated by analogy with the
wall thickness influence evaluation. The linear regression yi (P) = ki P + bi was
built in each mesh point i on the surface of the volume conductor. Scar radius was an
explanatory variable. Amplitudes of T-waves, QRS-complexes (peak_T, peak_QRS),
and areas under T-waves and QRS-complexes (AUC_T, AUC_QRS) were sequen-
tially selected as dependent variables for the linear regression (Fig. 6). The R2 value
was calculated for each approximation. Following this, maps for R2, the ki slopes
were visualized, and the distribution of R2 and the ki slopes on the surface of the
volume conductor were analyzed (Fig. 7).

Generally, the R2 maps and slope maps were more complicated than those for
wall thickness. This was primarily noted in the area under the QRS-complex, which
formed a complicated R2 map pattern. Non-linear changes in amplitude and the areas
under the signal were localized in the small ring zone around the volume conductor.
Strong non-linear behavior was observed for QRS-amplitude on the volume conduc-
tor surface near fibrosis scar. Maps for QRS amplitudes looked as opposed to the
map of T wave amplitudes.

4.3 Analysis of All Cases

Analysis of the R2 maps and slope maps for all cases showed that localization of
low R2 and low slopes matched to each other. Linear changes with proper linear
dependency were observed on at least 80% of the volume conductor surface, and
only 20% showed non-linear behavior. Non-linear behavior was observed on the
volume conductor surface near the point of the activation for LV wall thickness

Fig. 6 Box plots of slope and R2 for scar radius variation
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Fig. 7 Map of the R2 and slope for scar radius variation

Fig. 8 Slope and R2 statistics for the II order regression model

increase, and near scar region for scar radius increase. Non-linear behavior and low
slopes were localized at the ring on the volume conductor, which is oriented along
the normal of the excitation front.

Finally, pseudo-ECG properties were approximated by second-order polyno-
mial regression represented by yi (P) = ai P2 + bi P + ci and yi (Rscar) = ai R2

scar +
bi Rscar + ci . R2 distributions for these models are presented in Fig. 8. Thus, ECG
changes are better predicted by a second-order polynomial of the scar radius than of
the wall thickness.

5 Discussion

According to this study, myocardial wall thickness and myocardial scar radius
have a linear relationship with the pseudo-ECG properties with positive and neg-
ative coefficients correspondingly. As expected, the amplitudes of QRS-complexes,
T-waves, and areas under T-waves and QRS-complexes were explained by a linear
model with a high R2 on more than 80% of the volume conductor surface. However,
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these values may be in negative dependence on the LV wall thickness P and be in
positive dependence on the size of scar Rscar in a significant portion of the volume
conductor surface (between 25 and 50%).

The linear relationship between the ECG properties and the wall thickness was
shown in [8]. That article used amodelwith 1500 dipoles in order to simulate theECG
onV1–V6 standard leads. Presence of non-linear dependencies in our simulation can
be explained by the influence of zero-flux boundary conditions at the surface of the
volume conductor, as simulationmethods from [8] did not take the volume conductor
boundaries into account.

The nonlinear properties were localized in small regions. Non-linear dependency
from wall thickness was localized at the ring on the volume conductor surface. The
approximated ring plane was normal to the excitation wavefront. The non-linear
dependence on scar radius region was localized within the volume conductor surface
near the scar region of the myocardium.

The dependence on scar size were better described by second-order regression
than by the first-order on small zones of the volume conductor surface.

There are several diagnostics criteria for LV hypertrophy: Cornell amplitude cri-
teria, Cornell product for LV hypertrophy, Sokolow–Lyon amplitude, and Sokolow–
Lyon product. All of those criteria are based uponQRS amplitude andwidth. Accord-
ing to [9] those criteria show unsatisfactory sensitivity and specificity for clinical
application.

Our simulation has shown the presence of zones in the volume conductor with
non-linear ECG changes due to myocardial wall thickness changes. The human torso
is considered to be volume conductor. Thus, the torso surface has zones with linear
and non-linear ECG answer on the LV hypertrophy.

Positioning an electrode in a zone of non-linear changes leads to failure of the
LV hypertrophy criteria, based upon ECG amplitude and width. Thus, diagnostics
criteria based on the length and width of QRS complex can provide incorrect results
due to the placement of an electrode. Additional studies are required in order to verify
this hypothesis.

The model discussed in this study has several applications for future studies and
can be used for developing and verifying non-invasive algorithms that map scar
fibrosis regions [9].

6 Conclusion

Myocardial wall thickness and myocardial scar radius have a notable influence on
pseudo-ECG. Linear regression explains the relationship between studied properties
and observed signals of pseudo-ECG for over 80% of the volume conductor sur-
face. About 20% of the volume conductor surface have non-linear dependencies.
These regions may be a reason for low sensitivity and specificity of the LV hyper-
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trophy diagnostics criteria. However, additional studies are required to prove this
assumption.

The simple mathematical frameworks cannot fully explain the linear relationship
due to the significant influence of the ventricles geometry and zero-flux boundary
conditions on the volume conductor boundaries. Therefore, the simulations should
use a bidomain model.
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Modeling the Effect of Ion Channel
Inhibitors on the Functioning of the
Cardiac Sinoatrial Node Cells

A. M. Ryvkin and E. A. Budeeva

Abstract A regular rhythm of the mechanical contraction of the heart is formed in
the so-called sinoatrial node (SAN) of the heart. In the current paper we introduce
a mathematical model of the SAN cell functionality paying particular attention to
calcium activated ryanodine receptors (RyRs) stochastic dynamics during calcium
cycling. We explore RyRs opening-closing processes and RyRs sensitivity to cal-
cium ions near its activation centers. Also we investigate the action of ion channels
inhibitors (nifedipine and lidocaine) on the electric activity of SAN cells. We show
that the action of ion channels inhibitors on SAN cells depends dramatically on RyRs
sensitivity which can vary under different physiological conditions (aging, genetic
mutations, etc.).

Keywords Calcium dynamics · Heart pacemaker cell · Rhythm disturbances ·
Channelopathy · Nifedipine · Lidocaine

1 Introduction

RyRs play a major role in Ca2+ release from the intracellular calcium storage
(sarcoplasmic reticulum, SR) [1] so genetic mutations can cause a set of heart dys-
functions (e.g. catecholaminergic polymorphic ventricular tachycardia (CPVT)) [2].
Membrane ion channel inhibitors are usedwidely for the treatment of cardiomyocytes
related deseases. For example nifedipine (a special inhibitor of L-typemembrane cal-
ciumcurrent) is used formalignant hypertension, lidocaine (sodiumcurrent inhibitor)
for ventricular tachycardia. However, the action of these inhibitors on sinoatrial node
cells (SANCs) functioning is not clear yet, especially in case of genetic mutations.
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Thus ion inhibitors should be examined (also by means of mathematical modeling)
for their action on SANC functioning in case of different RyR channelopathies.

In this paper we introduce a mathematical model of SANC functioning using a
detailed description of RyRs cluster on the SR membrane. We varied RyRs calcium
sensitivity and examined SANCs response to ion channels inhibitors.

2 Methods

2.1 Maltsev–Lakatta Model of the Rabbit SANC

The question of the nature of the self-oscillatory dynamics of SANC rhythm has
been open for many years, and there is still no consensus on the causes of the auto-
oscillatory mode of this kind of cell functioning [1, 3]. Many experiments on the
calciumdynamics in the heart pacemaker cells [4] have shown that even in the absence
of stimulation from external membrane currents, spontaneous periodic releases of
Ca2+ from terminal cisternae of SR occur. This fact directly confirms the existence
of internal calcium oscillators, the so-called calcium “clock”.

Maltsev and Lakatta developed a rabbit SANC model [5] (ML model), which
describes the self-consistent interaction of internal Ca2+ clock and the external mem-
brane oscillator (extracellular membrane currents) and can help to research themech-
anisms of formation and stability of Ca2+ concentration fluctuations in different parts
of the cardiac cell. Neglecting the complexity of the Ca2+ release system, in terms
of so-called “Common pool theory” [6], the ML-model a Ca2+ release unit (RU) is
unified in a system which consists of four cell compartments (Fig. 1): SR network
(nSR), junctional SR or SR lumen (jSR), subspace (SS) and the cytosole (i). Ca2+

Fig. 1 Schematic representation of Ca2+-release unit in the cardiac cell



Modeling the Effect of Ion Channel Inhibitors on the Functioning … 303

concentrations in these compartments are denoted as CanSR,Ca jSR,CaSS and Cai
respectively.

Maltsev and Lakkatta suggested a standard description scheme of Ca2+ dynamics
in cell compartments and defined the following Ca2+ fluxes between cell compart-
ments: Jre f = kre f (CanSR − Ca jSR) is the refill flux with a refill rate kre f ; Jup is the
nSR refill flux; Jdi f = kdi f (CaSS − Cai ) is the diffusion flux from the dyadic space
to the cytosole with a rate kdi f .

Actually, the RyRs form compact clusters of 50–200 coupled RyRs on the SR
membrane [7]. The main weakness in the ML-model is the absence of description
of a complex system of RyRs cluster dynamics and opening/closing cooperativity
effect. ML-model approach is based on a description of RyR system in terms of
Shannon [8] model which uses a formalism of a unified single RyR.

The release flux from the SR is defined as: Jrel = krel O · (Ca jSR − CaSS), where
krel is a release rate constant, O is the current probability to find the uniform RyR
in the opened state. RyR opening/closing probabilities depend on CaSS and Ca jSR

concentrations.

2.2 Electron-Conformational Model of a Cluster of RyRs

To describe a stochastic process of RyRs activation/deactivation we use previously
developed [9] Electron-Conformational model (ECM) of the RyR stochastic dynam-
ics. This theory provides a continuous alternative to the traditionally used discrete
Markovian schemes. The model describes RyR states in only two degrees of free-
dom: slow conformational coordinate Q (describes the permeability of a RyR) and
fast electronic degree of freedom describes binding/unbinding of Ca2+ ions to/from
RyR activation sites.

RyR states are described in terms of Electron-Conformational potential which is
a two-well profile:

E± = K Q2

2
− pQ ± aQ

2
,

where a is the electron-conformation coupling parameter, p is the effective stress
parameter (describes lumenal Ca2+ action on RyR and depends on Ca jSR), K is the
effective elastic constant. Further we take K = 12, a = 5 (in dimensionless units).
Slow conformational degree of freedom obeys Langevin equation:

MQ̈ = − ∂

∂t
E(Q) − M� Q̇ + R(T ),

where M is a RyR mass (further M = 1), � is the effective dimensionless friction
constant (further � = 7), and R(T ) is the thermofluctuation term (in the current work
it is neglected).
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Electronic transition probability is assumed to depend on CaSS according to the
following formula:

Pelect open−closed =
{

α · Ca2SS, CaSS ≥ CaSScrit
0, CaSS < CaSScrit

(1)

where CaSScrit is the threshold level of Ca2+ concentration in the subspace when
exceeded, the probability Pel is no longer zero. α is the electronic transition proba-
bility parameter.

In the current research we do not take into account Ca2+ diffusion in the dyadic
space, so we can not reproduce here so-called Calcium Induced Calcium Release
(CICR) process and “domino-like” RyRs opening process. However, we should take
into account calcium induced coupling between RyRs. Experimental studies [10]
show that CaSS should be sufficient enough to start CICR process and to activate a
group of RyRs to begin calcium release process. The designated parameter CaSScrit
in (1) is responsible for RyR “cooperative” sensitivity to CaSS concentration. As we
use a Cartesian lattice of RyRs in our model, this parameter also plays a role of an
allosteric coupling characteristics of a RyR. Allosteric coupling between neighbour-
ing RyRs plays a cooperative role in activation/deactivation of the channels [11].

Traditionally [8], the unbinding probability is considered to be independent on
Ca2+ concentration and is set to be constant: Pelect closed−open = Pelect unbin .

In this paper we simulate the behavior of 10× 10 Cartesian RyRs lattice on the
SR membrane, and each RyR obeys the formalism of ECM stochastic equations.
In our model release flux from the SR (unlike the ML model) is defined as: Jrel =
krel Nopen(Ca jSR − CaSS), where krel is the release rate constant via a single RyR
and Nopen is the number of open channels in the lattice.

3 Results

Previous experiments [12] showed that the combination of the ML-model and ECM-
model of RyRs cluster describes a set of effects of RyRs activation/deactivation
during calcium dynamics process in SANCS. In the current paper we performed a
series of experiments using the following set of parameters: Pelect unbin = 0.0001; α
= 0.001; krel = 0.01 mM/ms; kdi f = 25 mM/ms; kre f = 0.025 mM/ms. In the begining
of the simulations all RyRs in the system are closed. CanSR(t = 0) = 1.5 mM,
Ca jSR(t = 0) = 0.32 mM, CaSS(t = 0) = 0.139 µM and Cai (t = 0) = 0.15 µM.
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3.1 Nifedipine Action on a SANC

Recent experiments on SANC tissue show [13] that 0.5µMof L-type Ca2+ inhibitor
stops action potential generation in rabbit peripheral SANCs. The suppression of
electrical activity occurred in 7–10min after the addition of the drug. In [14] it was
shown that 2 µM of nifedipine is able to block central rabbit SANC activity. It was
shown earlier [13] that the combinedmodel qualitatively reproduces the experimental
data on the effect of nifedipine on the activity of the cardiac pacemaker cells. Inhibi-
tion of L-type Ca2+ current in the model was implemented by decreasing the value
of parameter gLCa , which is the maximal L-type channel permeability. In Fig. 2, time
series of SANC membrane potential are presented for a different values of gLCa ↓
is the percentage decrease of gLCa . For the mentioned set of model parameters and
the standard value of CaSScrit = 0.3 µM AP generation disappeared at gLCa ↓ =
50%. Decreasing RyRs sensitivity to CaSS (CaSScrit = 0.3 µM), we observed that
the critical value of gLCa ↓ decreased to 20%.

Figure2b shows the dependence of gLCa ↓ on CaSScrit corresponding to how
RyRs calcium sensitivity influences the critical concentration of nifedipine which
stops SANC functioning. The dependence has a maximum (50%) at CaSScrit =

Fig. 2 The effect of Ca2+ L-type current inhibition for different RyRs sensitivity to the subspace
Ca2+. a Time series of the SANC membrane potential for different values of gCaL decrease. b The
dependence of critical L-type channel connectivity decrease (gLCa ↓) on RyRs calcium sensitivity
parameter CaSScri t
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0.15–0.25 µM. A decrease of RyRs Ca2+ sensitivity decreases the critical value
of gLCa ↓ dramatically. Also a decrease of the RyRs sensitivity (CaSScrit < 0.15
µM) decreased the critical value of gLCa ↓. Therefore, in the heart cells with RyRs
genetic mutations with particular influence on calcium sensitivity, required critical
concentration to cease AP generation can be lower, than in healthy heart cells.

3.2 Lidocaine Action on a SANC

Experimental data [15] show that 1 mM of lidocaine stops AP generation process
in SANC. To simulate lidocaine action on SANC functioning we decreased gbNa

parameter (maximum Na membrane channels connectivity). As one can see from
the Fig. 3a, at CaSScrit = 0.3 µM, AP generation process stopped at gbNa ↓ = 60% (a
critical value of gbNa decrease at which AP stops). At CaSScrit = 0.4 µM, AP gen-
eration process stopped at gbNa ↓ = 30%, thus decrease of RyRs calcium sensitivity
decreases critical doze of lidocaine which is able to stop the SANCs AP generation.

Fig. 3 The effect ofNa+ current inhibition for a differentRyRs sensitivity to subspaceCa2+.aTime
series of the SANCmembrane potential for different values of gbNa decrease. b The dependence of
the critical Na+ channel connectivity decrease (gbNa ↓) on the RyRs calcium sensitivity parameter
CaSScri t
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Figure3b shows the dependence of the critical value of gbNa decrease on RyRs
calcium sensitivity parameter CaSScrit . When CaSScrit=0.17–0.22 µM, no AP dis-
ruptions were observed for a total current Na+ inhibition. Both an increase and
decrease of CaSScrit increased SANC response to the lidocaine action.

4 Discussion

Previously [12], we showed that Ca2+ clock behavior depends on the CaSScrit value.
Typical timeseries of CaSS(t), Nopen(t), L-type current ICaL(t) and Ca jSR(t) are
presented in the Fig. 4 for different CaSScrit values. Three typical modes of Ca2+
clock behavior are presented.

The case of the high RyRs sensitivity (CaSScrit < 0.02 µM). Local calcium
releases (LCRs) support channels openings. They do not close during diastole totally,
so, the diastolic Ca2+ leakage takes place. Ca2+ transient occurs only due to L-type
Ca2+ current.

The case of the low RyRs sensitivity (CaSScrit > 0.04 µM). LCRs are not able
to overcome a threshold CaSS level; Ca2+ transient occurs only due to L-type Ca2+
current.

Fig. 4 The behavior of Ca2+ clock for different values of RyRs calcium sensitivity. Black dashed
lines corresponds to CaSScri t values
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The case of themediumRyRs sensitivity (0.02µM< CaSScrit <0.04µM). LCRs
are able to increase CaSS above the threshold level. Ca2+ transient may occur due to
L-type current, either due to LCRs.

Thereby, Ca2+ clock functioning is sensitive to L-type channel inhibition in case
of a low or a high RyRs calcium sensitivity.

Inhibition of the Na+ current slows down a diastolic depolarization [5] and alters
the L-type current initiation. Thus, Ca2+ clock is sensitive dramatically to the Na+
current inhibition in case of a low or a high RyRs calcium sensitivity.

Concluding, gLCa ↓ (CaSScrit ) as well as gbNa ↓ (CaSScrit ) dependences have
a nonmonotonic form because of different modes of Na+ clock behavior at high,
medium and low RyRs sensitivity.

5 Conclusions

Nifedipine and lidocaine are widely used in the medicine to prevent ventricular
arrhythmias but their effect on the SANCs have not been studied well. The above-
mentioned experiments revealed an inhibitory effect of these drugs on the SANCs
AP generation [13, 15].

Our simulations have shown that the critical inhibitor concentration, which is
able to suppress SANC activity, depends on RyRs Ca2+ sensitivity. According to our
simulation results, we can illuminate the target for physiological studies of the effect
of the inhibitors in case of RyRs genetic mutations. Giving a general panorama on
our results we can conclude that integration of a detailed RyRs stochastic Electron-
Conformational model is able to describe RyRs behavior in details on the macro-
molecular level and examine RyRs activation process disturbances.

We show here that it is important to examine RyRs calcium sensitivity to predict
undesirable consequences of the ion channel inhibitor action. Especially with a low
sensitivity of the RyR channels to the subspace Ca2+, the AP-ceasing critical value
of the concentration of inhibitors of membrane calcium and sodium channels drops
sharply. Recall that the RyRs sensitivity decrease is observed in a number of genetic
disorders, for example CPVT [2, 3].

Acknowledgements Calcium release system study is supported by RFBR grant 16-34-60223.
The work was carried out within the framework of the IIF UrB RAS theme No. AAAA-A18-
118020590031-8 and RF Government Act 211 of March 16, 2013 (agreement 02.A03.21.0006).

References

1. Bers, D.: Excitation-contraction coupling and cardiac contractile force. Springer Science &
Business Media (2001)

2. Betzenhauser,M.,Marks, A.: Ryanodine receptor channelopathies. Pflügers Arch. Eur. J. Phys-
iol. 460(2), 467–480 (2010)



Modeling the Effect of Ion Channel Inhibitors on the Functioning … 309

3. Ellenbogen, K., Wilkoff, B.L., Kay, G., et al.: Clin. Card. Pacing. Defibrillation and resynchro-
nization therapy E-Book, Elsevier Health Sciences (2016)

4. Vinogradova, T., Lyashkov, A., Zhu, W., et al.: High basal protein kinase A-dependent phos-
phorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac
pacemaker cells. Circ. Res. 98(4), 505–514 (2006)

5. Maltsev, V., Lakatta, E.: Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal
voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
Am. J. Physiol. Heart Circ. Physiol. 296(3), H594–H615 (2009)

6. Stern, M.: Theory of excitation-contraction coupling in cardiac muscle. Biophys. J. 63(2),
497–517 (1992)

7. Marx, S., Gaburjakova, J., Gaburjakova, M., et al.: Coupled gating between cardiac calcium
release channels (ryanodine receptors). Circ. Res. 88(11), 1151–1158 (2001)

8. Shannon, T., Wang, F., Puglisi, J., et al.: A mathematical treatment of integrated Ca dynamics
within the ventricular myocyte. Biophys. J. 87(5), 3351–3371 (2004)

9. Moskvin, A., Philipiev, M., Solovyova, O., et al.: Electron-conformational model of ryanodine
receptor lattice dynamics. Prog. Biophys. Mol. Biol. 90(1–3), 88–103 (2006)

10. Cheng, H., Lederer,W., Cannell, M.: Calcium sparks: elementary events underlying excitation-
contraction coupling in heart muscle. Science 262(5134), 740–744 (1993)

11. Williams, G., Chikando, A., Tuan, H.T., et al.: Dynamics of calcium sparks and calcium leak
in the heart. Biophys. J. 101(6), 1287–1296 (2011)

12. Ryvkin, A., Zorin, N., Moskvin, A., et al.: The interaction of the membrane and calcium
oscillators in cardiac pacemaker cells: Mathematical modeling. Biophysics 60(6), 946–952
(2015)

13. Khokhlova, A., Syunyaev, R., Ryvkin, A., et al.: The effects of intracellular calcium dynamics
on the electrical activity of the cells of the sinoatrial node. Biophysics 61(6), 893–900 (2016)

14. Kodama, I., Nikmaram, M., Boyett, M., et al.: Regional differences in the role of the Ca2+ and
Na+ currents in pacemaker activity in the sinoatrial node. Am. J. Physiol. Heart Circ. Physiol.
272(6), H2793–H2806 (1997)

15. Golovko, V., Lebedeva, E.: The involvement of lidocaine and tetrodotoxin-sensitive current in
the generation of action potentials with low dv/dt max in the cells of the mouse sinoauricular
region. Fiziolohichnyi zhurnal (Kiev, Ukraine: 1994) 59(5), 31–40 (2013)



The Influence of Ryanodine Receptors’
Non-uniform Arrangement on the
Probability of Ca2+ Sparks

S. Yu. Khamzin and B. I. Iaparov

Abstract Many essential physiological processes are controlled by calcium. Ca2+
sparks are the elementary events of calcium release from the sarcoplasmic reticulum
(SR) via groups of ryanodine receptors (RyRs). Studying Ca2+ sparks is of great
importance to life sciences. Recent experimental studies have shown that RyRs have
a non-uniform arrangement in calcium release units (CRUs); however, very little
literature takes this fact into account. In this work, we model calcium sparks from
CRUs with non-uniform arrangements of RyRs. We show that both parameters that
describe the distance between the channels (λmax) and the clustering of channels
(Nc) correlate well with the spark probability Ps (≈90 and 80%, respectively). This
result demonstrates that channels cannot be divided into non-interactingRyR clusters
inside CRUs. The results of Monte Carlo simulations show that model parameters
of RyR gating and calcium diffusion affect Ps and the correlation between Ps and
λmax or Nc at different RyR arrangements.

Keywords Calcium sparks · Calcium dynamics · Ryanodine receptors

1 Introduction

The contraction of the cardiac myocyte arises from the process of excitation-
contraction coupling (ECC), which is initiated by calcium release units (CRUs).
During ECC, dihydropyridine receptors (DHPRs) located in the t-tubule release the
Ca2+ into the dyadic space. The increase of Ca2+ concentration in the dyadic space
leads to an opening of Ca2+ release channels, which are known as ryanodine recep-
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tors (RyRs). RyRs are located in the sarcoplasmic reticulum (SR) membrane. RyRs
release additional Ca2+ into the subspace from the SR, and these sources of Ca2+
flux generate a Ca2+ transient that triggers a cardiac muscle contraction. This study
focuses on the mechanisms of calcium release from SR.

Events of Ca2+ release from a single CRU, which are referred as Ca2+ sparks,
have been studied theoretically and experimentally for the last 25years. However,
many questions remain. Earlier results have shown that the SR membrane contains
nearly crystalline 2D arrays of RyRs [4, 5]. However, recent experimental works on
RyRs’ arrangement have shown the non-uniform distribution of RyR channels inside
dyads; the distribution depends on environmental changes, such as the change of the
free Mg2+ concentration [1].

In an electron micrograph, an RyR can be readily identified as being a homote-
tramerwhenmeasuring roughly a 29 × 29 × 12 nm cuboid. According to [1], several
types of the RyR neighbourhood in CRUs have been identified:

• Checkerboard. It is roughly a corner-sharing physical RyR connection.
• Side-by-side. It is roughly an edge-sharing physical RyR connection.
• Both. In this configuration, RyR has both types of neighbours.
• Isolated. RyR is not physically connected with other channels.

The next question is how the RyRs’ spatial distribution in CRUs changes calcium
spark properties. Recent calcium spark models [8, 9] have taken the geometry of
CRUs into account. In these works, channels are placed on a two-dimensional square
lattice with a defined adjacency matrix for the cluster. It has been shown that the
maximum eigenvalue λmax of the adjacency matrix is a reliable predictor of Ca2+
spark probability Ps , i.e., the probability that a spontaneous RyR opening triggers a
spark in both three-dimensional realistic [9] and simple linear network [8] models.
The bigger the λmax is, the bigger the Ps is. But these models do not take into account
the different RyR arrangements for the nearest neighbour distance (NND); hence,
they do not take into account the isolated channels in CRUs.

In our recent work [7], we showed that the distribution of RyRs in CRUs has an
effect on calcium spark properties, such as Ps , which is defined as in [9]: a fraction
of calcium events with a maximal number of channels that is greater than or equal
to 4 and defined as the maximum eigenvalue λmax of the inverse distance matrix as
a good predictor for Ps . In this work, we cluster the channels of RyRs and compare
the predictive power of this CRU feature with λmax. We also show that Ps is affected
by different non-uniform RyR arrangements at different model parameters, though
Ps is not influenced by the RyR arrangement at low Ps .
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2 Methods

2.1 Calcium Spark Model

N RyR channels in the CRU are placed on a plane. Each channel’s state is described
by a random variable, Xi (t), which is equal to 1 when the channel is open and 0
when the channel is closed. If the channel i is open, the probability that it closes
within an infinitesimal time step dt is given by δdt , where δ is constant. If channel
i is closed, it transitions into the open state in time dt with probability βi dt ; βi is
given by βi = k+C

μ
i , where k+ is the opening rate constant, Ci = ∑N

j X j (t)C ji is
the elevation of teh Ca2+ concentration caused by an open channel at time t , and μ
is the Hill coefficient for Ca2+ binding.

A recent cryo-electron microscopy study of RyRs [3] showed different types
of physical interactions between RyRs, and it depends on Ca2+ concentration. In
this study, we incorporate a simple model of Ca2+ diffusion that relates this model
to the Ca2+-based communication between RyRs; thus, in this work, we do not
take into account the conformational interaction of RyRs with their neighbours.
We use the steady-state diffusion equation for a continuous point source in a semi-
infinite volume; this is done to obtain the Ca2+ concentration sensed by a single open
channel [2]:

C ji = IRyR
2πzFdcr ji

(1)

where IRyR is the unitary current of a single channel, z = 2 is the valency of Ca2+, F
is Faraday’s constant, dc is the effective diffusion coefficient of Ca2+ in the release
site subspace, and r =

√
(xi − x j )2 + (yi − y j )2 is the distance between channels’

pores. The probability pi (t) that channel i is open at time t obeys themaster equation:

dpi (t)

dt
= βi (1 − Xi (t)) − δXi (t) (2)

The calcium spark was initiated by opening a random channel in the CRU. The
modelwas simulated using theGillespie algorithm [6]. Ps in thismodelwas estimated
by running an ensemble of 10,000 simulations per data point. Despite being very
simple, this model provides good agreement for Ps with the detailed 3D Ca2+ spark
model [8], which has a CRU as a 2D uniform grid.

2.2 Clustering

In a previous study [7], we developed an algorithm that created CRUs according to
a pre-defined non-uniform RyR arrangement.
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Suppose that Nch , NSbS , Nb, and Ni are channels that we want to have as checker-
board, side-by-side, both, or isolated arrangements (relative to their nearest neigh-
bour), respectively. To classify an RyR’s position, we used the same set of criteria
as in [1]; we considered an RyR to be in a checkerboard arrangement relative to its
neighbour(s) if their sides were parallel and separated by ≤3 nm and if they over-
lapped by ≤19 nm. If those criteria were fulfilled but the overlap exceeded 19 nm,
the channels were considered to be side-by-side. Some channels had neighbours in
both configurations, while others had none and were considered isolated. We did not
rotate any channel so that their edges were all parallel to the axes.

We used a genetic simulated annealing (GSA) algorithm [10], which is a global
optimization algorithm and a combination of a genetic algorithm and simulated
annealing. Themain idea behind this algorithm is that the next population is generated
using a genetic algorithm; then, a Boltzmann trial is used to choose between children
and parents (current and previous species). This strategy is helpful for improving the
population diversity during the generation evolution.

Each channel is assumed to be a square with a length of 29 nm. A target function
f (R) is as follows: It is the function of 2N variables with (x, y) coordinates of the
centres of each channel. For each channel, the function checks whether it intersects
with other channels (in another case, function returns enormous value); the function
then classifies the channel according to the criteria described above. The target func-

Fig. 1 Themodel CRU patterns. CRUs have a very different RyR geometry, number of components
of adjacency, and a different local density of channels (despite having the same NND distribution)
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tion is the sum of the squares of differences between the defined number of channels
in each arrangement and provided by vector R.

It can be clearly seen that the minimum of this function is zero, which means that
R provides the same arrangement distribution that we defined. GSA is a stochastic
algorithm; hence, it generates different CRUs but with the same distribution (see
Fig. 1). As a result, Ps in this model was estimated by running an ensemble of 1000
CRUs per distribution.

To cluster the RyRs on a 2D plane, we developed an algorithm for determining
RyR clusters inside a single CRU. We built the following matrix A:

Ai j = θ(C − ri j ) (3)

where θ is a Heaviside function and C is a parameter of clustering. The number
of clusters Nc is the number of components of adjacency in matrix A. To find the
parameter C , we solved the minimization problem. The target function was 1-R2,
where R is the correlation coefficient between the Nc and Ps .

2.3 Computational Details

The program for generating CRU using GSA and the Gillespie algorithm simulation
was written in C++ and compiled on g++. The program works as follows: First, it
generates a calcium release unit with a predefined number of channels in different
arrangements by using the algorithm described above. Then, the program calcu-
lates calcium spark scenarios with the current release unit; this is done by using
the previously described model with pre-defined values of parameters of a calcium
spark model. Finally, the data generated by the program (channels’ coordinates and
scenarios) are analysed by scripts written in Python 2.7.

We implemented the GSA and Gillespie algorithms by using papers [6, 10]. The
GSA algorithm was parallelized by executing the population of solutions in parallel,
and the Gillespie algorithm was parallelized by executing scenarios in parallel. Both
algorithms were parallelized using OpenMP. The generation of random numbers in
parallel was done using OMPRNG (http://www.stat.uiowa.edu/mbognar/omprng).

The experiments were carried out on the Uran supercomputer of the Krasovskii
Institute of Mathematics and Mechanics.

3 Results and Discussion

Weperformed a series of computer simulations of calcium sparks in the simplemodel
described above. The values of parameters, which affect transition rates, were taken
from [9] and are shown in Table1.

http://www.stat.uiowa.edu/mbognar/omprng
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Table 1 Parameters that define transition rates between open and closed states and their values

Parameter Value Units

δ 0.5 ms−1

IRyR 0.15 pA

dc 200 µm2 s−1

μ 2.1 −
k+ 1.107 · 104 µM−µ s−1

Fig. 2 Left panel: Ps dependence onλmax of an inverse distancematrix. Right panel: Ps dependence
on a number of clusters Nc

We defined an inverse distance matrix D for each generated CRU. It is a N × N
matrix, where diagonal elements are 0 and Di j = 1

ri j
> 0, i �= j . It is an analog of

an adjacency matrix from other papers [8, 9]. Panel A of Fig. 2 shows Ps of a CRU
with a different maximum eigenvalue of an inverse distance matrix λmax. Ps strongly
correlateswithλmax (R2 = 0.92). PanelBof Fig. 2 shows Ps dependence on a number
of clusters. In this figure, the value of C = 57 nm was determined by the method
described above. Ps also strongly correlates with Nc (R2 = 0.79). It can be clearly
seen that both CRU features can predict the Ps properly.

It is worth noting that C does not depend on spark model parameters; rather,
the change of these parameters influences the predictive power of both features.
Figure3 shows the dependence of the correlation between the λmax (left panel), Nc

(right panel), and Ps at different Ca2+ diffusion coefficients. It also shows that both
correlation coefficients come to zero at large diffusion coefficients. The change of the
RyR’s open-to-closed transition rate (k+) provides the same effect. The reason for
this is that, with an increase of dc and a decrease of k+, the open probability of RyR
decreases; thus, the spark cannot be created, which is due to inhibited RyR gating or
a lack of calcium at any number of open channels. Hence, RyRs’ arrangement inside
dyads does not matter.

To prove our hypothesis, we found a correlation coefficient between the arrange-
ment parameters (λmax, Nc) and Ps . Figure4 shows that the Ps does not depend on
RyR arrangement inside dyads (though only at a low Ps), which can be caused by
diffusion that is too fast and by inhibited RyR gating (as mentioned above).
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Fig. 3 Left panel: correlation coefficient Rλmax (between λmax and Ps ) dependence on dc. Right
panel: correlation coefficient RNc (between Nc and Ps ) dependence on dc

Fig. 4 Left panel: coefficient correlation Rλmax (between λmax and Ps ) dependence on Ps . Right
panel: coefficient correlation RNc (between Nc and Ps ) dependence on Ps

4 Discussion and Conclusion

We used a simple model of a calcium spark, which was based on another work
[8], with a non-uniform distribution of the RyR channels inside CRU. The results
showed that Nc can predict the spark probability. The same is true for λmax. However,
at the same time, Nc is less convenient than λmax because we need to estimate an
additional variable C . As a result, all possible configurations can be described by
λmax. It was also shown that, at low Ps , it does not depend on the RyR arrangement,
which is logical. If the channel is heavily inhibited or if calcium interaction “power”
defined by the calcium diffusion coefficient is not big enough, the calcium spark is
not initiated at any RyR arrangement.

Future works should include further improvement of the Ca2+ sparkmodel, which
takes into account an improved RyR gating model and a time-dependent solution for
the reaction-diffusion equation.

In conclusion, despite a number of simplifications in a Ca2+ spark model, this
approach is believed to provide novel methods for studying the calcium release
process.
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Methods of Evaluating the Adaptation
of the Body of Agricultural Workers
to Changing Conditions of Social
and Industrial Environment

V. P. Stroshkov, N. V. Zotova, N. V. Novikov, M. B. Nosyrev, A. N. Semin
and H. Kitonsa

Abstract The study of the mechanisms of adaptation of the body of agricultural
workers to changes in the social and industrial environment is an important task, the
solution of which will be the development of a comprehensive technology to control
the degree of tension of regulatory systems and correction of functional resources
of the body with the help of personalized therapy. Non-invasive methods of rapid
diagnosis with the use of hardware and software systems are of great importance for
assessing the adaptive capacity of the human body to physical and psycho-emotional
stress. However, these complexes do not evaluate the influence of external factors on
the degree of tension of regulatory systems and functional reserves of the body. The
purpose of the presented work is to develop a method of comprehensive assessment
of adaptation of the body of agricultural workers to heavy loads in changing condi-
tions of social and industrial environment with the help of prenosological screening
diagnostics using hardware and software complex “ROFES” and methods of math-
ematical statistics (in particular, regression analysis).

Keywords Prenosological diagnostics · Functional and resource state of organs ·
Hardware and software complex · Regression analysis

V. P. Stroshkov · H. Kitonsa
Ural Federal University, 19 Mira street, 620002 Ekaterinburg, Russia
e-mail: 9028713207@mail.ru

N. V. Zotova
Institute of Immunology and Physiology of the Ural Branch of the RAS,
Ekaterinburg, Russia

N. V. Novikov (B) · A. N. Semin
Ural State Mining University, Ekaterinburg, Russia
e-mail: NNovikov@bk.ru

M. B. Nosyrev
Ural Agrarian University, Ekaterinburg, Russia

© Springer Nature Switzerland AG 2020
S. Pinelas et al. (eds.), Mathematical Analysis With Applications,
Springer Proceedings in Mathematics & Statistics 318,
https://doi.org/10.1007/978-3-030-42176-2_31

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42176-2_31&domain=pdf
mailto:9028713207@mail.ru
mailto:NNovikov@bk.ru
https://doi.org/10.1007/978-3-030-42176-2_31


320 V. P. Stroshkov et al.

1 Introduction

Employees of agricultural production, the main branches of which are the field and
animal husbandry, have unfavorable working conditions, which are characterized by
the ever-changing impact of weather conditions, dust and gases, noise and vibration,
uncomfortable position of the body in space during a variety of work operations,
significant physical activity, irregular working hours. At the same time, agricultural
workers have almost no time for full recovery, since they work at home in a personal
subsidiary farm, where they are also exposed to a variety of loads. R.M. Baevsky and
A. P. Berseneva consider the state of the human body (his health or illness) as a result
of interaction with the environment, that is, as a result of adaptation or disadaptation
of the body to environmental conditions [1]. The transition from health to disease
is a process of gradual decline in the ability of a person to adapt to changes in the
social and working environment, to the surrounding conditions. Then the measure of
human health can be considered as the degree of tension of the regulatory systems
of the body, necessary to maintain a balance between the body and the environment.
The study of the mechanisms of adaptation of the body of agricultural workers to
changes in the social and industrial environment is an important task, the solution
of which will be the development of a comprehensive technology to control the
degree of tension of regulatory systems and correction of functional resources of the
body through personalized therapy. One of the modern methods of prenosological
diagnosis is a hardware-software complex (HSC) ROFES (Pic.1) [2] (Fig. 1).

The authors have previously conducted a comprehensive study of the use of tech-
nology “ROFES” in the sport of high achievements [3].

HSC ROFES is a mobile portable device connected to both personal and tablet
computers that have the ability to install software from the Internet, which imple-
ments remote access technologies to the results of surveys; intuitive and user-friendly

Fig. 1 Hardware and software complex of non-invasive screening diagnostics ROFES: a the mea-
surement process; b the interface with the measurement results
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interface that displays a variety of indicators; simplicity of design and use, requiring
no special training and score system. The method of assessing the adaptive capabili-
ties using HSC ROFES is based on the impact of electrical pulses of a certain current
and duty cycle on the biologically active point MS-7, located on the inner side of
the wrist of the left hand, through which all organs sent a microcurrent pulse, caus-
ing a response. In humans, each organ works in a strictly defined, inherent rhythm.
The responses of these rhythms through feedback are returned back to the device,
and then compared in the program with the reference rhythms that are characteristic
of the body of a healthy person of appropriate gender and age. The result of treat-
ment of testing of the body are expressed on a five-point scale indicators of overall
health; functional and resource state of organs and systems, determining their adap-
tive responses to different loads; psychoemotional state. To obtain more accurate
results of operational diagnostics of the functional and resource state of 17 organs
and systems of the human body, as well as its psycho-emotional state, it is necessary
to make several rofograms daily, which is not always possible in the conditions of
agricultural production.

2 The Method of Complex Assessment of Adaptation
of the Body of Agricultural Workers to Heavy Loads
in the Changing Conditions of Social and Industrial
Environment

The use of regression analysis allows us to establish a relationship between environ-
mental factors and the overall level of health as a result of adaptation or disadaptation
of the body to environmental conditions. The factors of the external environment
include a set of social and production factors. As an example, let’s focus on the
three-factor experiment. Choose the following three variable input parameters:

• the duration of the working day (hour);
• the number of jobs during the day (PC);
• the number of working hours per week (hour).

The construction of the simplest plans is reduced to the choice of experimental
points symmetrical with respect to the center of the experiment [4]. In this case, all
k factors change at two levels, and the experiment plan is called a 2k plan. Factor
levels are represented by two points on each of the k coordinate axes of the factor k-
dimensional space. These levels are symmetrical with respect to the main level. One
of them-the top, the other one-the bottom. The interval of variation of factors is called
a certain number (different for every factor), whose addition to the main level gives
the upper level, and subtraction-the lower. To simplify and unify the recording of
experimental conditions and facilitate the processing of experimental data, the scales
along the axes are given in the form of coded values +1 and −1. For quantitative
factors, you can always do this by using transformation
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x j = (x̃ j − x̃ j0)/I j ,

where x j is coded factor value, ˜j is its natural value, x̃ j0 is natural value of the main
level, I j is the range of variation in.

The number of experiments sufficient to conduct a two-level experiment is calcu-
lated by the formula:

N = 2k,

where N is the number of experiments, k is number of factors (changing input
parameters).

Suppose that: The duration of the working day: X1 = 12 ± 2 h. The number of
jobs during the day: X2 = 3 ± 1 PC. Working time per week: X3 = 60 ± 10 h.

The functions of the response can be as a differential assessment of the functional
(Y f i) and resource (Yri) States of organs and systems of agricultural workers, as
well as integrated assessment of their overall health (Yoh) and psycho-emotional
state (Y pes), which will be carried out with the help of HSC ROFES. The scores
and the corresponding General level of health are given in Table1. Estimates and
corresponding functional States of organs/systems and levels of activation are given
in Table2. Estimates of the level of energy resources of organs and systems, loads
and risks of diseases and comments are given in Table3.

A three-factor experiment involves at least eight dimensions of the response func-
tion. The regression equation for the three-factor experiment is as follows:

ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3.

Then the regression coefficients are calculated using the formulas:

b j = ΣN
i−1yi x ji

N
, bu j = ΣN

i−1yi xui x ji

N
(1)

Table 1 Interpretation of the point assessment of the general level of health with the help of HSC
ROFES

The point estimate of the
overall level of health

Interpretation of the assessment (analysis of the state)

5 (High) High energy resource, ensuring the work of the mechanisms of
self-regulation of the body

4 (Medium, closer to high) Borderline assessment, closer to a high energy resource, ensuring
the work of the mechanisms of self-regulation of the body

3 (Middle) The average energy resource that provides the work of the
mechanisms of self-regulation of the body

2 (Medium, closer to low) Borderline assessment, closer to the low energy resource, ensuring
the work of the mechanisms of self-regulation of the body

1 (Low) Depletion of energy resources that provide the mechanisms of
self-regulation of the body. There may be a failure to adapt to
environmental factors
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Table 2 Interpretation of the point evaluation of the functional state of organs/systems and levels
of activation by HSC ROFES

The point estimate of the overall level of health Interpretation of the assessment (analysis of the
state)

5 (Perfect) No tension

4 (Good) Low tension

3 (Satisfactory) Middle tension

2 (Unsatisfactory) Strong tension or oppressed state

1 (Limit) Fatigue

Table 3 Interpretation of the point assessment of the level of energy resources of bodies and
systems with the help of HSC ROFES

The point estimate
of the overall level
of health

Interpretation of the assessment (analysis of the state)

5 The energy resource of the organ is high, the loads are optimal. The risk of
developing the disease is minimal or compensated process

4 The energy resource of the body is good, the load is insignificant, the risk of
developing the disease is low or compensated process

3 Reduction of the energy resource of the body, which is the result of stress on
him. The risk of the disease is average

2 There is a loss of energy resource of the body that can be a consequence of a
strong burden on it. The risk of disease during long-term presence in a given
state increases

1 There is a great loss of energy resource of the body, which may be the result
of excessive loads. The risk of disease while in this the state of high

where x ji is the value of the j-th factor in the i-th experiment, u, j are factor
numbers, j, u = 0, 1, . . . , k, j �= u, N is the number of experiments. To obtain the
regression coefficients there is a calculation table (Table 4).

The problem of interpretation is solved as follows. It is established to what extent
each of the factors affects the optimization parameter. The value of the regression
coefficient is a quantitative measure of this effect. The higher the coefficient, the
stronger the factor. Signs of coefficients speak about the nature of influence of fac-
tors. The linear coefficients of the polynomial are partial derivatives of the response
function on the corresponding variables. The linear coefficients of the polynomial
are partial derivatives of the response function on the corresponding variables. A
higher absolute value of the coefficient corresponds to a greater angle of inclination
and, consequently, a more significant change in the optimization parameter when
this factor changes. The regression coefficient with a minus sign indicates the nega-
tive influence of the factor(s) on the response function. It should be emphasized that
not only the linear effects of factors, but also some pair of their interactions can be
significant. Moreover, the meaning of the interaction effect is that the influence of
one factor depends on what level is the other factor.
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Table 4 Calculation table and results of experiments (example)
The number
of the exper-
iment

Additive
constant

The planning matrix Vectors columns interaction Experimental response

X0 X1 X2 X3 X1X2 X1X3 X2X3 Y f i Yri Y pes Yoh Y

1 +1 −1 −1 −1 +1 +1 +1 4 3 3 5 3.75

2 +1 −1 +1 +1 −1 −1 +1 5 5 2 5 4.5

3 +1 −1 +1 −1 −1 +1 −1 5 4 2 5 4.0

4 +1 −1 −1 +1 +1 −1 −1 5 5 3 3 4.0

5 +1 +1 −1 −1 −1 −1 +1 5 4 1 5 3.75

6 +1 +1 −1 +1 −1 +1 −1 3 3 5 2 3.25

7 +1 +1 +1 −1 +1 −1 5 3 3 4 3.75

8 +1 +1 +1 +1 +1 +1 +1 5 2 2 2 2.75

3 Conclusion

In conclusion, it should be noted that the addition of means and methods of prenoso-
logical diagnostics with the apparatus of mathematical statistics allows to increase
the validity of the results of the assessment of the level of adaptation of the body
of agricultural workers with changing conditions of the social and industrial envi-
ronment and to identify environmental factors that most affect the overall level of
health, functional and resource state of 17 basic organs and systems of the human
body and its psycho-emotional state.
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Development of Mathematical Model
of Circular Grill of Piece-Smooth Profiles
and Creation on Its Basis of Gas-Sucking
Fans

N. V. Makarov, V. N. Makarov, A. V. Lifanov, A. Y. Materov and H. Kitonsa

Abstract Further intensification of mining operations, application of innovative
technologies that ensure efficient extraction and processing of mineral raw materials
is limited by the requirements to the air and gas dynamic safety system, one of
thesect energy-intensive elements of which are gas-suction fans characterized by
insufficient adaptability and aerodynamic loading. Using the Christofel-Schwartz
equation, taking into account the theory of attached vortices, the Chaplygin method
of singular points and residues, the conformal mappings method was modified and
an additive mathematical model of the circular lattice of “S”-shaped profiles with
circulation control vortexes was developed. The uniqueness of the obtained solution
is proved up to a constant for the given parameters of vortex sources. A technique
for calculation of aerodynamic schemes of adaptive highly loaded circular gratings
with “S”-shaped profiles and built-in vortex sources is proposed. A parametric series
of patented block-modular gas-sucking ventilators was developed on the basis of the
designed aerodynamic scheme of TS145-20, providing for the coverage of ventilation
regimes for gas-abundunt coal mines for a perspective up to 2025. The test results
of the prototype gas-sucking fan BPVG-7 confirmed the increase in adaptability by
more than 50% and aerodynamic loading by 35%.
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1 Introduction

The energy intensity of existing eco-technologies of gas-abundant coalmines reaches
25%, while up to 40% of electric energy is spent inefficiently. Ensuring the quality of
the main production, its energy efficiency often contradicts with the energy intensity
of the auxiliary technological process that ensures the environmental safety. More-
over, the insufficient efficiency of aerogas dynamic safety restricts the introduction
of new technologies forming integrated innovative subsoil use [1]. The growth of
load on stopping face combined with the requirement to ensure the aerogas dynamic
safety actualizes the task of developing of methodology for design and creation of
nature-like adaptive gas-sucking fans which adequately and at the same time eco-
nomically reasonably creating the required fields of depression, realizing the concept
of optimal environmental technology of subsoil use [2].

Large potential possibilities for increasing aerodynamic loading and adaptability
of gas-sucking ventilators are incorporated in active energy methods of circulation
control.

The cavities of the profiled blades of gas-sucking fan made in the form of a vortex
chamber inscribed in their “S”-shaped outlet section are functioning as the vortex
source for control the energy interaction of the impellerwith the air flow and feedback
with the parameters of the external network through the high-pressure cavity of the
fan casing [3, 6].

The parameters of the vortex system being formed around the blade profile under
the influence of the vortex chamber and determining the adaptability and aerody-
namic characteristics of the gas-sucking fan are a function not only of the geometric
parameters of the vortex chambers and blade profiles but also depend on its feedback
with the characteristics of the external network contributing to the growth of the
adaptability of turbo-machines.

In domestic and foreign literature there is insufficient data on the vortex control
of flow passing around the blades of impellers of radial turbo-machines, taking into
account the feedback of the dependence of the energy parameters of the vortex system
forming around the profiles on the characteristics of the external network.

2 Method for Constructing a Mathematical Model
of a Circular Lattice of Piecewise Smooth “S”-shaped
Profiles with Vortex Chambers

In this paper a method is proposed for construction of a mathematical model of a
circular grill of piecewise smooth “S”-shaped profileswith vortex chambers inmutual
connection with characteristics of an external network to provide air-gas dynamic
safety while increasing the intensity of the main technological process.

Figure1 shows a profile of blade 1 with an “S”-shaped outlet portion 2 of the
gas-sucking fan impeller, provided with a cylindrical vortex chamber 3 built into



Development of Mathematical Model of Circular Grill … 329

Fig. 1 Profile of impeller blade of a gas-sucking fan with an “S”-shaped outlet section and a vortex
built in it

it, an inlet tangential channel 4 (drain), and outlet channels 5 (source). The posi-
tions 6, 7 designate the front and rear points of total flow deceleration, respectively.
Depending on the energy parameters of the vortex chamber, the geometric point of
full deceleration 6 is moved to the position of the actual effective point of complete
deceleration 8. The position 9 corresponds to the corner point of conjugation of the
blade 1 with its “S”-shaped outlet Sect. 2.

The patented design of the gas-sucking fan is a qualitatively new stage in the
development of radial turbo-machines with “S”-shaped blades, presenting a hydro-
dynamic analog of a turbo-machine with “S”-shaped profiles of blades of variable
curvature [5, 6].

The practical significance of solving of an aerodynamics problem of turbo-
machines with “S”-shaped profiles of variable curvature is explained by the necessity
to establish general regularities for the considered class of flows in which under real
conditions it is possible to ensure smoothflowaround sections of the profilewith large
curvature, including acute angles, gas-sucking fans, thus providing high efficiency
of operation in a wide range of parameters of external network.

According to the proposed mathematical model, an aerodynamic profile of the
“S”-shaped impeller blade with a vortex chamber may be presented in a form of
a piecewise-smooth profile with an angular point of conjugation in which a vortex
source is located with energy parameters ensuring smooth flowing to the points of
conjugation [5, 6].

Taking into account the proposed assumptions, the suggested problem reduces to
investigation of the flow by an unrestricted air stream of a circular grill of profiles in a
form of an analytic polygon transformed into a piecewise smooth “S”-shaped profile
consisting of two segments of logarithmic spirals with a corner point in a place of
their conjugation and a schematized vortex source in a 4-dimensional Riemannian
domain Fr (Fig. 2). Under the condition that the domain Fr is simply connected, the
function of the conformal mapping of the exterior of a disc of unit radius on nπ-sheet
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Fig. 2 Circular grating of “S”-shaped profiles in the formof segments of a logarithmic spiralwith an
integrated vortex source at the corner point of their conjugation in the region Fr and corresponding
to it the circles in the region Fα

Riemann surface in the region Fα to the exterior of a 4-sheet polygonal contour of
a schematized circular lattice in the domain Fr may be obtained on the basis of the
Christoffel-Schwartz formula [7]:

r(α) =
∫

α

∏ny

n=1 (α − τyn )
β yn−1 ∏ny

n=1 (α − τk)
βk−1

∏ny

n=1 (α − p−1
n )(α − pn)

dα, (1)

where r = zeiν , α = leiθ are complex coordinates of points in the regions Fr and
Fα, respectively; z, ν are the radius and polar angle in the plane Fr , respectively; l,
θ are radius and polar angle in the plane Fα, respectively; P is the form parameter
of the equivalent circular lattice of profiles in the form of segments of logarithmic
spirals; τyn (n = 1, . . . , ny) are points on the circle of unit radius corresponding to
the corner points yn of the polygonal contour; τk (k = 1, 2) are points on a circle
of unit radius, corresponding to the jet flow channels and the source of the vortex
chamber of the region Fr ; βyn = πβ yn , βk = πβk are the outer corners of the 4-sheet
polygonal contour of the circular grid of profiles, respectively, at the corner points
yn and the points of the schematized vortex source with its drain and source, nπ is
the number of blades of the impeller.

The number of angles of analytical polygon that schematizes the “S”-shaped
profile of the vortex source is determined by the formula:

nσ = ny + 2. (2)
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The outer angles of the polygon contour, taking into account the single-connection
in the region Fr , are calculated by the formula corresponding to the model of a
univalent polygon:

ny∑
n=1

βyn +
2∑

k=1

βk = π(ny + 4). (3)

In accordance with (1) for each given 4-sheets contour of “S”-shaped profiles
of blades in the form of segments of a logarithmic spiral with a vortex source at
the corner point of their conjugation, it is necessary to calculate unknown values
P, τyn , τk the amount of which is (ny + 3), that is, for the case of the “S”-shaped
profile of the blade, taking into account (2) nσ = 3.

In accordance with (1) the condition of single-valuedness of the
profiles of blades in the form of segments of a logarithmic spiral with a vortex

source at the corner point of their conjugation of a circular lattice has the form:

yn∑
n=1

(β yn − 1)τyn +
2∑

k=1

(βk − 1)τk = 0 (4)

Thus, we obtain a closed system of 4 equations for determination of 4 unknowns.
The complex velocity on the 4-sheets Riemann surface of the contour of the “S”-

shaped profiles of the blades in the form of segments of a logarithmic spiral with
a vortex source at the corner point of their conjugation of the schematized circular
grating, taking into account [7], Eq. (1) and the condition that dR[r(α)]

dα
= dR(r)

dr
dr
dα

we
obtain in the form:

dR

dr
= k pq

∏3
m=1 (α − τ0m)(α − α03)(α − α−1

03 )∏ny

n=1 (α − τyn )
β yn−1 ∏2

k=1 (α − τk)β−1
(5)

where k pq = kpq + (p2b − q2
i )/(p

2
b + q2

i ) is the coefficient characterizing the flow
regime in the circular grill of profiles as a function of parameters of the vortex
source; kpq is the coefficient characterizing the flow regime at the entrance to the
circular grill of the profiles; R[r(α)] is the complex flow potential outside the circle
of unit radius on the 4-sheets Riemann surface in the region Fα.

It should be noted that since the width of the schematized jet channels in the
neighborhood of the points k = 1, 2 has a finite value, its walls are parallel, that is,
β1,2 = 0.

From(5) it follows that the presenceof a branchpoint τ0n = τyn and a returnpoint at
the corner point of the polygon contour, β1,2 = 2 leads to reducing of corresponding
factors in the numerator and denominator, that is, at the point of return the corner
point and the branch point disappear. Thus, taking into account the equation of critical
points for a given class of flows m = k [7], when the vortex chamber is located at
the corner point of the profile, we get:
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dR

dr
= k pq

2∏
m=1

(α − τ0m)(α − α03)(α − α−1
03 )

2∏
k=1

(α − τk). (6)

In accordance with the uniqueness theorem for the solution of the Dirichlet-
Neumann problem for the given parameters of the vortex source and the flow at
the entrance to the circular lattice of profiles, the Eq. (6) corresponds to the unique
solution up to a constant [7].

The regularity obtained in accordancewith formula (6) is of great practical interest,
since it means that in the presence of a vortex in the angular point of the circular
grating profile with the intensity of ρb that is, a feature characterizing the return point,
and the source with a qi flow, at this corner point of branching flow, the fixing of a
local vortex source on the profile may be achieved and, therefore, smooth flowing
around it is ensured.

Dependence of the energy parameters of the vortex on the characteristics of the
external network, explained by the aerodynamic coupling through the high-pressure
cavity of the gas-sucking fan body, makes it possible to conclude that the angular
point of the “S”-shaped profile of the blade is being smoothly flown around in a wide
range of external condition changes.

The equations for circulation around the “S”-shaped profile with a vortex chamber
of a rotating radial lattice with allowance for [7, 8], see Fig. 2, we obtain in the form:

ρπ + ρb = ρ∑
π = qi

sin(θc − θ3 − δθb)

1− cos(θs − θ3 − δθb)
− 4P(P4 − 1)

sin(θ3 + δθb)

P2 + 2P cos(θ3 + δθb)+ 1
−

−4Pq
(P2 + 1) sin(θ2,3 + δθb)

nπ(P2 + 2P cos(θ3 + δθb + 1)(P2 − 1)
− 4Pρ0

cos(θ2,3 + δθb)

nπ(P2 + 2 cos(θ2,3 + δθb + 1))
+

+ ρb
sin δθb

1− cos δθb
+ 2P sin(θ2,3 + δθb)

P2 − 1
. (7)

Changes of the energy parameters of the vortex source qi + iρb, being analog
of hydrodynamic vortex chamber, leads to a shift of the point of branching flow
θ5 at the outlet from circular grating in relation to the rear critical point of bodily
analytical profile θ2, which increases the effective curvature of the profile and results
in increasing of the effective angle of the flow outlet from the circular grill of profiles
with an integrated vortex source.

The coefficient of theoretical pressure created by the circular grid of profiles is
connected with circulation around the profile by the relation:

ψT = 4nπωρ∑
π. (8)

Taking into account (7), (8), the equation of the ideal aerodynamic characteristic
of a rotating radial grill of “S”-shaped profiles in the form of logarithmic spirals with
angular points of conjugation and vortex control of circulation, we write in the form:
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Fig. 3 Aerodynamic characteristics of a rotating circular grill of profiles with a vortex source:
1—classical theoretical profile; 2—profile with a positive vortex source; 3—profile with a negative
vortex source; 4—profile with an alternating vortex source

ψT(qT) = ψTK + Kqπ
+ Kρbρb, (9)

where

Kqc =
2 sin(θc − θ5)

1− cos(θc − θ5)
+ 2P sin θ5

P2 − 1
, Kρb =

2 sin δθb

1− cos δθb
+ 4P sin θ5

P2 − 1
.

Here Kqc is the coefficient of influence of the flow of a vortex source onto the
theoretical pressure developed by the grill; Kρb is the coefficient of influence of
circulation of the vortex source onto the theoretical pressure developed by the grill;
ψTK is coefficient of theoretical pressure of a circular grill with classical profiles.

The Fig. 3 shows the specific ideal aerodynamic characteristic of a rotating circular
grill of “S”-shaped profiles with vortex chambers. From the analysis of the Fig. 3
it may be seen that the “S”-shape lattice of profiles with vortex sources makes it
possible to adjust the theoretical pressure coefficient in a wide range and, what is
more important, the functional dependence of the increase of the theoretical pressure
coefficient on the flow coefficient.

In the circular grill of “S”-shaped profiles with vortex sources, when the intensity
of the vortex sources changes at the end points of the profiles, the angle of the exit
of the flow from the circular grill changes at a fixed value of its flow rate, which
significantly improves the adaptability of the gas-sucking fans.

As the intensity of the vortex source increases, the main flow at the exit from the
circular grill of the “S”-shaped profiles rotates in the direction of its rotation, which,
according to theEuler equation for the theoretical turbo-machine [7], leads to increase
in the theoretical pressure coefficient ψTK, i.e. to the mode of supercirculation.

On thebasis of carriedout theoretical and experimental studies, taking into account
the fields of designed gas-sucking modes, based on the designed, radial aerodynamic
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Fig. 4 The field of design of gas exhausting ventilation modes of gas- abundant coal mines and
its overlapping by zones of economical operation of gas-sucking fans: 1—BRVG-7; 2—BRVG-9;
3—BRVG-5; 4—BRVG-20

scheme of TS 145-20, a standard series of gas-suction fans of block-modular design
is proposed, the parameters of which completely cover the required and predicted
ventilation modes. The Fig. 4 shows the field of designed ventilation modes. The
tests of the prototype of the gas-sucking ventilator BRVG-7 with the power regulator
have confirmed the increase in the depth of economic regulation by 50% and the
aerodynamic loading by 35%.

3 Conclusion

The suggested grapho-analytical model of a circular grill with “S”-shaped profiles
and vortex circulation control allows to create aerodynamic schemes of increased
adaptability and loading. The feedback of the energy parameters of the vortex source
“S”-shaped profiles of the blades with parameters of external network substantially
increase the adaptability of gas-sucking fans. The patented structure and way of
adaptability and aerodynamic loading increase is the basis for designing of a new
generation of gas-sucking fans.
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Mathematical Model of Conformal
Mappings in the Theory of Radial Grids
of Mine Turbomachines

V. N. Makarov, N. V. Makarov, A. V. Lifanov, A. Y. Materov and H. Kitonsa

Abstract Further intensification sof mining operations, the use of innovative
technologies to ensure efficient production and processing of mineral raw mate-
rials, is limited by the requirements for the system of aerogasodynamic safety, one
of the energy-intensive elements of which are mine turbomachines, characterized
by insufficient adaptability and aerodynamic loading. On the basis of the theory of
attached vortices, aswell as themethods of conformalmapping and singular points by
S. A. Chaplygin, a mathematical model of a rotating circular grid of aerogasdynamic
profiles with jet circulation control is proposed, the problem of its aerodynamic cal-
culation is formulated and solved, the uniqueness of the solution is proved to within
a constant. It is shown that the terms of the Zhukovsky-Chaplygin-Kutta method
applicable to calculate aerogasdynamic profiles in the absence of the attached vortex
at the rear corner point of the profile. The equation is obtained to calculate the cir-
culation of the circular grid of aerogasdynamic profiles as a function of the energy
parameters of the sources and sinks of the vortex chamber. It is established that the
aerodynamic connection of the turbomachine cavity with vortex chambers, causing
the dependence of the energy parameters of the source and the jet control flows on the
characteristics of the external network, provides a significant increase in the adapt-
ability ofmine turbomachines.Modification of the theory of aerodynamic calculation
of circular grids of aerogasdynamic profiles and construction of radial aerodynamic
designs with high adaptability allowed us to formulate a qualitatively new direction
of improvement of shaft radial turbomachines, the operation principle of which cor-
responds to nature-like technology of transformation and energy transmission. The
possibility of a significant increase in aerodynamic loading, adaptability and effi-
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ciency of mine turbomachines, made by radial aerodynamic schemes with built-in
impeller blades vortex chambers, performing the functions of adaptive jet circulation
control devices, is confirmed. Using the proposed methodology, a straight-through
radial vortex fan (VRVP-12A) to ventilate blind drift 3,500 m long is developed.

Keywords Mine fan · Conformal transformations · Circular lattice · Circulation ·
Vortex · Hydrodynamic similarity · Form parameter

1 Introduction

The competition of mining enterprises in the global market of the innovative subsur-
face resources management, labour productivity growth, combined with the require-
ment to ensure sanitary-hygienic and aerogasdynamic security actualize the prob-
lem of development of methodology of designing and creating nature-like mine
turbomachines. The latter are supposed to adequately and economically justified
create the necessary fields of the depression, implementing the concept of optimal
ecotechnology of subsoil use [1, 2].

The specifics of the design of radial mine turbomachines allows you to implement
the strain-energy methods of circulation control using circular grids of aerogasdy-
namic profiles. In this case, the energy source of aerogasdynamic profiles is the air
cavity of high pressure of a turbomachine [3].

The interaction of the air flow with the impeller blades of the turbomachine with
the built-in jet circulation control device is implemented through a stable Karman
vortex sheet, i.e. adaptive aerodynamic vortices system, providing turbomachine
susceptibility to changes in external environment. The energy characteristics of the
vortex system of aerogasdynamic profiles are determined not only by geometrical
parameters of the vortex chamber and blade profiles, but by their feedback with
the characteristics of the external network, which, in fact, determines the increased
adaptability of turbomachines.

In Fig. 1 the patented profile of the impeller blade 1 of the turbomachine is shown,
in the inner cavity of which the vortex chambers 2 are inscribed, the input 3 and the
output 4, 5 channels of which perform the functions of drains and the jet control
sources of the flow rate V around the profile 1. Jet sources of managing flow VωVc,
the energy parameters of which are interrelated with the characteristics of the exter-
nal network, slow down or speed up the air velocity VpVT on the working and rear
surfaces of the blade profile 1, respectively due to the Magnus effect, changing the
circulation of air around it and as a result the aerodynamic performance of turboma-
chines adaptive to external conditions [4, 5].

The classical theory of circular grids of profiles is based on the theory of discrete
vortices. It also uses the theory of conformal mappings and does not allow either
more generally to obtain the complex potential flow in a circular grid of aerogasdy-
namic profiles with jet circulation control or to establish the relationship between the
aerodynamics of turbomachines and energy parameters of sources and sinks [6, 7].
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Fig. 1 The profile of the impeller blade of the mine turbomachine with vortex chambers inscribed
in it

In the article the basic principle of conformal transformations for the construction
of the canonical potential is upgraded with a display of multi-sheeted Riemannian
domain of circular grid of aerogasdynamic profiles with jet circulation control on
multi-sheeted canonical area. At the same time, the complex potential of the flow on a
multi-sheet canonical area is obtained, its uniqueness is proved, and themathematical
dependence of the circulation of the circular grid of aerogasodynamic profiles on its
geometric parameters and energy characteristics of the source and the flows of the
jet circulation control is established [3, 8, 9].

2 Outcomes

According to the general formulation of the problem, in the flat case of flow around
a circular grid with nl profiles and ni , nc jet sources and flows of vortex sources,
(ni + nc + 1) = (n + 1)-sheet streamlined contour is put in correspondence on each
profile.On the first sheet of (n + 1)-sheetedRiemannian domain in the physical plane
there is circular grid of aerogasdynamic profiles in question, in vortex chambers of
which flow in and out air streams through input and output channels, respectively.
We assume that on an arbitrary k-th sheet k = 2, . . . , n + 1 on Riemannian domain,
the real channel with a vortex chamber is schematized by a jet channel with its
borders going to one infinitely remote point Ak . The studies are carried out under
the assumption that the profiles of the circular grid have the form of segments of
logarithmic spirals, since they are the current lines for the flow formed by the vortex
sources, in the entire area of the flow Dz on (n + 1)-sheeted Riemannian domain,
the flow is stationary and irrotational, the fluid is ideal, incompressible, weightless
and the Bernoulli constant is invariable.

Taking into consideration all the above mentioned, aerogasdynamic profile also
will represent a logarithmic spiral. Using the principle of hydrodynamic analogy,
additivity, we perform a conformal mapping of the appearance of the nl-sheeted
Riemannian domain of the deformed circle in the area of the DBγ on (n + 1)-sheeted
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Fig. 2 A schematic diagram of the sequence of conformal transformations of the n1-sheet in the
area Dγ into (n + 1)-sheet in the area Dz

Riemannian domain Dz of schematized contour of a circular grid of analytical profiles
of arbitrary shape (Fig. 2).

We establish that for a task geometry of n1-sheet contour of the circular grid nl
of profiles, the given source strength and air sources (Qak = 1, . . . , n) through jet
channels, in the case of a steady potential flow of an ideal incompressible fluid with
a constant Bernoulli throughout the flow area, the solution of the flow problem is
unique. It is proved in the paper [3] that the application of the conformal mapping
method to consider the aerodynamics of an isolated plane body with jets leads to the
need for a conformal mapping of a multi-sheet simply connected area to a single-
sheet singly connected area. In addition, the Riemann theorem for singly connected
areas can be guided.

To study the aerodynamics of a circular gridn1 of aerogasdynamic profileswith the
vortex chamber, it is necessary to carry out conformal mapping of multivalent singly
connected area on the same multivalent singly connected area, as considering the
superposition principle and the hydrodynamic analogy, the aerogasdynamic profile
can be represented by a set of local attached vortices, simulating the combination
of the classic profile, the sources and sinks. Thus, to ensure the uniqueness of the
solution, it is necessary to achieve the uniqueness of n1-maps on the circle of the unit
radius. Since aerogasodynamic profiles are established with a constant period in the
circular grid, we choose the mapping constants to ensure the uniqueness of the entire
grid display so that the points Z = 0 and Z = ∞ in the area Dz would pass into
two symmetrical ones with respect to the origin of the points γ = F and γ = −F
in the area Dγ . The formparameter F characterizes the initial aerodynamic loading
of the circular profile grid, being a hydrodynamic analogue of its irrotational flow at
zero flow rate of the vortex chambers Qak = 0, and is determined by the geometric
parameters of the circular profile grid. In this case, at the points F and −F in the
area Dγ the logarithmic function receives an increment of ±2πi , which corresponds
to the transition in the next period of the circular grid [10].
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Taking into account the above and the graphical model shown in Fig. 1, we obtain
the function of the complex map Zγ as:

nπ ln Z = ln
(γ−1 + F)

(γ − F)
+ e2iβl+cln

(γ − F−1
1 eiθ1)

γ − F−1
2 eiθ2

, (1)

Z =
[γ + F

γ − F

]1/nl[ (γ − F−1
1 eiθ1)

(γ − F−1
2 eiθ2)

](2iβ+c)/nl
, (2)

where Z = reiv , γ = ceiθ are complex coordinates of points in the areas Dz and
Dγ , respectively; r , v are radius and polar angle on the plane 2, respectively; ρ, θ

are radius and polar angle on the plane y, respectively; F is form parameter of the
equivalent circular grid of profiles in the form of segments of logarithmic spirals;
βl is the angle of the logarithmic spiral of the equivalent profile grid; γ1 = F−1

1 eiθ ,
γ2 = F−1

2 eiθ , KF = e2iβl+c are complex parameters that determine the shape of the
profile of the initial circular grid of analytical profiles.

Taking into account the restrictions imposed on the concept of the analytical
profile, the points γ1, γ2 can be located only within a single circle of the area Dγ ,
and the direction of the profile contour bypass in the area Dz should be maintained.

The special points of the mapping γ01, γ01 are determined from the condition of
violation of the conformity:

nl Z
−1
0

[ dz
dγ

]
= 2F

(γ 2
0 − F2)

+ e2iβl+c(γ1 − γ2)

(γ0 − γ1)(γ0 − γ2)
, (3)

from which for γ 2
0 the equation can be

γ 2
0 −

[2F(γ1 + γ2) + Fe2iβl+c(γ1 − γ2)

e2iβl+c(γ1 − γ2) − 2F

]
= 0. (4)

Since the parameters F1, F1, θ1, θ2, c, βl determine the shape of the analytical
profile of the circular grid, it is advisable to set the special points γ01, γ02 and the
parameter K f in the initial data.

Taking into account the above mentioned data and the Eq. (4), we obtain a system
of two equations to determine γ1 and γ2:

γ1 = (γ01 + γ02)(KFγ2 + 2F) − 2Fγ2

KF (γ01 + γ02) + 2F
, (5)

γ2 + F[2γ01γ02 − KF (γ01 + γ02)

2F − KF (γ01 − γ02)
− 2γ2[F(γ01 + γ02) − (F2 + γ01γ02)KF ]

2F − KF (γ01 + γ02)
= 0

(6)
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To construct the complex potential F[Z(γ )] on nl -sheeted Riemann surface of the
circle exterior of the unit radius of the area Dγ , let us use the principle of additivity
and the method of special points by S. A. Chaplygin, according to which all special
points of the flow in the area Dγ , like deductions in Cauchy integrals, should find an
appropriate reflection in the function of the complex potential [3].

Since the origin of the coordinate system ρ, θ in the Dγ plane is chosen in the
center of the unit circle, then according to the conformal map Zγ , sources and flows
with given air flow rates QAk in the area which is external to the unit circle are
located at points γ = τAk = eiθ Ak(k = 1, . . . n), where n = ni + nc, corresponding
to the Ak channels of vortex sources. The value of circulation along any singly
connected closed line containing within itself a circle of a unit radius in the area
Dγ , in accordance with the Helmholtz theorem in this case, taking into account
the displacement flow to within a constant, is equal to the circulation of G around
(n + 1)-contour of the circular grid of profiles [3].

At zero flow rates of vortex sources through the input and output channels of the
vortex chambers in the area Dγ we come to the known problem of the flow around
the circle of unit radius by a circulating unlimited flow. In this case, the complex
potential of the flow F0[Z(γ )] has the form:

F0[Z(γ )] = ϕ0[Z(γ )] + iΨ0[Z(γ )] =

= q ln(γ + F)[(γ ) + F−1]
(γ − F)[(γ ) − F−1] − (Γ0 − nlΓ1)i−1 ln[(γ ) − F−1]

γ − F
−

− G02πnl
(γ + F)[(γ ) + F−1] +

∫
V ′

v[Z(γ )]dγ −
∫ [

uτ (Z)
dz

dγ

]
dγ , (7)

where Vv is the tangent component of the velocity of displacement flow at the unit
circle in the area Dγ which is determined by the known function Zγ using the Poisson
integral; the tangent component of the moving flow velocity in the plane Z ; q is the
flow rate of the source located in the center of the circular grid of aerogasodynamic
profiles in the area Dz; G0 is the intensity of the vortex (circulation), located in the
center of the circular grid of profiles in the area Dz , in the presence of a preliminary
swirl of the flow at the entrance to the circular grid; Gl is the intensity of the vortex
(circulation) around the profile of the circular grid in the plane Dz ; ϕ is the function
of the flow potential in the area Dγ ; Ψ is the function of the current (current line) in
the area Dγ .

The additional complex potential of the flow outside the circle of the unit radius
of the domain Dγ is determined with regard to the properties of the functions of
the complex variable and the above mentioned regularities. This function should
characterize the presence at the corresponding points τak of the circle of the unit
radius of the area Dγ features (sources, drains, local vortices), the position of which
is uniquely determined by the points of the location of the control devices on the
profiles of the circular grid of the area Dz , but at the same time it should correspond
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to the flow, the current line of which is represented by the circle of the unit radius.
Such requirements are met by the system of the features presented in Fig. 2.

After appropriate transformations, taking into account Fig. 2, we obtain:

FAk(γ ) = ϕak(γ ) + iΨak(γ ) =

= π−1qak ln(γ − τak) − 0.5π−1[qak(ln(γ 2 − F)+)qak] (8)

ln[γ 2 − F−2] (9)

Then the general form of the complex potential F[Z(γ )] of the flow outside the
circle of the unit radius on the nl-sheet Riemann domain Dγ is written as

F[z(γ )] = F0[z(γ )] +
n∑

k=1

FAk (γ ) =

F0[z(γ )] + π−1
n∑

k=1

qAk ln(γ − τAk ) − 0.5π−1 (10)

q∑
A

[
ln (γ 2 − F2) + ln (γ 2 − F−2)

]
, (11)

where
∑n

k=1 qAk = q∑
A.

The formulated solution for a given q, G0, Gl source strength qAk and flows at
points τAk , to within a constant, is unique. Indeed, if two solutions are assumed:
F1[Z(γ )], F2[Z(γ )] and the function �(γ ) = F1[Z(γ )] − F2[Z(γ )] is considered,
it is easy to see that this function is unambiguously outside the circle and that on
the circle, and on infinity Im �(γ ) = 0. Hence, according to the uniqueness theo-
rem of the solution of the Dirichlet-Neumann problem, it should be Im �(ζ) = 0,
which means, F1[Z(γ )] − F2[Z(γ )] ≡ const . Taking into account the uniqueness
of the solution for the function F[Z(γ )] = W (γ ) and the uniqueness conditions of
the conformal map for a given nl-sheet contour, we obtain, to within a constant,
the only solution to the flow problem (nl + 1) -sheet contour of a circular grid of
aerogasodynamic profiles with vortex circulation control:

F(Z) = W [γ (Z)]. (12)

In accordance with (8), we obtain a formula for the complex flow velocity outside
the circle of the unit radius of the nl-sheet Riemann domain Dγ :

dF

dγ
= 0.5π−1n−1

l (q + iG0)((γ + F)−1 − (γ − F)−1)−
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−0.5π−1n−1
l (q + iG0)((γ + �)−1 − (γ − �)−1)+

+ (q − nlq∑
A + iG0)

2πnl(γ + F)
+ (q − nlq∑

A + iG0)

2πnl(γ + F−1)
+ (inlΓl − nlq∑

A − q − iG0)

2πnl(γ + F)
−

− (inlΓl − nlq∑
A − q − iG0)

2πnl(γ + F−1)
+ π−1 ∑n

k=1 qAk

(γ − τAk )
+ V ′

ζ (γ ) − uτ [Z(γ )] ds
dγ

. (13)

Taking into account the properties of the contingency postulate Zhukovsky-
Chaplygin-Kutta method in the absence of vortex source at the point τak with
k = (n + 2), the formula to calculate the circulation Gl will have the form:

Gl = −4q[1 + (F2 − 1)2(F2 + 2 cos θ0(n+2) + 1)]−

− F(F2 + 1) sin θ0(n+2)

nl(F2 − 1)2(F2 + 2F cos θ0(n+2) + 1)
−

− (2πV ′
v(l+2))(F

2 − 2F cos θ0(n+2)) + 1

(F2 − 1)
− 4G0F cos θ0(n+2)

nl(F2 + 2F cos θ0(n+2) + 1)
+

+ F sin θ0(n+2)
∑n

k=1 qAk

1 − cos(θAk − θ0(n+2))
+ F sin θ0(n+2)

∑n
k=1 qAk

1 − cos(θAk − θ0(n+2))
(14)

3 Discussion

The obtained mathematical model allows us to make a fundamental conclusion that
under the conditions of a given flow regime in a circular grid of aerogasodynamic
profiles with sources and flows, under the condition of Zhukovsky—Chaplygin—
Kutta, the change in the energy parameters of the vortex sources through their jet
channels does not change the position on the contour of the aerogasodynamic profile
of the branching points, while the front critical point (n + 1) will move along its
contour, and the change in circulation will correspond to the Eq. (11).

The obtained equations allow to describe in a generalized form the aerodynamics
of the flow around a wide class of circular gratings of aerogasodynamic profiles with
sources and flows, and to establish the characteristic laws of this class of potential
flows [3].

Additional circulation due to the adaptive vortices created by the jet control system
is determined by the sources strength and flows of the vortex chambers qAk , by their
position θAk , the position of the rear angular point of the profile θ(n+2) and the form
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Fig. 3 Aerodynamic characteristics of the fan VRVP-12A with radial energy regulator

parameter of the circular gratings of profiles F , while the flow rate qAk is adaptively
interconnected with the aerodynamic resistance of the external network:

GAk =
n∑

k=1

q Ak
F sin θ0(n+2)

1 − cos(θAk − θ0(n+2))
. (15)

Thus, sources and flows of the jet circulation control not only increase the aerody-
namic loading of turbomachines, but also contribute to a significant increase in their
adaptability, that is, the change in aerodynamic parameters adequately to changes in
the environment with maximum functional and economic efficiency.

On thebasis of the proposedmodifiedmethodof conformalmappingwedeveloped
and experimentally tested radial aerodynamic design TS140-24, according to which
straight-through radial vortex fan VRVP-12A was designed. Tests of the prototype
of the VRVP-12A fan showed an increase in the depth of economic regulation, that
is, adaptability by 75%, total pressure by 25%, and a decrease in specific energy
consumption by 37% compared to the most advanced local ventilation fan VMEVV-
12 (Fig. 3).

4 Conclusion

The proposed graph-analytical model of a circular grid of aerogasdynamic profiles
with sources and sinks of the jet circulation control allows for the calculation of
aerodynamic parameters of mine turbomachines of patented design, that provide a
substantial increase in their adaptability and aerodynamic loading.
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Aerodynamic connection of vortex chambers of jet circulation control with the
characteristics of the external network provides an increase in the adaptability of
mine radial turbomachines of the proposed design by 75%.

Tests of the prototype of the VRVP-12A with a radial energy regulator confirmed
the sufficient reliability of the proposed mathematical model, the possibility of cre-
ating mine radial turbomachines of a new generation.
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Mathematical Model of Hydrovortex
Hetero-Coagulation

M. B. Nosyrev, N. V. Makarov, V. N. Makarov, A. V. Ugolnikov and H. Kitonsa

Abstract The dynamics of improvement of equipment and technology of dust sup-
pression in the mining and metallurgical complex of Russia shows their insufficient
efficiency of providing sanitary conditions, and most importantly the localization of
explosions of dustmixtures. Further increase of efficiency of coalmining andmineral
processing is significantly limited by the imperfection of technology of localization
and elimination of coal dust explosions. On the basis of the theory of attached vor-
tices the method of high-pressure hydro-vortex dust separation is developed. The
mathematical model of the hydro-vortex inertial, kinematic heterocoagulation, sig-
nificantly increasing the energy efficiency of dust suppression, is proposed. The
graphical model of interaction in the contact zone at the moment of collision in the
system “liquid-solid” is refined; the equations of the Stokes and Reynolds criteria for
hydro-vortex inertial orthokinetic heterocoagulation are obtained. An equation for
calculating the value of the reduction of the required energy of the total absorption
of dust particles in the function of the liquid droplets circulation is obtained. The
equations for the calculation of the effective contact angle and the minimum diam-
eter of the absorbed dust particles in the function of the liquid droplets spin rate are
obtained. It is shown that the hydro-vortex coagulation significantly reduces the size
of the dispersed dust composition, water consumption, increasing the efficiency of
dust suppression. A significant reduction in the size of the dispersed dust composition
increases the efficiency of the system of localization of coal dust explosions, reduces
the morbidity of silicosis. The use of patent-protected swirl injectors has confirmed
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the reduction of the minimum size of the absorbed dust by four times, increasing
the efficiency of dust collection up to 99% while reducing the water consumption
at 20%.

Keywords Heterocoagulation · Reynolds criterion · Stokes criterion · Attached
vortex ·Wetting angle · Circulation · Dispersion

1 Introduction

Practice shows that the intensification of production, the introduction of new tech-
nologies to ensure the efficient production and mineral processing hinders the imper-
fection of technologies for the localization of coal dust explosions [1].

The effect of dust suppression is essentially the overcoming of the energy barrier
during the collision of liquid drops with dust particles, and the transfer of the “solid-
liquid” system to amore stable state, i.e. it is determined by the degree of coagulation
and the ability of liquid droplets to capture dust particles.

Hydro-dust separation is one of themost commonmeans of preventing explosions
of dust mixtures, providing sanitary conditions in mining technology [1, 4].

With high-pressure hydro-dust separation, energy consumption for aeration is
significantly increasing, which reduces the energy efficiency of the processes of
ensuring sanitary and hygienic conditions, and as a result leads to a drop in the
competitiveness of eco-technology in subsoil use.

The urgency of improving the technology of high-pressure hydro-dust separa-
tion, the introduction of environmental subsoil use requires a new approach to the
construction of a mathematical model of inertial orthokinetic heterocoagulation of
water-dust aerosol [5, 7].

The determining role in increasing the efficiency of the coagulation interaction of
water droplets and dust particles plays the kinetic energy of themovement of the spray
water droplets, rather than its total consumption. For low-pressure liquid spraying,
the effect of the initial section of the torch on the overall coagulation efficiency is
not so significant due to the small kinetic energy of the dispersed jet.

The dynamically active initial phase with high kinetic energy of liquid droplets in
high-pressure hydro-dust separation plays a decisive role in the overall efficiency of
capture and coagulation of dust particles by water droplets. Since dust suppression
is actually possible only by direct contact of a liquid drop with a dust particle,
the mechanism of this process must be studied in order to develop the technology
and appropriate technical means to ensure the most comfortable conditions for its
effective implementation.

Technically, coagulation is the result of a collision of two phases: liquid and solid.
Collision occurs at contact of a drop of liquid and a dust particle, thus the fact of
coagulation, that is, the absorption of dust by a liquid, may not occur, since for the
final capture and transition to a single system “drop of liquid-dust particle” it is
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necessary that the forces of inertia of dust particles were more than the forces of
adhesion and wetting [1].

The degree of mutual penetration of the two phases, especially in relation to the
particles of the micro-size corresponding to hydrophobicity, that is, the efficiency of
coagulation depends on the nature of theflowof surface phenomena in the area of their
contact, due to the influence of the relative speed of the water drop and dust particles,
their size, surface tension at the interface. It was experimentally established [1] that
dust particles with a diameter less than 5× 10−6 m are practically hydrophobic. In
this case, the structure of coal dust is dominated by particles of size (1÷ 200)10−6 m.
Thus, a significant part of themost explosive dust is hydrophobic, which significantly
reduces the efficiency of high-pressure hydrodynamic dust suppression systems [1,
3, 4].

The objective of themodeling parameters of the system “a drop of liquid—particle
dust” in the process of the offered vortex inertial orthokinetic heterocoagulation is
the study of the kinematic coagulation mechanism in terms of the attached vortex
induced by a rotating liquid droplet [9, 10].

Fixation of particles approaching the drop at a distance of adhesive forces depends
on the magnitude of the contact angle θ. To capture hydrophobic dust particles of
liquid drops, it is necessary to perform the work of external inertial forces, which
corresponds to the kinetic energy of the Wk interaction during their contact. The
capture of dust particles of liquid drops will occur under the condition if its kinetic
energy Wk is greater than or equal to the absorbing power Pq , corresponding to the
sum of the energy of adhesion Wa (Fa is adhesive force), and defined by the specific
energy of separation, and the energy of the wetting Wq (Fq is the force of surface
tension), which is defined by the specific energy of the flow [1].

Taking into account the above condition, having expressed the mass of the dust
particle in the form of a ball, through the diameter of dpmin , the expression for the
minimum diameter of the dust particle absorbed by the liquid drop, we obtain in the
form:

dpmin = 24
δq cos θ

(ρp − ρc)(Vk − Vc)2
, (1)

where dp min is the minimum diameter of the absorbed dust particles, m; ρp, ρc is the
density of dust particles and gas, respectively, kg/m3; V k , V c = V p is the speed of
liquid droplets and the gas velocity equal to the velocity of dust particles, m/c; δq is
the coefficient of surface tension at the interface of two environments “liquid-gas”,
J/m2; θ is the contact angle at the interface of two environments “liquid-gas”, rad.

2 Outcomes

On the basis of the known model of kinetic coagulation, dust particles of liquid
droplets at ωk = 0 [1] a graphical model of the vortex kinematic coagulation is
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presented in Fig. 1, in which the liquid drop rotates at a spin rate ωk , inducing the
attached vortex in the contact zone [10, 11].

From the analysis of the graphical model of interaction in the contact zone at the
moment of impact in the system “solid-liquid”, shown in Fig. 1, it can be seen that the
contact area of the liquid droplet with the dust particle, determined by the diameter
of the wetting perimeter dcm has a direct effect on the value of the contact angle θ.
The smaller the radius of curvature of the droplet surface in the contact area, i.e. the
smaller its size, the smaller the contact angle θ, and therefore, the more energy will
be required to fully absorb the dust particles with diameter dpmin of the liquid drop
with diameter dk , determined by the surface energy of separation and spreading.

However, the size of the droplet is not a decisive condition in itself, since at the
same volumes two droplets can have different shapes, which define in particular
the rotation speed ωk and, accordingly, the diameter of the wetting perimeter dcm at
ωk = 0 and dcmω at ωk > 0.

In this paper, the mechanism of purposeful control of the contact angle θ and the
kinetic energy of interaction of liquid droplets and dust particles is considered Wk .

With the growth of the wetting contact angle θ the absorption energy is reduced,
which allows to provide a given level of dust removal efficiency at lower energy
costs, or to expand the absorption range of dust particles of smaller size, that is, to
increase the efficiency of dust suppression at given energy costs.

Figure1 shows that the impact of the dust particles rotating at a speed ofωk a liquid
droplet diameter of the perimeter of wetting is increased to a value dcmω compared
to its value dcm when ωk = 0, i.e. the classical heterocoagulation.

The greater the wetting contact angle θ, the lower the kinetic energy of the liquid
droplet required to absorb the dust particle, i.e. the larger the contact area of the
liquid droplet with the dust particle, the lower the velocity must be reported to the
liquid droplets to ensure effective dust suppression.

Thus, to reduce the energy intensity of high-pressure hydrodynamic dust suppres-
sion, it is necessary to change the kinematics of the interaction of liquid droplets and
dust particles in the contact area. In view of the above represented, this is possible
due to the influence of the vortex energy specified by the rotation of the liquid drop
at a speed ωk around its axis coinciding with the velocity vector Vk [1, 11, 12].

In the paper [1], the existence of an aerodynamic energy barrier that prevents
the transition of the “liquid-solid” system to a higher energy level of coagulation
interaction at low values of the kinetic energy of the interaction of a drop of liquid
and a dust particle is experimentally established, which corresponds to the critical
values of the Stokes criterion, at which it is impossible to capture dust particles [4].

Thus, to reduce the energy intensity of high-pressure hydrodynamic dust suppres-
sion it is necessary to change the kinematics of the interaction of liquid droplets and
dust particles in the contact area. In view of the above represented, this is possible
due to the influence of the vortex energy specified by the rotation of the liquid drop
at a speed ωk around its axis coinciding with the velocity vector Vk .

The effect of kinematic and dynamic parameters of the liquid droplet rotation on
the aerodynamic surface-adhesion energy barrier and wetting contact angle is shown
on the graphical model of the vortex inertial optokinetic heterocoogohulation in the
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Fig. 1 Graphical model of vortex kinematic coagulation of a dust particle by liquid droplets: 1—
the model of classical inertial orthokinetic heterocoagulation, i.e. at ωk = 0; 2—vortex inertial
orthokinetic heterocoagulation, ωk > 0.

interaction of the dust particle with the rotating velocity ωk of the liquid droplets
shown in Fig. 1.

When a drop of liquid rotates at an angular velocity ωk around its surface and in
the contact zone according to the Helmholtz-Bernoulli condition, a vacuum space
is created, i.e., a reduced static pressure by the specific energy ΔWk of the attached
vortex, the speed of which, according to the hydrodynamic analogy, is determined by
the Bio-Savarr formula known in the theory of electrodynamics. Thus, the attached
vortex caused by the rotation of the liquid drop, reducing the static pressure in the
zone of its contact with the dust particle, increases the contact angle to the value of
θω, facilitates the reduction of the aerodynamic energy barrier [9, 11].

In the contact area the particle of dust will move in a helical curve with a helix
angle ofα = atan dp sin θωk

(Vk−Vc)
into the depth of liquid dropwith forward speed (Vk − Vc),

while revolving with an angular velocity ωk [9].
The change in the kinematic parameters, characterizing the interaction of the dust

particle and the liquid drop in the contact zone during the collision, leads to significant
changes in the actual values of the Stokes andReynolds criteria,which are determined
by the formulas under the conditions of the vortex kinematic coagulation:
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Rekω =
dkρk

√
(Vk − Vc)2 + 0.25ω2

k d
2
p sin θ

μc
,

Stkω =
d2
p(ρp − ρc)

√
(Vk − Vp)2 + 0.25ω2

k d
2
p sin θ

18μcdk
, (2)

where dk is diameter of liquid drop, m; ρk is density of liquid drop, kg/m3; μc is
coefficient of dynamic viscosity of gas, kg/mc.

Thus, the rotary motion of the liquid droplets increases the actual effective value
of the criteria of Stokes Stkω and Reynolds Rekω in the contact zone, contributing
to the reduction of the surface-adhesive energy barrier and the critical level of the
aerodynamic energy barrier [1].

The rarefaction force in the contact zone of the dust particle and the liquid droplet,
due to the influence of the attached vortex and equal to the reduction of the surface
tension force, can be expressed by the equation:

ΔFqω = 1

2
ρkGωωk Sk S

−1
p , (3)

where Gω is circulation in the contact zone of dust particles and liquid droplets,
m2/c; Sk is contact area corresponding to the wetting area, m2/c; Sp is surface area
of dust particles, m2.

The equation for additional kinetic energy equal to the energy of the vortex
attached to the rotating liquid drop, taking into account (3) and Fig. 1, the Bernoulli
and Ostrogradsky-Gauss equations [9, 11] are obtained in the form:

ΔWkω = π

8
ρkd

3
p sin

4 θω2
k . (4)

The equation for the force of depression in the contact zone of the dust particle
and the liquid droplet due to the influence of the attached vortex, taking into account
(3), (4), is obtained in the form:

ΔFqω = π2

32
ρkd

4
p sin

4 θω2
k . (5)

For the vortex inertial orthokinetic heterocoagulation, the minimum energy value
for the total absorption, taking into account the equation (4), by analogy with the
heterocoagulation at ωk , can be written as:

Pqω = Pq − ΔWkω = 2δq cos θω. (6)

Taking into account the equations (4), (6), the equation for the wetting contact
angle in the contact zone of the liquid and solid phase during the rotation of the liquid
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drop with an angular velocity ωk is obtained as:

θω = acos(cos θ − πρkd3
c sin

4 θω2
k

8δq cos θ
). (7)

Thus, in accordance with (1), (7), the proposed model of the inertial orthokinetic
heterocoagulation system “dust particle-liquid drop” during the rotation of a liquid
particle with an angular velocityωk theminimum diameter dp ωmin of the dust particle
is completely absorbed during the capture andwetting of liquid drops under the action
of surface tension forces, inertial forces of translational and rotational motion:

dp ωmin =
δq cos acos

(
cos θ − πρkd3

p sin
4 θω2

k

8δq cos θ

)

(ρp − ρc)(Vk − Vc)2
. (8)

3 Discussion

In Fig. 2 the results of the calculation of the proposed mathematical model of the
vortex kinematic coagulation of the change in the critical values of theStokes criterion
Stkkp depending on the angular velocity of water droplets ωk with the diameter
dk = 4 · 10−6 m for absolutely hydrophobic coal dust particles.

The given isolines of the angular velocity of the liquid droplet rotation in the
function of the critical values of the Stokes andReynolds criteria confirm a significant
decrease in both the prohibiting level of the surface-adhesion energybarrier of particle
sticking and the critical level of the aerodynamic energy barrier.

When applying the angular velocity of the liquid droplet rotation
ωk = 2.5 · 102 c−1, the critical value of the Stokes criterion is reduced by more
than four times, and the critical value of the Reynolds criterion is more than three
times, compared with their values in the conditions of the translational motion of
the liquid droplets, that is, when ωk = 0. The effective values of the Reynolds and
Stokes criteria, calculated by the formula (2) on line 4 (Fig. 2), correspond to their
critical values of total absorption at ωk = 0, i.e. according to the known criterion
equations.

When applying the angular velocity of the liquid droplet rotation
ωk = 2.5 · 102 c−1, the critical value of the Stokes criterion is reduced by more
than four times, and the critical value of the Reynolds criterion is more than three
times, compared with their values in the conditions of the translational motion of
the liquid droplets, that is, when ωk = 0. The effective values of the Reynolds and
Stokes criteria, calculated by the formula (2) on line 4 (Fig. 2), correspond to their
critical values of total absorption at ωk = 0, i.e. according to the known criterion
equations.

Reduction of energy barriers in terms of vortex coagulation is caused, as shown
above (3), the increase in the criteria values of the Stokes Stkω and Reynolds Rekω ,
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Fig. 2 Isolines of the angular velocity of the water drop in function of the critical values of the
Stokes andReynolds test: 1—ωk = 0, Stkkp = 4.1 · 10−2,Rek = 20, dp min = 4 · 10−6 m; 2—ωk =
1.5 · 102 c−1, Stkkp = 8 · 10−3, Rek = 15, dp min = 3 · 10−6 m; 3—ωk = 2.5 · 102 c−1, Stkkp =
4.5 · 10−3, Rek = 6, dp min = 1.2 · 10−6 m; 4—Dependence of the critical value of the Stokes
criterion on the angular velocity of rotation of the droplet

while rotating the liquid droplets in comparison with their values Stk, Rek , calculated
without taking into account the rotation of the liquid droplets, that is, when ωk = 0.

The reduction of Reynolds criterion for liquid droplets at high-pressure vortex
hydro-dust separation corresponds to the reduction of its flow rate and the required
pressure, i.e. to the increase of the efficiencyof the dust suppression system.Thegiven
data show that, when applying the vortex inertial orthokinetic heterocoagulation
interaction of rotating liquid drops and not wetted dust particles, the capture ratio
ηStk is equal to the ratio of coagulation ηk at much smaller values of the Reynolds
criterion, i.e. at lower velocities of the liquid droplet translational motion or smaller
dust particle sizes.

The performed experimental studies with sufficient accuracy for engineering cal-
culation confirmed the results of calculations on the proposed mathematical model,
showed high efficiency of vortex inertial orthokinetic heterocoagulation, which
allowed to reduce the water consumption by 20%, to reduce the minimum size
of absorption of absolutely hydrophobic particles of coal dust to 1.2 · 10−6 m, to
increase the efficiency of dust suppression up to 99% in comparison with the classi-
cal high-pressure hydro-dust separation.

4 Conclusion

– The rotation of the liquid drop reduces the wedging action of the gas medium at
the “solid-liquid” boundary, i.e. reduces the amount of energy required for full
absorption of Pq , increases the wetting surface and the actual effective value of
the Stokes criteria Stkω and Reynolds Rekω .
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– Vortex high-pressure hydro-dust separation contributes to the increasing contact
angle, to the decrease of restrictive levels of surface adhesion energy barrier for the
sticking of the particles and the critical level of the aerodynamic energy barrier.

– The vortex kinematic coagulation allows to reduce water consumption by 20%,
increasing the efficiency of dust suppression up to 99% by reducing themedial size
of dust particles compared to the classical high-pressure hydraulic dust separation.

– Vortex high-pressure hydraulic dust separation allows to reduce the minimum size
of the absorbed hydrophobic coal dust to 1.2 · 10−6 m, thereby significantly reduc-
ing the probability of explosions of aerosol dust mixtures, to provide regulatory
requirements for the dustiness of the air.

References

1. Cecala, A.B., O’brien, A.D., Schall, J., Colinet, J.F., Fox, W.R., Franta, R.J., Schultz, M.J.:
Dust control handbook for industrialmineralsmining and processing.Department ofHealth and
Human Services, Public Health Service, Centers for Disease Control and Prevention, National
Institute for Occupational Safety and Health, Office of Mine Safety and Health Research, 159
(2012)

2. Makarov, V.N., Davydov, S.Y.: Theoretical basis for increasing ventilation efficiency in techno-
logical processes at industrial enterprises, no. 2, pp. 59–63. Springer Science+Business Media,
New York (2015)

3. Listak, J.M., Chekan, G.J., Colinet, J.F., Rider, J.P.: Performance of a light scattering dust
monitor at various air velocities: results of sampling in the active versus the passive mode.
DHHS, translation a document. [Online] http://www.cdc.gov/niosh/mining/UserFiles/works/
pdfs/2010-110.pdf

4. Makarov, V.N., Potapov, V.Y., Davydov, S.Y., Makarov, N.V.: A method of additive aerody-
namic calculation of the friction gear classification block (SCOPUS). Refract. Indus. Ceram.
38(3), 288–292 (2017)

5. Bautin, S.P.: Mathematical simulation of the vertical part of an upward swirling flow. High
Temp. 52(2), 259–263 (2014)

6. Zierold, K.M., Welsh, E.C., McGeeney, T.J.: Attitudes of teenagers towards workplace safety
training. J. Commun. Health 37(6), 1289–1295 (2012)

7. Lyashenko, V.I., Gurin, A.A., Topolniy, F.F., Taran, N.A.: Justification of environmental tech-
nologies andmeans for dust control of tailing dumps surfaces of hydrometallurgical production
and concentrating plants. Metall. Min. Ind. (4), 8–17 (2017)

8. Makarov, V.N., Makarov, N.V., Potapov, V.Y., Gorshkova, A.M.: A promising way to increase
the efficiency of high-pressure hydro-dusting. Bull. Trans. State Univ. 24(5) (2018)

9. Bautin, S.P.,Krutova, I.Y.Obukhov,A.G.:Mathematical justification of the effect of the rotation
of the earth on tornadoes and tropical cyclones. In: Bulletin of the National Research Nuclear
University MEPhI, vol. 6, no. 2, pp. 101–107. AIP Publishing (2017)

10. Bautin, S.P., Krutova, I.Y., Obukhov, A.G.: Twisting of a fire vortex subject to gravity and
Coriolis forces. High Temp. 53(6), 928–930 (2015)

11. Bautin, S.P., Novakovskiy, N.S.: Numerical simulation of shock-free strong compression of 1D
gas layer’s problem subject to conditions on characteristic. J. Phys. Conf. Ser. 894(1), 012067
(2017)

12. Wu, D., Yin, K., Zhang, X., Cheng, J., Ge, D., Zhang, P.: Reverse circulation drilling method
based on a supersonic nozzle for dust control. Appl. Sci. 7(1), 5 (2017)

13. Kilau, H.W.: The wettability of coal and its relevance to the control of dust during coal mining.
J. Adhesion Sci. Technol. 7(6), 649–667 (1993)

http://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/2010-110.pdf
http://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/2010-110.pdf


Mathematical Modeling in Economics



Methodology for Assessing the Level
of the Territory’s Economic Security

S. I. Kolesnikov and L. M. Dolzhenko

Abstract The substantiation of a technique of definition of the economic security
level of separate state territories, since federal districts andfinishingmunicipal unions
is presented in the article. The calculations show the level of the federal districts eco-
nomic security of Russia over a number of years and allow us to draw the appropriate
conclusions.

Keywords Economic security · Federal districts · Demographic security ·
Financial security · Investment security · Level of economic security of the territory

1 Introduction

At the present time there is an increase in the competitive struggle of countries for
spheres of influence, markets, energy, fuel, mineral resources and other resources
ensuring compliance with national interests in the international arena. This struggle
is carried out with the help of political, economic, information and other means of
influence, and not always generally accepted and legal. Regions, being a part of the
country, are also subject to external negative impact.

The economic security of the state and the economic security of its territories
are certainly interrelated. Consequently, terms and indicators of economic security
should be uniformboth for the state as awhole and for its separate territories (regions)
[9, p. 9].

According to the Presidential Decree No. 208 ofMay 13, 2017, economic security
is the protection of the national economy from external and internal threats, which
ensures the economic sovereignty of the country, the unity of its economic space,
and the conditions for implementing Russia’s strategic national priorities [10].
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Based on this definition, we can give the following interpretation of the concept
“economic security of the region”. The economic security of the region (ESR) is the
protection of the territorial unit economy from external and internal threats, which
ensures stability and sustainable economic growth, and satisfies the needs of society.

The structural elements of the ESR are demography, finance, investment, produc-
tion, mineral and raw materials, food, energy, transport.

2 Problem Statement

From the whole variety of literature on the problems of the ESR [1–6, 8, 9, 11, and
other] the methodology for assessing the level of economic security of the territory
was met only by V. K. Senchagov [12]. Presented by V. K. Senchagov methodology
has two significant shortcomings.

First, when calculating the integral index of economic security, the values of
particular indicators having different dimensionsmultiply. So, population density has
the dimension of people for 1 km2, the saturation of the terrotory with investments
and the size of GRP (gross regional product)—rub. on 1 km2, the coefficient of
diversity of the sectoral structure of the industry in the region—%.

Secondly, when determining the coefficient of diversity in the sectoral structure
of the region’s industry, the parameter m, in the case of a mono-branch structure,
is equal to 1 (one), hence, the denominator in the formula turns to 0 (zero), which
contradicts the rules of mathematics.

In our opinion, these shortcomings can be avoided by determining the coefficients
characterizing the security of the territory, as a ratio to the average level in the country.

3 Problem Solution

To calculate the level of the territory’s economic protection, we used such indicators
as: territory square, thousand km2; its population, thousand people; number of enter-
prises and organizations registered in the region; volume of gross regional product,
thousand rubles; volume of investments in the fixed capital in the region, thousand
rubles; expenditures of the consolidated budget of the region, thousand rubles; share
of mining, processing industries, agriculture, transport and communications, con-
struction, production and distribution of electricity, gas and water in the gross value
added of the region, %.

The population size affects the level of economic security through a coefficient
that takes into account the population density (kp), and characterizes demographic
security.

kpj = Pj : Sj/P : S, (1)
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where Pj , P—the population number in the j-th region, in the country, respectively;
Sj , S is the territory square of the j-th region, the country, respectively.
Low population density threatens, on the one hand, the desolation of the territory,

on the other hand—the arrival of emigrants from other countries, the desirability of
whose presence in Russia is questionable [12, p. 629].

The number of enterprises and organizations affects the level of economic security.
This factor, which characterizes one of the aspects of financial security, indirectly
associated with the receipt of payments to the consolidated budget, is taken into
account through the region’s saturation factor by organizations (k f ).

k f j = Fj : Sj/F : S, (2)

where Fj , F—the number of enterprises and organizations, in the j-th region, in the
country, respectively.

The number of enterprises and organizations shows the development and attrac-
tiveness of the regional infrastructure both in terms of production of goods, perfor-
mance of work, provision of services, and in terms of the skilled labor availability,
which in turn ensures social and human security.

To assess the level of region’s economic development, GRP is usually used (for
the country—gross domestic product—GDP). This indicator is the main one for
characterizing financial security. To calculate the level of economic security of the
territories, we will consider the GRP volume per unit of the region’s territory (kv j ).

kv j = GRPj : Sj/GDP : S, (3)

where GRPj is the gross regional product of the j-th region; GDP–gross domestic
product.

The size of GRP is closely related to the level of welfare of the population. The
lower it is, the greater the desire, first of all, for citizens of working age to move to
a richer region. At the same time, a relatively poor region becomes hostage to the
influx of migrants with their customs and traditions, norms of behavior, culture and
religion, lacking education and low professional qualifications, which worsens not
only the economic situation, but also exacerbates ethnic and religious problems.

The expenditures of the consolidated budget of the region affect the level of its
economic security through a factor that takes into account the region’s saturation in
monetary terms (ke), and characterizes one of the aspects of financial security.

kej = E j : Sj/E : S, (4)

where E j—expenses of the consolidated budget of the j-th region; E—expenditures
of the consolidated budget of the country.

The level of expenditures of the consolidated budget shows the possibility of
providing state-guaranteed services that can provide the population with a decent
life and comfortable living, as well as accelerated development of the social and
economic infrastructure of the territory.
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The volume of investments in fixed capital influences the level of economic secu-
rity through a factor that takes into account the region’s saturation with investments
(kinv), and characterizes investment security.

kinv j = I j : Sj/I : S, (5)

where I j , I – the volume of investment in fixed assets, respectively, in the j-th region,
by country.

The amount of investment in the region’s fixed assets depends on its economic
potential and the business climate. The higher the investment attractiveness of the
region and the lower commercial risk, the more chances it will have to attract addi-
tional resources for the accelerated development of the industrial infrastructure.

To characterize the mineral-raw materials, production, energy, food, transport
security, we used the coefficient of the industrial structure of the region’s economy
(kind).

kind j =
m∑

m=1

di j : di , (6)

where m is the number of industries in the region’s economy, di j is the share of the
added value of the i-th manufacturing sector in the GRP of region j ,

di is the share of the added value of the i-th industry in the country’s GDP.
Based on the presented methodology, we can state the following:

(1) the joint influence of factors on the level of the territory economic security with
a small value of one of the indicators may lead to the fact that the territory will
be unprotected;

(2) the low value of one of the coefficients can be compensated by the high value of
the others.

The level of economic security of the territory (metric Y ) for the j-th region is
calculated by the formula (7).

Y j = kpj + k f j + kv j + kej + kinv j + kind j (7)

We will allocate the following levels of economic security of the territory: high,
sufficient, weak and low (Table1).

The parentheses denote an open interval, square—closed interval.
The level of economic security of the territory j is considered high if the value of

the indicator Y jt belongs to the interval [(Y + Ymax)/2; Ymax). Economic security of
the territory is sufficient if the value of the indicator Y jt is in the interval [Y ; (Y +
Ymax)/2), weak – Y jt is in the interval [(Y + Ymin)/2; Y ), low – Y jt is in the interval
[Ymin; (Y + Ymin)/2).

Wewill assess the level of economic security of the federal districts of the Russian
Federation for 2005, 2010, 2015 according to the proposedmethodology, proceeding
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Table 1 Levels of economic security of the territory

Economic security Metric value interval Y jt

Low [Ymin; (Y + Ymin)/2)

Weak [(Y + Ymin)/2; Y )
Sufficient [Y ; (Y + Ymax)/2)

High [(Y + Ymax)/2; Ymax)

Y is the arithmetic mean of the metric Y jt
t is year of calculation of the metric Y
Ymax and Ymin–respectively, its maximum and minimum values

Table 2 Metrics Y

Federal districts Years

2005 2010 2015

Central 41.31 40.33 40.47

Northwestern 11.28 10.97 10.49

Southern 16.69 17.62 20.86

North Caucasian 23.77 25.48 23.89

Volga 19.55 18.98 20.36

Ural 11.73 12.05 12.11

Siberian 8.51 8.73 8.53

Far Eastern 7.79 8.21 7.63

The arithmetic mean Y 17.58 17.80 18.04

Table 3 Levels of economic security of the federal districts of the Russian Federation

Federal districts Years

2005 2010 2015

Central High High High

Northwestern Low Low Low

Southern Weak Weak Sufficient

North Caucasian Sufficient Sufficient Sufficient

Volga Sufficient Sufficient Sufficient

Ural Low Low Low

Siberian Low Low Low

Far Eastern Low Low Low

from official data of the Federal State Statistics Service [7]. Table2 shows the values
of the Y metric, in Table3 the levels of economic security of the federal districts of
Russia.

From the data in Table 3 it can be seen that for all considered periods only the
Central Federal District has a high level of economic security, a sufficient level
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is observed in the North Caucasus and Volga Federal Districts, a low level in the
Northwestern,Ural, Siberian, andFarEasternFederalDistricts. TheSouthernFederal
District had in 2005, 2010 weak economic security, and in 2015—sufficient.

It should be emphasized that, themore east and north the territory lies, the lower its
level of economic security. This situation is due to the impact of all factors considered:
the density of the population, the saturation of the region by organizations, the volume
of GRP, the saturation of the region with money, the volume of investment, and the
industrial structure of the region’s economy.

4 Conclusion

Thus, we believe that (1) the application of the proposed methodology yields objec-
tive results; (2) the methodology can be used to assess the economic security of
individual territories that are part of the country: federal districts, republics, regions,
autonomous regions, municipalities.
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The Third Dimension
of the Supply-Demand Diagram
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Abstract The article briefly presents a model that allows to find a connection
between the main macroeconomic indicators on the basis of the most general pos-
tulates. Some general results of calculations, which are in good agreement with the
actual data, are given.

Keywords Macro-economic indicators · Mathematical model · Economic space ·
The level of monetization · The Austrian school

1 Introduction

According to the well-known mathematician, logic and philosopher Sir Bertrand
Russell, simple collection and ordering of facts rarely make the correct hypotheses
obvious [1], which, however, does not exclude the need to organize this process of
collection and ordering.

At the moment economic theory is represented by a very large number of different
directions, only modern trends can be counted from a dozen. Science is intensively
developing, on the basis of a variety of theoretical concepts are created at least a
variety of models. But the results are very modest, suffice it to recall the difficult
situation of 2008 or refer to “Guidelines for the Unified State Monetary Policy for
2015 and the period of 2016 and 2017”.1 In this document approved on 06.11.2014
by the Board of Directors of the Central Bank of the Russian Federation, out of five

1https://www.garant.ru/products/ipo/prime/doc/70686634.
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the development options drawn up for 2015 and 2016 have not been implemented in
terms of GDP dynamics. The conclusions are disappointing [2, 3]:

– ideas and forecasts are primarily qualitative in nature;
– empirical patterns do not accumulate, and are often refuted by further research;
– there is a set of tools, there is a set of rules, but there are no rules, when and what
tool should be used effectively;

– the growing formalism and mathematization of meaningless and isolation from
practice;

– erroneous and superficial results are often much more desirable for the realization
of ideological objectives;

– poor prediction quality.

That is, as noted in [2], “empirical research does not reveal fundamental economic
laws”.

2 Analysis of the Problem Field

It is very tempting to take the best practices from the exact Sciences, convenient for
describing economic processes [4, 5]. The result is likely to be, at least, we will not
notice any obvious contradictions, but we will not notice success as well. “Thank”
for this should be a commonality of mathematical concepts in relation to specific
areas of knowledge. So the diffusion equation (the second order parabolic differential
equation) perfectly describes both the dissolution of a piece of sugar in a Cup of tea
(diffusion), and the heating of the spoon you stir this sugar (heat propagation), and
the explosion of a nuclear charge, and the kinetics of explosive boiling of metastable
liquids, andmuch, muchmore. If even the schrödinger equation is formally similar to
the diffusion equation, then why not apply it to the dynamics of cash flows? Parabolic
equation is not suitable here—let’s try to use an elliptical, or a special function. The
arsenal is huge. As they say, to take from mathematics something necessary and
apply by analogy to the economy, discarding everything else.

This approach raisesmany questions. First, we should not forget thatmathematical
methods are just a handy tool that should not be attributed to somemagical properties.
This is the universal language in which it is convenient to build logical structures,
formulate questions and try to get an answer—“to organize the diverse variety of the
empirical and make it available to human understanding” [6].

Secondly, we try to study the processes, the nature of which is not understood
by the models and templates proposed for solving completely different problems.
At the same time, acting as common sense tells us, although there is nothing more
dangerous than to be captured by stereotypes and seeming everyday simplicity. As a
result, we consciously begin to build a theoretical model from the end of the logical
chain, and then we are surprised by the meaningless mathematics of the economy.
And it is in vain, because the content was simply nowhere to take.
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Interestingly, this conclusion leads to another extreme: statement on the principal
hopelessness of mathematical methods to the analysis of economic processes [7].
Logic of prominent representative of the Austrian school Ludwig von Mises is very
curious. He argued that the inability to measure in the economy is due to the lack of
some constant ratios,2 “statistical figures referring to economic events are historical
data” [7]. This thesis needs justification.

As it is known [8], there are fundamental constants (essentielle), for example,
the speed of light, reflecting properties of our physical world, and casual constants
(accidentelle) which can change at transition from one object to another. Example—
the time of the planet’s circulation around the Sun: the value for all celestial bodies
is different, but for each planet it is constant.

Mises is right about something. For example, the length of the circle or the area
of the circle is elementary to find, knowing the number π , characterizing, among
other things, the geometry of our space. The gravity force is “controlled” by the
gravitational constant, and the special theory of relativity is based on the hypotheses
of the constancy of the speed of light and the constancy of the four-dimensional
interval in the Minkowski space.

And, nevertheless, if today constants, casual or fundamental, are unknown to
economic science, it does not mean that they are absent in principle. An adequate
hypothesis and model are needed, and then constants will appear. In the Newton era,
nothing was known about Planck’s constant, not about the constancy of the speed
of light, and other physical constants, which we now operate freely, which did not
prevent the successful development of classical physics.

3 General Principles on the Application of the Geometric
Approach to Macroeconomic Analysis. Discussion
of the Results

In fact, almost everything necessary to build a model in one form or another has
already been developed. New quite a bit, just one hypothesis:

economic activity is a movement in a specific economic space

This expression can be imagined as a postulate, where on the left is the concept of
“economic activity”, and on the right—defining part—“movement” and “space”, the
terms in need of the most General and precise specification, excluding arbitrariness.
Moreover, the compactness and apparent simplicity of the verbal formulation should
not be misleading. Each concept has a clear generally accepted definition. Turning
to common sense only seems convincing, adding even greater uncertainty and in no
way contributing to a further understanding of the problem. As you know, motion
is a transformation of space that preserves the distance (interval) between points

2“It is not quantitative and does not measure because there are no constants” [8].
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(events). Therefore, first of all, it is necessary to simulate the economic space itself,
determine its dimension and metric. Then determine which transformations are the
movement.

The first part of the problem is solved quite simply. To do this, let us consider
the famous process of “Money-Commodity-Money bar” (M → C → M ′). This is
the first concrete assumption (or axiom) that we use to construct a model. It would
seem that everything is simple and obvious. But what’s next? Economic processes
are cyclical and discrete, business is not limited by one operating cycle (elementary
process). Does the chain M → C → M ′ → C ′ → M ′′ have a right to exist? No.
And that’s why. In this case, we identify the revenue from the sale of goods (when
M ′ means the end of the previous operating cycle) and production resources (when
M ′ means the beginning of the next cycle). But it is necessary, at least, to pay taxes,
wages, to direct something to the own consumption and development. In addition,
although this question seems abstract, there is no fundamental difference between
the processes in this note M → C → M ′ and C → M → C ′.

The only option remains:

M → C → M ′ → M ′′. (1)

Or, in another form:

[M → C → M ′]1 → [M → C → M ′]2 → ... → [M → C → M ′]i → ..., (2)

where i is the number of the operating cycle.
In scheme (1), one clarification of a fundamental nature should be made. An

abstract product (commodity), which we denoted by the symbol “C” should be split
into two entities: manufactured commodity, let us denote itCM , and sold commodity
CS . Scheme (1) in this sense is only valid as a special case for CM = CS , that is,
when Say’s law is executed. Then (1) takes the form of:

[M → CM → CS → M ′]1 → [M → CM → CS → M ′]2 → ...

→ [M → CM → CS → M ′]i → ... (3)

On the basis of (1) the dimension of our economic space should be taken equal to
three (M , C and M ′ axes). In the future, we will not complicate the consideration,
referring “investment” money to Mi, under M ′

i—sales revenue (“investment” and
“consumer” money). Our goal is to confirm the workability of the idea, and the
model (1) can be easily modified and supplemented if necessary. This first step,
which we have taken, inevitably and without options, entails another.

First, let us illustrate (Fig. 1a).
Let the process of “money-commodity”, that is, the stage of supply of goods, cor-

responds to one plane (or rather pseudo—plane) of our space, the other-corresponds
to the process of “commodity-money”, or the stage of demand. Pseudo-planes “con-
nected” in one three-dimensional space by the axis “C”—product.



The Third Dimension of the Supply-Demand Diagram 369

a) Three-dimensional model of
commodity-money relations.

b) “Marshallian Cross”.

Fig. 1 Space model. Equilibrium point A: change in price (P) and quantity (Q) as a consequence
of change in demand (D) and supply (S)

Suppose that the point A defines the position of the system in space and assume the
existence of some functional dependency G fromM and fromM′. Conditionally they
are presented in the form of curves in Fig. 1a. Then we can graphically determine the
coordinatesMA andM ′

A of A point. It is difficult to say how much this representation
is true, as, indeed, the “Marshallian Cross” itself, we will take into account at a
qualitative level only one of the options: with the growth of the money supply is
growing, with the price increase, the volume of sales falls. It is easy to notice that if
you combine M and M′ axes, we will come to the classical “flat” scheme of supply
and demand equilibrium (see Fig. 1b).

In Chap.V of book V A. Marshall’s “principles of economics”, such a graph
illustrates an example of “typical diagram for stable equilibrium for a commodity
that obeys the law of Diminishing Return”. But if the law of diminishing returns can
be considered a condition for the existence of a graph of this kind, what should be
understood as a “stable equilibrium”?

As noted by Harrod [9], in conditions of static equilibrium, some values are
assumed to be constant if there are no new disturbing factors…Static equilibrium
means not a state of idleness, but rather a state where production is carried out
continuously, day by day and year by year, but without increasing or decreasing.
Hicks [10] defined economic statics as a section of economic theory where the
researcher is not concerned about a matter of time. The entrepreneur uses certain
factors of production, producing a certain amount of goods. According to N. D.
Kondratiev, “phenomena of economic life can sometimes be more or less stable and
as if to approach a static state. But, strictly speaking, they are never in such a state
as there is no absolute peace in the physical world. Hence-in fact there is only the
dynamics of phenomena” [11].

As we can see, the very existence of an absolute static state in the economy is
in question, not to mention how it can be defined. Marshall himself, returning in
more detail to the consideration of the concept of “balance” in Chap.V. and XII
of his “Principles...”, calls the stationary state “famous fiction” invalid for the real
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world, in which “every economic force is constantly changing its action, under the
influence of other forces which are acting around it”. This is an illustration, about
which the author himself says that the image has nothing to do with reality, is the
main economic model [12] and the entire system of Economics is built on it [13].

In Introduction instead of the usual two-dimensional “MarshallianCross” of three-
dimensional space and, accordingly, some three-dimensional trajectory of the system
allows: Introduction insteadof the usual two-dimensional “Marshall’s cross” of three-
dimensional space and, accordingly, some three-dimensional trajectory of the system
allows:

1. Enter a time into consideration. The classic “Marshall Cross” implicitly implies
the division of economic entities into “sellers” and “buyers”, which is not true.
Each entity is both a buyer and a seller, only at different times. The curves of
supply and demand intersecting to the plane, do not have to intersect in three-
dimensional space. Moreover, in this case we are dealing not with two separate
projections, but with a certain three-dimensional surface of motion, which has its
own projections into three pseudo-planes spaces.

2. It is natural to introduce an additional “extent of freedom” in the form of another
pseudo-plane, conditionally called “regulation” and complementing the usual
“demand” and “supply”. From macroeconomic positions, it is directly related to
the level of monetization of the economy.

3. To take into account the nonlinear effects, considering the process in recording
(2). If the ratio of the produced and sold goods is changed, then the curvature of
the space occurs and, accordingly, the trajectory of movement (Keynes space).
If our space is flat, it is easy to draw a conclusion about the neutrality of money
(Fisher space). That’s how one geometric model combines two alternative points
of view.

But let us return to the further specification of the parameters of our space.
The second fundamental characteristic in the interval—it is logical to define as

the difference between the received and resources spent (the analogue of profit),
hence indefinitely metrics. The assumption of economic activity as a movement just
implies that profit does not depend on the length of the operating cycle.

Thus, we postulate only two parameters: space dimension and interval value. Then
everything will be in the standard framework of building the model:

1. The study of the features of motion in a given space.
2. Comparison on the basis of consistent logical constructions with mathematical

functions of economic concepts.
3. Verification of the model on actual data.

It is easy to show that the movement in our space is a hyperbolic rotation. The
parameters that characterize it from a mathematical point of view are displayed quite
simply, although cumbersome [14].

The greatest arbitrariness appears, of course,when comparing these abstractmath-
ematical functions of specificmacroeconomic indicators. There is still freedom in the
details of the model, which should already be attributed to the merits of the model.
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Considering the simplest case when CM = CS (which leads to the question of the
moving force of the process), the following equation is proposed in [14]3:

L̃ = (1 + Δm)(
G

kM − 1
) (

1 + 1
GΔr

) − 3Δm
, (4)

where L̃ is the average year refinance rate, (Δm) is average annual growth of M2,M
is index-deflator, G is average annual level of monetization ratio, Δr is increasing
the level of real production by the year, k is the normalizing constant, for Russia
from 1996 to 2012years k = 0, 0293 ± 0, 0015.

Equation (3) is obtained in the General case for the curved space and the changing
value of the money supply (M2 aggregate). The economic meaning of the concept
of “curved space” is that the appearance of curvature leads to acceleration and, as a
consequence, to the emergence of the dynamics of macroeconomic indicators. For
the special case of flat space and constant value M2:

L̃ = 1
G

kM − 1
. (5)

Interestingly, the expression (4) coincides in form with the fundamental equation
of Keynes for the cost of capital [Daniele Besomi. The Making of Harrod’s Dynam-
ics. First published in the United States of America 1999 by ST. Martin’s Press, Inc.,
Scholarly and Reference Division. 175 Fifth Avenue, New York, N.Y. 10010], pro-
posed without conclusion in a letter to Keynes Harrod Pody [J. M. Keynes to Harrod,
12 April 1937, http://economia.unipv.it/harrod/edition/editionstuff/chronologicalfr.
htm?rfh.1.htm~mainFrame].

The peculiarity of this equation is that it can not be considered in the usual form as
y = y(x). In the right, and in the left part there are functions, each of which depends
on all the others.

Equation (3) is executed with high accuracy for the Russian economy (see Fig. 2,
which shows deviations of the calculated data from the actual refinancing rate L̃),
USA, China, Belarus, Kazakhstan, Turkey, Ukraine [14].

In addition, the position of the Austrian school on the role of constants in eco-
nomic science becomes more understandable. Indeed, without constant values, it is
very difficult to identify and, most importantly, quantify the relationship between
macroeconomic indicators.

On the other hand, it can be argued that we were lucky, and our hypothesis of
economic activity as a movement in space is confirmed in the form of the existence
of a permanent complex, which from an economic point of view has the meaning
of the maximum possible speed of circulation of the money supply. The inverse

3Conclusion (3) goes beyond the scope of this article and is given in [15].

http://economia.unipv.it/harrod/edition/editionstuff/chronologicalfr.htm?rfh.1.htm~mainFrame
http://economia.unipv.it/harrod/edition/editionstuff/chronologicalfr.htm?rfh.1.htm~mainFrame
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Fig. 2 Schedule of deviation of the estimated refinancing rate from the actual one for the Russian
economy (for example, if the refinancing rate is 8%, then the value of 7.2% will correspond to the
10% deviation in the smaller direction)

Fig. 3 The normalizing constant in the period from 1996 to 2012years

value, or the normalizing constant, gets the meaning of the minimum possible level
of monetisation of the economy:

k = G

M
L̃

(
1 + Δr

G

)
(
1 + Δm(1 + 3L̃) + L̃

(
1 + Δr

G

) ) . (6)

Visual calculations of k for the Russian Federation are shown in Fig. 3.
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Moreover, as the estimates show, this constant does not belong to the form of
fundamental ones.

As special cases of correlation (3) a number of known economic laws are derived:
Fisher’s rule, Friedman’s equation, Wicksel’s rule, “liquidity trap” [14]. Note also a
number of obvious points.

1. If the refinancing rate decreases, then under other equal conditions, the level of
real production does increase. But “along with this—does not mean owing to
that”. As in the known example: if the fire—then come fire trucks, but it is wrong
to assume that the appearance of fire trucks is the cause of the fire.

2. In the case that the Central Bank’s policy path will reduce the discount rate [15],
and the real sector for such a measure will not react (the dynamics of production
will remain at the same level or even decrease), then it should increase complex

( G

kM
)
. (7)

That is, the level of monetization will either increase or the deflator index will
decrease, or both processes will go simultaneously, or the level of monetization
will grow at a faster rate than the deflator index, or the deflator index will decline
at a faster rate than the level of monetization. As you can see, there are many
options.
It is not obvious which of themwill be implemented in fact. The picture is difficult
to understand and visual perception, as in the equation of the five functions, and
the point that characterizes the state of the system moves in five-dimensional
hyperplane.
It should also be noted that without knowledge of the dynamics of the level
of monetization it is impossible to assess, especially to quantify, the projected
changes in other macroeconomic indicators. This means that this parameter must
be defined as accurately as possible, taking into account all the features of a
specific economy.
In [16] it is offered to define “effective” level of monetization as follows:

G = M 2

β(α ∗ GDP − XN )
, (8)

where β is a coefficient taking into account the degree of development of financial
markets (β > 1), α is a coefficient reflecting the ratio of aggregate social product
(ASP) to GDP α > 1, XN denotes a net export.
Estimates of the level of monetization by (6), even taking into account only net
exports, give numerical values, though slightly different from the simple ratio of
M2 to GDP, but provide significantly better accuracy of calculations by (3).
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3. If our goal is to reduce inflation, then the following scenarios are possible:

– The growth of the real sector. In this case, we replace one serious problem with
another: the task of combating inflation is closely linked to the problem of real
production growth (we should not only forget about the example of fire trucks).

– The increase in the level of monetization (the decline in GDP or growth inM2),
when stable or declining rate of refinancing in relation of (4)

(kM
G

)
,

deflator index M will decrease.

As for the finer points, such as the growth of the refinancing rate in the fight
against inflation, “export inflation”, the explanation of such processes, although
possible, is much more cumbersome and goes beyond the scope of this article.
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Proximity Full-Text Searches
of Frequently Occurring Words
with a Response Time Guarantee

A. B. Veretennikov

Abstract Full-text search engines are important tools for information retrieval. In
a proximity full-text search, a document is relevant if it contains query terms near
each other, especially if the query terms are frequently occurring words. For each
word in the text, we use additional indexes to store information about nearby words
at distances from the given word of less than or equal to MaxDistance, which is a
parameter. A search algorithm for the casewhen the query consists of high-frequently
occurring words is discussed. In addition, we present results of experiments with dif-
ferent values of MaxDistance to evaluate the search speed dependence on the value
of MaxDistance. These results show that the average time of the query execution
with our indexes is 94.7–45.9 times (depending on the value of MaxDistance)
less than that with standard inverted files when queries that contain high-frequently
occurring words are evaluated.

Keywords Full-text search · Search engines · Inverted indexes ·
Additional indexes · Proximity search · Term proximity · Information retrieval

1 Introduction

A search query consists of several words. The search result is a list of documents
containing these words. In [10], we discussed a methodology for high-performance
proximity full-text searches and a search algorithm. In this paper, we present an
optimization of this algorithm and the results of the experiments in dependence on
its primary parameter.
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In modern full-text search approaches, it is important for a document to con-
tain search query words near each other to be relevant in the context of the query,
especially if the query contains frequently occurring words. The impact of the term-
proximity is integrated into modern information retrieval models [3, 7, 8, 19].

Words appear in texts at different frequencies. The typical word frequency distri-
bution is described by Zipf’s law [20]. An example of words occurrence distribution
is shown in Fig. 1. The horizontal axis represents different words in decreasing order
of their occurrence in texts. On the vertical axis, we plot the number of occurrences
of each word.

Inverted files or indexes [9, 21] are commonly used for full-text search data
structures. With ordinary inverted indexes, for each word in the indexed document,
we store in the index the record (I D, P), where I D is the identifier of the document
and P is the position of the word in the document (for example, an ordinal number
of the word). For proximity full-text searches, we need to store (I D, P) record for
all occurrences of any word in the indexed document. These (I D, P) records are
called “postings”. In this case, the query search time is proportional to the number
of occurrences of the queried words in the indexed documents. Consequently, it is
common for search systems to evaluate queries that contain frequently occurring
words (such as “a”, “are”, “war” and “who”) much more slowly (see Fig. 1) than
queries that contain less frequently occurring, ordinary words (such as “promising”
and “glorious”).

To address this performance problem and to satisfy the demands of the users, we
use additional indexes [10–16].

It is important to evaluate any query with a response time guarantee. A full-text
search query that we can consider to be a “simple inquiry” should produce a response
within two seconds [6]; otherwise, the continuity of thinking can be interrupted,
which will affect the performance of the user.

Fig. 1 Example of a word
frequency distribution
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1.1 Word Type and Lemmatization

In [11], we defined three types of words.
Stop words: Examples include “and”, “at”, “or”, “not”, “yes”, “who”, “to”, and

“be”. In a stop-words approach, these words are excluded from consideration, but we
do not do so. In our approach, we include information about all words in the indexes.
We cannot exclude a word from the search because a high-frequently occurring word
can have a specific meaning in the context of a specific query [10, 17]; therefore,
excluding some words from consideration can induce search quality degradation or
unpredictable effects [17]. Let us consider the query example “who are you who”.
The Who are an English rock band, and “Who are You” is one of their songs. There-
fore, the word “Who” has a specific meaning in the context of this query.

Frequently usedwords: Thesewords are frequently encountered but conveymean-
ing. These words always need to be included in the index.

Ordinary words: This category contains all other words.
We employ a morphological analyzer for lemmatization. For each word in the

dictionary, the analyzer provides a list of numbers of lemmas (i.e., basic or canonical
forms). For a word out of the dictionary its lemma is the same as the word itself.

We define three types of lemmas: stop lemmas, frequently used lemmas and ordi-
nary lemmas. We sort all lemmas in decreasing order of their occurrence frequency
in the texts. This sorted list we call the FL-list. The number of a lemma in the FL-list
is called its FL-number. Let the FL-number of a lemma w be denoted by FL(w).

The first SWCount most frequently occurring lemmas are stop lemmas.
The second FUCount most frequently occurring lemmas are frequently used

lemmas.
All other lemmas are ordinary. SWCount and FUCount are the parameters.
We use SWCount = 700 and FUCount = 2100 in the experiments presented.
If an ordinary lemma q occurs in the text so rarely that FL(q) is irrelevant, then

we can say that FL(q) =∼. We denote by “∼” some large number.
Let us consider the following text, with the identifier I D1: “All was fresh around

them, familiar and yet new, tinged with the beauty ”. This is an excerpt from Arthur
Conan Doyle’s novel “Beyond the City”.

After lemmatization: [all] [be] [fresh] [around] [they] [familiar] [and] [yet] [new]
[ting, tinge] [with] [the] [beauty].

With FL-numbers: [all: 60] [be: 21] [fresh: 2667] [around: 2177] [they: 134]
[familiar: ∼] [and: 28] [yet: 632] [new: 376] [ting: ∼, tinge: ∼] [with: 40] [the: 10]
[beauty: ∼].

Stop lemmas: “all”, “be”, “they”, “and”, “yet”, “new”, “with”, “the”.
Frequently used lemmas: “fresh”, “around”.
Ordinary lemmas: “ting”, “tinge”, “beauty”, “familiar”.
In this example we can see that some words have several lemmas. The word

“tinged” has two lemmas, namely, “ting” and “tinge”. Another example is the word
“mine” that has two lemmas, namely, “mine” and “my”, with FL-numbers of 2482
for “mine” and 264 for “my”.
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1.2 Query Type

Let us define the following query types.

(QT 1) All lemmas of the query are stop lemmas.
(QT 2) All lemmas of the query are frequently used lemmas.
(QT 3) All lemmas of the query are ordinary lemmas.
(QT 4) The query contains frequently used and ordinary lemmas; there are no stop

lemmas in the query.
(QT 5) The query contains stop lemmas. The query also contains frequently used

and/or ordinary lemmas.

We presented the results of experiments [10] while showing that the average query
execution timewith our additional indexeswas94.7 times less than that requiredwhen
using ordinary inverted files, when QT 1 queries are evaluated. The experimental
query set contained 975 QT 1 queries, and each was performed three times. The total
search time with ordinary inverted indexes was 8h 59min. The total search time with
our additional indexes was 6min 24s.

Let MaxDistance be a parameter that can take a value of 5 or 7 or even more.
In [10], we presented the results of experiments with MaxDistance = 5.

Before, in [13], we had presented the results of experiments showing that the aver-
age number of postings per query with our additional indexes was 51.5 times less
than that required when using ordinary inverted files, when queries with QT 2–QT 5
types are evaluated (the QT 1 type is excluded). MaxDistance = 5. The experi-
mental query set contained 5955 QT 2–QT 5 queries.

In [13], we also presented the results of experiments showing that the average
number of postings per query with our additional indexes was 263 times less than
that required when using ordinary inverted files, when queries with QT 1–QT 5 types
are evaluated and when the QT 1 type search is limited by an exact search (that is, for
a QT 1 query, we find only documents that contain all query words near each other
and without other words between, but the query words can be in any order in the
indexed document). MaxDistance = 5. This limitation we had overcome in [10,
16] by introducing a new type of additional index (three-component key index) for
the QT 1 queries. The experimental query set contained 4500 queries, where 330 are
QT 1 queries and 462 are QT 2–QT 4 queries.

In this paper, in a continuation of [10], we present the results of experiments
for QT 1 queries when MaxDistance = 5, 7 and 9. With these results, we can
evaluate the search speed with three-component key indexes dependent on the value
of MaxDistance.

We use different additional indexes depending of the type of the query [10].

(QT 1) Three-component key ( f, s, t) indexes.
(QT 2) Two-component key (w, v) indexes.
(QT 3) Ordinary indexes, skipping NSW (near stop words) records [10].
(QT 4) Ordinary indexes with skippingNSW records [10] and two-component key

indexes.
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(QT 5) Ordinary indexes with NSW records and two-component key indexes. For
each frequently used or ordinary lemma in each document, a record (I D,
P , NSW record) is included in the ordinary index. I D is the ordinal number
of the document. P is the corresponding word’s ordinal number within the
document. The NSW record contains information about all stop lemmas
occurring near position P (at a distance ≤ MaxDistance). This informa-
tion is efficiently encoded [11–13] and allows to take into account any stop
lemmas that occurring near P . The postings for a lemma in the ordinary
index can be stored in two data streams: the first contains (I D, P) records,
and the second contains NSW records. In this case, we can skip NSW
records when they are not required.

2 The Search Algorithm

2.1 The Search Algorithm General Structure

Our search algorithm is described in Fig. 2 and in Table 1.
Let us consider the following query: “who are you who”.
Let us consider the phase 3 in more detail. We evaluate the sub queries in the

loop. We select a non-processed sub query. If no such sub query exists, then all sub
queries are processed and we go to the next phase. Otherwise, we evaluate the sub
query and go to the start of the loop.

Fig. 2 UML diagram of the
query evaluation procedure
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Table 1 The search algorithm general structure

Phase Result of the phase

1. Lemmatization The query after lemmatization
[who: 293] [are: 268, be: 21] [you: 47] [who: 293]

2. Building sub query list (if required
by the query type)

Q1: [who: 293] [are: 268], [you: 47] [who: 293]
Q2: [who: 293] [be: 21], [you: 47] [who: 293]

3. Evaluation of the sub queries Results of Q1
Results of Q2

4. Combining results Combined result set sorted according to relevancy

Results of a sub query are the list of records (I D, P, E, R). I D is the identifier
of the document. P is the position of the start of the fragment of text within the
document that contains the query. E is the position of the end of the fragment of
text within the document that contains the query. R is the relevance of the record
(Table1).

In [10], we defined several query types depending on the types of lemmas they
contain and different search algorithms for these query types. In this paper, we
consider sub queries that consist only of stop lemmas.

2.2 Evaluation of a Sub Query that Consists only of Stop
Lemmas

To evaluate a sub query that consists only of stop lemmas, three-component key
indexes are used.

The expanded ( f, s, t) index or three-component key index [10] is the list of
occurrences of the lemma f for which lemmas s and t both occur in the text at
distances less than or equal to MaxDistance from f .

For the sub query Q1, we can use the (you, are, who) and (you, who, who) indexes.
The algorithm for the index selection is described in [10].

For each selected index, we need to create the iterator.
The iterator object for the key ( f, s, t) is used to read the posting list of the ( f, s, t)

key from the start to the end.
The iterator object I T has the method I T .Next , which reads the next record from

the posting list.
The iterator object I T has the property I T .Value that contains the current record

(I D, P). Consequently, I T .Value.I D is the I D of the document containing the
key, and I T .Value.P is the position of the key in the document.

For two postings A = (A.I D, A.P) and B = (B.I D, B.P), we define that A <

B when one of the following conditions is met: A.I D < B.I D or; (A.I D = B.I D
and A.P < B.P).
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Fig. 3 UML diagram of the stop lemma only sub query evaluation procedure

The records (I D, P) are stored in the posting list for the given key in increasing
order.

The evaluation of the sub query that consists only of stop lemmas [10] is shown
accordingly in Fig. 3. Broadly speaking, the evaluation of the sub query is a two level
process that is incorporated into the loop (steps 3.1 and 3.2).

2.3 The Optimized Equal i ze Procedure

2.3.1 Implementation of Equal i ze with Two Binary Heaps

We can implement Equali zewith two binary heaps [18]. Let Max I T be the iterator
with a maximum value of Value.I D. Let MinI T be the iterator with a minimum
value of Value.I D. If Max I T .Value.I D = MinI T .Value.I D, then all iterators
have an equal value of Value.I D.

Abinary heap is an array of elements H . For any elements A and B, the comparison
operation A < B is defined. This array is indexed from 1.

The binary heap property: for any index i , H [i] ≤ H [i × 2] and H [i] ≤ H [i ×
2 + 1].
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2.3.2 Binary Heap Operations

The binary heap provides the following operations.
I nsert (E): adds a new element E to the heap with a computational complexity

O(log n), where n is the count of elements in H .
GetMin: returns the minimum element with a computational complexity O(1)

(returns the first element of the array, i.e., top of the heap).
Update(i): updates the position of the element with index i with a computational

complexity O(log n). We will create H as an array of pointers to the iterator objects.
Let us consider an example. For any two elements A and B in H , we define the
operation A < B as A.Value.I D < B.Value.I D. Let I T be an element in H .
When I T .Next is executed, the value of I T .Value is changed, and the position of
I T in H must be updated.

We include in any iterator object two additional fields, namely, MinIndex and
Max Index .

We create two heaps, namely, MinHeap and MaxHeap.
For MinHeap, the operation A < B is defined as A.Value.I D < B.Value.I D.
ForMaxHeap, the operation A < B is defined as A.Value.I D > B.Value.I D.
MinHeap.GetMin returns the pointer to an iterator object with the minimum

value of Value.I D.
MaxHeap.GetMin returns the pointer to an iterator object with the maximum

value of Value.I D.
In the code for the I nsert and Update operations for MinHeap we update the

MinIndex field for any iterator object if its position is changed in the heap’s array.
For any iterator I T , the value of I T .MinIndex is always equals to the position of
I T ’s pointer in the MinHeap’s array.

In the code for the I nsert and Update operations for MaxHeap we update the
Max Index field for any iterator object if its position is changed in the heap’s array.
For any iterator I T , the value of I T .Max Index is always equals to the position of
I T ’s pointer in the MaxHeap’s array.

An example of MinHeap and MaxHeap with three iterators is shown in Fig. 4.
Iterator I T 1 has Value.I D = 3, iterator I T 2 has Value.I D = 10 and iterator

I T 3 has Value.I D = 5.
The MinHeap array has three cells, and the MaxHeap array has three cells.
The MinHeap and MaxHeap arrays contain pointers to the I T 1, I T 2 and I T 3

iterator objects (i.e., the addresses of these objects). To compare two elements of
the MinHeap array, we need to obtain two corresponding iterator objects by their
addresses and compare their Value.I D fields.

The pointer to the iterator with the minimum value of Value.I D, namely, I T 1,
is located in the first cell of the MinHeap array. The pointer to the iterator with
the maximum value of Value.I D, namely, I T 2, is located in the first cell of the
MaxHeap array.
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Fig. 4 Example of MinHeap and MaxHeap with three iterators

2.3.3 Details of the Insert Operation

For example, in the following code fragment we define the I nsert (I T ) operation
for MinHeap. Let MinHeap.Count be the current count of elements in the binary
heap MinHeap.

Let MinHeap.Heap be the array with length MinHeap.MaxCount , indexed
from 1, MinHeap.MaxCount > MinHeap.Count .

(1) MinHeap.Count = MinHeap.Count + 1.
(2) MinHeap.Heap[MinHeap.Count] = I T .
(3) I T .MinIndex = MinHeap.Count .
(4) i = MinHeap.Count .
(5) While i > 1 and MinHeap.Heap[i].Value.I D <

MinHeap.Heap[i/2].Value.I D, perform steps 5.a–5.e.

(a) T = MinHeap.Heap[i], Q = MinHeap.Heap[i/2],
(b) MinHeap.Heap[i/2] = T ,MinHeap.Heap[i] = Q (swapping T and its

parent element).
(c) T .MinIndex = i/2 (updating MinIndex for T ).
(d) Q.MinIndex = i (updating MinIndex for Q).
(e) Assignment: i = i/2.

The updating of the Max Index field in MaxHeap is performed in a similar way.
We also need to update MinIndex and Max Index fields in Update operation.
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2.3.4 Implementation of Equal i ze

We can implement Equali ze in the following way.
For any iterator I T , we include I T (its pointer) in MinHeap and MaxHeap

using MinHeap.I nsert (I T ) and MaxHeap.I nsert (I T ).
Next, in the loop, we perform the following.

(1) IfMinHeap.GetMin().Value.I D=MaxHeap.GetMin().Value.I D= I D,
then exit from the procedure (for any iterator I T we have I T .Value.I D = I D).

(2) Select I T = MinHeap.GetMin().
(3) Execute I T .Next .
(4) If no more postings in I T , then exit from Equali ze and from the search.
(5) Execute MinHeap.Update(I T .MinIndex).
(6) Execute MaxHeap.Update(I T .Max Index).
(7) Go to step 1.

The Equali ze procedure is shown in Fig. 5.

Fig. 5 UML diagram of the Equalize procedure
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This implementation of Equali ze is more effective and scalable than the basic
implementation from [10] because all operations in the internal loop have a compu-
tational complexity O(log n), where n is the number of iterators.

3 Search Experiments

3.1 Search Experiment Environment

In addition to the optimized search algorithm, we discuss the results of search exper-
iments with different values of MaxDistance.

All search experiments were conducted using a collection of texts from [10]. The
total size of the text collection is 71.5 GB. The text collection consists of 195 000
documents of plain text, fiction and magazine articles.

MaxDistance = 5, 7 or 9. SWCount = 700, FUCount = 2100.
The search experiments were conducted using the experimental methodology

from [10].
We used the following computational resources:
CPU: Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz. HDD: 7200 RPM. RAM: 24

GB.
OS: Microsoft Windows 2008 R2 Enterprise.
We created the following indexes.
I dx1: ordinary inverted filewithout any improvements such asNSW records [10].
I dx2: our indexes, including the ordinary inverted index with NSW records and

the (w, v) and ( f, s, t) indexes, with MaxDistance = 5.
I dx3: our indexes, including the ordinary inverted index with NSW records and

the (w, v) and ( f, s, t) indexes, with MaxDistance = 7.
I dx4: our indexes, including the ordinary inverted index with NSW records and

the (w, v) and ( f, s, t) indexes, with MaxDistance = 9.
Queries performed: 975, all queries consisted only of stop lemmas. The query set

was selected as in [10]. All searches were performed in a single program thread. We
searched all queries from the query set with different types of indexes to estimate
the performance gain of our indexes.

Query length: from 3 to 5 words.
Studies by Spink et al. [5] have shown that queries with lengths greater than 5 are

very rare. In [5], query logs of a search system were analyzed, and it was established
that queries with a length of 6 represent approximately 1% of all queries and fewer
than 4% of all queries had more than 6 terms.
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3.2 Search Experiments

Average query times:
I dx1: 31.27 s, I dx2: 0.33 s, I dx3: 0.45 s, I dx4: 0.68 s.
Average data read sizes per query:
I dx1: 745 MB, I dx2: 8.45 MB, I dx3: 13.32 MB, I dx4: 23,89 MB.
Average number of postings per query:
I dx1: 193 million, I dx2: 765 thousands, I dx3: 1.251 million, I dx4: 1.841

million.
We improved the query processing time by a factor of 94.7 with I dx2, by a factor

of 69.4 with I dx3, and by a factor of 45.9 with I dx4 (see Fig. 6).
The left-hand bar shows the average query execution time with the standard

inverted indexes. The subsequent bars show the average query execution time with
our indexes with MaxDistance = 5, 7 and 9. Our bars are much smaller than the
left-hand bar because our searches are very quick.

We improved the data read size by a factor of 88 with I dx2, by a factor of 55.9
with I dx3, and by a factor of 31.1 with I dx4 (see Fig. 7).

We present the differences in the average query execution time for I dx2, I dx3
and I dx4 in Fig. 8 to analyze how the average query execution time depends on the
value of MaxDistance (see Fig. 8).

Let us consider Fig. 8. The left-hand bar shows the average query execution time
with MaxDistance = 5, and the subsequent bars with MaxDistance = 7 and 9.

The search with I dx3 was slower than that with I dx2 by a factor of 1.36, and the
search with I dx4 was slower than that with I dx2 by a factor of 2.06.

We present the differences in the average data read size per query for I dx2, I dx3
and I dx4 in Fig. 9 to analyze how the average data read size depends on the value
of MaxDistance (see Fig. 9).

Fig. 6 Average query
execution times for I dx1,
I dx2, I dx3, and I dx4
(seconds)

Fig. 7 Average data read
sizes per query for I dx1,
I dx2, I dx3, and I dx4 (MB)
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Fig. 8 Average query
execution times for I dx2,
I dx3, and I dx4 (seconds)

Fig. 9 Average data read
size per query for I dx2,
I dx3, and I dx4 (MB)

Let us consider Fig. 9. The left-hand bar shows the average data read size per
query with MaxDistance = 5, and the subsequent bars with MaxDistance = 7
and 9.

We needed to read from the disk when searching with I dx3 more than with I dx2
by a factor of 1.57. We needed to read from the disk when searching with I dx4 more
than with I dx2 by a factor of 2.82.

4 Conclusion and Future Work

A query that contains high-frequently occurring words induces performance prob-
lems. These problems are usually solved by the following approaches.

(1) Vertical and/or horizontal increases in the computing resources and the paral-
lelization of the query execution.

(2) Stop words approach.
(3) Early termination approaches [1, 4].
(4) Next-word and partial phrase auxiliary indexes for an exact phrase search

[2, 17].

The stop words approach leads to search quality degradation [10] because in some
queries a high frequently occurring word can have a specific meaning [10, 17], and
skipping such a word could lead to the omission of important search results.

Early termination approaches have trouble integrating proximity into the rele-
vance [10].

Next-word and partial phrase indexes work only for exact phrase searches.
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Our approach allows us to solve performance problems without increasing com-
puting resources, and we can process any word in the query and perform arbitrary
queries; these are our advantages.

In this paper, we have introduced an optimized method for full-text searches in
comparison with [10].

In this paper, we investigated searches with queries that contain only stop lemmas.
Other query types are studied in [13].

We studied the dependence of the query execution time on the value of the param-
eter MaxDistance.

The results of the search experiments with MaxDistance = 5, 7, and 9 are pre-
sented. We also proved that a three-component key index can be created with a rela-
tively large value of MaxDistance = 9 to allow the effective execution of queries
with a length of up to 9 (larger queries need to be divided into parts).

We have presented the results of experiments showing that, when queries contain
only stop lemmas, the average time of the query execution with our indexes is 94.7–
45.9 times less (with a value of MaxDistance from 5 to 9) than that required when
using ordinary inverted indexes.

When we discuss our indexes, we have shown that with an increase in the value of
MaxDistance from 5 to 7, the average query execution time increases 1.36 times.
We have shown that with an increase in MaxDistance from 5 to 9, the average
query execution time increases 2.06 times. The increase in MaxDistance has a
significant impact when we are searching queries that contain only stop lemmas with
three component key indexes, but it is still much faster than a searchwith the standard
inverted indexes (improved by a factor of 45.9 for MaxDistance = 9).

In the future, it will be interesting to investigate other types of queries in more
detail and to optimize index creation algorithms for larger values of MaxDistance.
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Development and Research of Algorithm
For Coordinates Correction on the Basis
Of Microrelief

V. B. Kostousov and K. V. Dunaevskaya

Abstract The paper is devoted to themap-aidedmethod of navigation by the field of
heights of terrain objects with the help of laser rangefinder. The rangefinder receives
two-dimensional raster of height values. Three types of matching functional for
correction aircraft coordinates are considered: quadratic, normalized quadratic, and
normalized correlation function. The way to improve quality of the correction by
means of a morphological filter of dilation and erosion is proposed. A new criterion
of the correction failure is also proposed. It is based on analysis of the ratio of the
main and side peaks of the matching functional. Statistical researches of criteria of
the correction failure by a method of the theory of decision-making are carried out.
In particular, using the Neumann-Pearson criterion, the optimal thresholds for the
considered criteria of correction failure were found.

Keywords Navigation · Map-aided method · Matching · Functional ·
Correction failure · Criterion

1 Introduction

Aircraft guidance system usually contains inertial navigation system (INS), which
determines aboard the coordinates of aircraft in some world coordinate system asso-
ciated with the Earth. The operating principle of INS is to measure the projections
of accelerations in the inertial space by using the sensors and then to integrate these
accelerations to obtain velocities and, after, to integrate again to determine coordi-
nates. Since of errors in the accelerations measurement, errors in determination of
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velocities and coordinates accumulate during the motion and grow with time. To
correct these errors, the data of the global satellite positioning system is used, which
is quite accurate, however, it is not always applicable because of its vulnerability.

Another alternative way to solve the error correction problem of INS is to use
the map-aided method [1, 2]. The working principle of the method is based on
comparison of the altitude matrix of the Earth’s surface obtained during the aircraft
flight (hereinafter called the measured fragment) with the reference matrix, which
is stored aboard and calculated in advance. Matching the measured fragment with
the reference matrix performs error correction of INS. The matching is implemented
by means of the matching functional. The estimate of location of the measured
fragment in the coordinate system of the reference matrix is given by the argument
of the extremal value of the matching functional.

Novelty of the problem statement is caused by two reasons. First, the heightmap
of the terrain objects is used as a reference matrix. This map is hereinafter called the
microrelief field. The microrelief matrix has a step of the order of one meter on the
land while the matrix of relief altitude has a step of the order of hundreds meters.
Second, in contrast to one-dimensional measurements, which are usually used in the
relief-metric correction system, a two-dimensional measured fragment (image) of
the heightmap is considered in this paper.

Here, a comparative research of three well-known [3–5] matching functionals
was performed on the basis of a computational experiment. A new decision criterion
on failure of matching (hereinafter called the correction failure) is proposed and
compared with the known one. The new criterion is based on analysis of the ratio of
extremal values of the matching functional. A method for estimating the correction
error bymeasuring thediameter of the level set of thematching functional is proposed.
Additional morphological filters are proposed to increase the algorithm stability
under conditions of the structural disturbances of the reference matrix. Structural
disturbances of the reference matrix arise when, for some reason, there are no high-
altitude objects on the matrix or when objects that are actually absent on the terrain
have been placed in the reference matrix. To speed up the algorithm, a method is also
considered that uses the fast Fourier transform.

2 Formulation of Navigation Problem with Microrelief

Let function h(x) : Ω → R is defined on discrete rectangular regular grid Ω ⊂ R2.
This function represents the reference heightmap of microrelief.

Denote by ϕ(t) the result of height measurement of terrain objects bymeans of the
multibeam laser rangefinder. Define the function ϕ(t) : Δ → R as a noisy fragment
of the function h(x) as follows:

ϕ(t) = ϕx∗(t) = h(x∗ + t) + ξ(t), x∗ ∈ Q, t ∈ Δ.
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Fig. 1 Modeling the measured fragment ϕ: x∗ is the true location of the measured fragment, x̂ is
the calculated location obtained by the correction algorithm

Here, Q ⊂ Ω is the domain of a priori location of the starting point x∗ ∈ Q of
the fragment ϕ on the reference matrix h. The point x∗ is hereinafter called the true
location of the fragment. The discrete set Δ ⊂ R2 is a support of the function ϕ. The
function ξ(t) describes the error of the fragment measuring. The domain Q is such
that for all x∗ ∈ Q x∗ + t ∈ Ω . This means that for any starting point x∗ ∈ Q the
support of the fragment is located in the domain of h. In the experiments described
below, the support Δ is a point set of rectangular grid, whose step on one coordinate
(called longitudinal) coincides with step of the main grid, and the step on the other
coordinate (called lateral) is divisible by the step of the main grid (Fig. 1).

The purpose of each correction algorithm is to find the location x̂ of the global
extremum (minimumormaximum) of thematching functionalΦ(x) evaluating prox-
imity of the measured fragment and the reference matrix

x̂ = argmin
x∈Q Φ(x)

or
x̂ = argmax

x∈Q Φ(x).

Search of the minimum or maximum is determined by type of the chosen func-
tional. In this paper, the following three functionals [6] are researched as thematching
functionals:

Φ1(x) =
∑

x ′

((
h(x + x ′) − 1

k · m h(x)

)
−

(
ϕ(x ′) − 1

k · m ϕ

))2

→ min, (1)

Φ2(x) =
∑
x ′

((
h(x + x ′) − 1

k·m h(x)
) − (

ϕ(x ′) − 1
k·mϕ

))2

√∑
x ′

(
h(x + x ′) − 1

k·m h(x)
)2∑

x ′
(
ϕ(x ′) − 1

k·mϕ
)2 → min, (2)
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Φ3(x) =
∑
x ′

(
h(x + x ′) − 1

k·m h(x)
)(

ϕ(x ′) − 1
k·mϕ

)

√∑
x ′

(
h(x + x ′) − 1

k·m h(x)
)2∑

x ′

(
ϕ(x ′) − 1

k·mϕ
)2 → max. (3)

In these formulas, summation is performed over the support Δ of the fragment
ϕ. We use the set Δ as a rectangular raster consisting of m columns and k rows.
Symbols h and ϕ with the overline are the sum of values over the given set

h(x) =
∑

x ′′∈Δ

h(x + x ′′),

ϕ =
∑

x ′′∈Δ

ϕ(x ′′).
(4)

Necessary requirement for the correction algorithm is that it must evaluate the
correction error ε = |x∗ − x̂ | and make a decision about the correction failure on the
basis of its own internal failure criterion. Here, the symbol | · | means the Euclidian
norm of the vector, the value ε is called the radial error of correction. The error
ε is a random value; so, the main method of algorithm research is to implement a
representative statistical experiment.

In order to construct a reference map of microrelief heights, in the experiment we
use a microrelief map, which was constructed according to the method described in
[7]. Lidar aerial survey data are used as a model of measurements of the multibeam
laser rangefinder. The reference map, lidar map, and the fragment coordinates are
the input data of the researching program. The fragment coordinates are set either
random or corresponding to a certain marking on the microrelief map (a uniform
grid is usually considered). The following parameters of the measured fragment are
preset: the number of beams, along which the heights were measured, the step along
the beam, the step between the beams, and the length of the measurement (Fig. 1).
As a result of the correction process, the value of the correction error ε and the value
of the internal failure criterion are calculated. The experiment includes n runnings
of modeling the correction process for a set of statistics.

3 Results of Correction Algorithm Research

Here, the correction algorithms are researched by statistical experiment, which
includes the measurement model, solution of the correction problem, and the anal-
ysis of the result. The 64 regions were selected and 1620 correction variants were
performed on each of them. The total n = 64 × 1620 = 103680 of runnings of frag-
ment modeling and subsequent search of extremum for functionals (1)–(3) were
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a) b)

Fig. 2 The matrices of heights of the forest region obtained (a) from the lidar aerial survey and (b)
from stereo cosmic survey.

performed. The quality of each algorithm is determined by the number of success-
ful corrections and the number of failures. The correction failure is determined by
comparing the radial error ε = |x∗ − x̂ | with the preset threshold Rmax

ε > Rmax. (5)

Column 2 of Table1 shows the comparison results of three types of correction
algorithms (1)–(3). Experiments were conducted in the area containing the diverse
microrelief, which includes urban regions, cottage regions, forests, and fields. The
correction zones, within which the extremum search was performed, were ran-
domly chosen within this area. In some correction zones, there were uninformative
regions containing insufficient number of high-altitude objects of the microrelief.
This explains the relatively high percentage of correction failures shown in Table1.

The following feature of the microrelief field of forest vegetation should be noted
(Fig. 2). The microrelief of forest vegetation constructed according to the stereo
cosmic survey, as a rule, has a smoothed character. This is caused by the processing
feature of cosmic stereopairs [7]. On the other hand, the data taken by the laser
rangefinder from a low altitude has a discontinuous character. Here, isolated trees
are clearly distinguished (Fig. 2a). Therefore, presence of the forest regions impairs
the quality of the correction algorithm.

Table 1 Comparison of the results of correction algorithms on diverse microrelief field

Matching functional Percentage of successful corrections

Without filters Using filters

1 2 3

Φ1 40% 69%

Φ2 66% 75%

Φ3 74% 77%
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If the steps on the longitudinal axis x and ones on the lateral axis z of the reference
matrix and ones on the fragment are equal, it is proposed to apply successively the
filters of dilation and erosion [8, p. 369] to the measured fragment for the problem
solving.

The results of the correction algorithm using the filters of dilation and erosion
(Table1, column 3) show increase in the percentage of successful corrections. The
best percentage of matching was received for a filter kernel size of 11 × 11.

In Table1, the results were obtained without filters and with using the filters
of dilation and erosion. The filter kernel size is 11 × 11, the number of trials n =
103680.

4 Criterion of the Correction Failure

Solution of extremal problems (1)–(3) by itself does not guarantee the correct solution
of the correction problem because the extremum point x̂ can be far from the true one
x∗. Here, we will discuss criterion that will allow us to decide whether the result
is acceptable with some probability. We shall call such criterion the criterion of the
correction failure. If a criterion along with an estimate of the failure probability also
gives a sufficiently accurate estimate of the correction error, then such criterion will
have a significant advantage over the others.

In a model experiment, when the true position of the fragment is known, the result
of the correction algorithm is estimated by the error ε introduced above. Next, we
consider that the correction failure occurs actually if (5) is performed, i.e., this error
exceeds the threshold Rmax. The quality of considered criteria will be estimated with
taking into account (5).

The decision rule is determined by the criterion using the threshold Ptr as follows:

correction is true if p < Ptr (6)

So, the correction is accepted as successful if p < Ptr and is rejected in the contrary
case. Below, it will be shown how the threshold Ptr is determined on the basis of
the statistical analysis of the experiment results in accordance with the theory of
decision-making.

Consider the following three criteria.

1. Criterion on the basis of the functional value at the point of the global extremum.
This criterion is well-known; so, we will call it the basic failure criterion

Φ1, Φ2 : p̃2f (x) =
∑
x ′

((
h(x + x ′) − 1

k·m h(x)
) − (

ϕ(x ′) − 1
k·mϕ

))2

√∑
x ′

(
h(x + x ′) − 1

k·m h(x)
)2∑

x ′
(
ϕ(x ′) − 1

k·mϕ
)2 ,
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Φ3 : p def= pcorrf (x) = 1 −
| ∑

x ′

(
h(x + x ′) − 1

k·m h(x)
)(

ϕ(x ′) − 1
k·mϕ

)|
√∑

x ′
(
h(x + x ′) − 1

k·m h(x)
)2∑

x ′

(
ϕ(x ′) − 1

k·mϕ
)2 .

Note that in the case of functionals Φ1 and Φ2, the calculated value of criterion
is convenient to be normalized for coming to a probabilistic scale [0, 1]

p
def= p2f (x) = p̃2f (x)

1 + p̃2f (x)
.

2. Criterion on the basis of the ratio of the global extremum and the second largest
local extremum located at a distance not less than Rmax apart from the point of
the global extremum

Φ1, Φ2 : p def= pmin
f (x) = Φ1,2(xmin1)

Φ1,2(xmin2)
,

Φ3 : p def= pmax
f (x) = Φ3(xmax2)

Φ3(xmax1)
.

Here, xmin1 and xmax1 are the points of the global extremum (maximum or min-
imum), xmin2 and xmax2 are the points of the second local extremum spaced not
less Rmax apart from the global extremum (Fig. 3).

This criterion is new and called the ratio of extrema one.

The advantage of this new criterion in comparison with the basic criterion is
the ability to detect a situation of false correction because of presence of the
fragments-copies.

3. A criterion that provides an estimate of themaximumcorrection error. Calculation
of this estimate uses the threshold value Ptr taken from the decision rule (6) for
the ratio of extrema criterion. Further, we can calculate the threshold Φtr of
the second local minimum (or maximum) and calculate the diameter of the set
{x : Φ(x) ≤ Φtr} (Fig. 4)

Dmax = diam{x : Φ(x) ≤ Φtr}. (7)

This criterion gives the next decision rule of correction: if the diameter Dmax does
not exceed the value of the allowable radial error Rmax, then the hypothesis of
correct correction is accepted.

Decision-making on the basis of this criteria leads to the occurrence of errors
of the first and second kind. In this work errors of the first and second kind are
formulated as follows:
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Fig. 3 The graph of the functional Φ1; the point of global minimum and the zone of permitted
error of matching are marked in red, the second largest local minimum is marked in yellow

Fig. 4 The cross-section of the graph of the functional Φ1 along one coordinate; level set under
condition (6) is marked with a green hatch

– Error of the first kind: making a decision about correction, when actually there is
its failure;

– Error of the second kind: making decision about the refusal of correction, when
actually there is no its failure.

From the formulation of error of the first kind it follows that this situation is
the most critical; so, it is necessary to limit the level of errors of the first kind. To
determine the optimal threshold value, it is natural to apply the Neumann-Pearson
criterion and set the significance level by errors of the first kind.

To apply the Neumann-Pearson criterion, only those areas where the percentage
of successful corrections was not less than 90% were selected. The results of the
experiment are shown in Table2.



Development and Research of Algorithm for Coordinates … 401

Table 2 Results of experiments

Matching
functional

p2f /p
corr
f pmin

f /pmax
f

α = 10% α = 1% α = 10% α = 1%

Φ1(p2f )(p
min
f ) E2 = 19% E2 = 42% E2 = 3% E2 = 8%

n90 = 24300 Ptr = 0.5504 Ptr = 0.4824 Ptr = 0.9441 Ptr = 0.9141

Φ2(p2f )(p
min
f ) E2 = 44% E2 = 63% E2 = 2% E2 = 9%

n90 = 43740 Ptr = 0.5204 Ptr = 0.4746 Ptr = 0.9614 Ptr = 0.9236

Φ3(pcorrf )(pmax
f ) E2 = 75% E2 = 86% E2 = 7% E2 = 39%

n90 = 59940 Ptr = 0.3911 Ptr = 0.3134 Ptr = 0.9191 Ptr = 0.7811

Table 3 Results of experiments

Matching functional

Φ1(pmin
f ) Ptr = 0.9441% Ptr = 0.9141%

n99 = 12960 E1 < 0.0001% E1 < 0.0001%

E2 = 0.2% E2 = 0.5%

Φ2(pmin
f ) Ptr = 0.9614% Ptr = 0.9236%

n99 = 29160 E1 < 0.0001% E1 < 0.0001%

E2 = 1% E2 = 8%

Φ3(pmax
f ) Ptr = 0.9191% Ptr = 0.7811%

n99 = 43740 E1 = 21% E1 < 0.0001%

E2 = 5% E2 = 36%

In the table: E2 is the percentage of errors of the second kind, Ptr is the calcu-
lated threshold for decision rule, n90 is the experiment length with the percentage of
successful correction of 90%.

The values 1 and 10% were selected as the significance levels in Table2 to deter-
mine the dependence of correction results from the value α. As it is seen from the
table, the application of the ratio of extrema criterion in all considered cases gives a
less percentage of errors of the second kind than the application of the basic criterion.

The found thresholds for the decision rule were used in experiments on regions
that have at least 99% of successful corrections. The purpose of this experiments
was to determine the algorithm (functional and criterion of the correction failure),
for which the lowest percentage of errors of the first and second kind is achieved for
the chosen decision rule. The results of the experiment are shown in Table3.

In the table: E1 is the percentage of errors of the first kind, E2 is the percentage
of errors of the second kind, Ptr is the calculated decision rule (by Table2), n99 is the
experiment length with the percentage of successful correction of 99%.

The results given in Table3 show that for the calculated threshold the lowest
percentage of errors of the first and second kind is achieved in the case of using the
functional Φ1 and the criterion of extrema ratio.
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Analysis of Table3 confirms the advantage of the extrema criterion ratio in the
point of view of decision accuracy for all three algorithms. Note that the algorithm
based on the functional Φ3 showed a high level of errors of the second kind on the
high informative areas.

The outlier E1 = 21% in the case of α = 10% of the functional Φ3 and of the
criterion pmax

f is explained by the small sample size for the calculation of E1. The
estimate of correction error Dmax (7) was found for algorithm (1) with a decision rule
pmin
f < Ptr = 0.9441 corresponding to the minimum percentage of errors of the first

and second kind (Table3, highlighted in bold). To analyze the estimation accuracy,
the mean Δ and mean square value σΔ of the random variable Δ = Dmax − ε were
calculated. Estimates were calculated for two cases

– Under condition of true correction ε <= Rmax, the next result was obtained Δ =
0 m, σΔ = 2 m (the sample size is n = 12955).

– Under condition when the correction decision is accepted on the basis of decision
rule pmin

f < Ptr, the next result was obtained Δ = 0 m, σΔ = 1m (the sample size
is n = 12902).

It is worthy to note that in the experiment in all cases the correction error Dmax

was greater than the true error ε.

5 Optimization of Computational Complexity of
Correction Algorithm

The standard approach to solving the correction problem using functionals (1), (2),
or (3) is to perform an exhaustive algorithm. This approach is based on the straight-
forward calculation of the matching functional Φ(x) in all points x ∈ Q and the
subsequent search for the extreme value.

Despite the simplicity of implementation, this algorithm contains a huge number
of operations; so, its complexity is unacceptable for searching the extremum in real
time. Here, this problem is solved by applying the fast Fourier transform (FFT).

One of the properties of the Fourier transform is the ability to fast calculate the
correlation of two functions [9, p. 206]

g ◦ h ⇔ G( f ) · H ′( f ),

where “◦” is the symbol of correlation, “·” is the symbol of pointwise multiplication.

As the example of algorithm (1), we will show how the calculation can be per-
formed using the FFT. Introduce the following notation:
◦
h (x + x ′) = h(x + x ′) − 1

k·m h(x) is the centered variable h(x + x ′),
◦
ϕ (x ′) = ϕ(x ′) − 1

k·mϕ is the centered variable ϕ(x ′).
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Then

Φ1(x) = ∑
x ′

(◦
h (x + x ′)− ◦

ϕ (x ′)
)2

=
∑
x ′

◦
h2 (x + x ′) + ∑

x ′

◦
ϕ2 (x ′) − 2

∑
x ′

◦
h (x + x ′)

◦
ϕ (x ′) = ΦI

1 + ΦII
1 − 2 · ΦIII

1 .

(8)

Returning to the previous notations, we develop each of these components taking
into account (4). In the formulas below, the summation is performed over the set Δ.
Then we obtain

ΦI
1(x) = ∑

x ′

(
h(x + x ′) − 1

k·m
∑

x ′′
h(x + x ′′)

)2

= ∑

x ′
h2(x + x ′) − 1

k·m

(
∑

x ′′
h(x + x ′′)

)2

,

ΦII
1 (x) = ∑

x ′

(
ϕ(x ′) − 1

k·m
∑
x ′′

ϕ(x ′′)
)2

= ∑
x ′

ϕ2(x ′) − 1
k·m

(∑
x ′′

ϕ(x ′′)
)2

,

ΦIII
1 (x) = ∑

x ′

(
h(x + x ′) − 1

k·m
∑
x ′′

h(x + x ′′)
) (

ϕ(x ′) − 1
k·m

∑
x ′′

ϕ(x ′′)
)

=
∑
x ′
h(x + x ′)ϕ(x ′) − 1

k·m

(∑
x ′′

h(x + x ′′)
∑
x ′′

ϕ(x ′′)
)
.

We can see that the component ΦII
1 is independent of x and computational com-

plexity of calculating ΦII
1 is equal to Θ(k · m).

Calculation of the components ΦI
1 and ΦIII

1 in the spatial domain is time-
consuming process. To apply the FFT for calculation of theΦI

1 andΦIII
1 , we introduce

a matrix E that is the identity mask of size k × m extended and complemented by
zeros to the size K × M of the reference matrix. Then

ΦI
1(x) =

∑

x ′
h2(x + x ′) · E(x ′) − 1

k · m

(
∑

x ′′
h(x + x ′′) · E(x ′′)

)2

= [h2 ◦ E](x) − 1

k · m ([h ◦ E](x))2,

ΦIII
1 (x) =

∑

x ′
(h(x + x ′)ϕ(x ′)) − 1

k · m

(
∑

x ′′
h(x + x ′′)

∑

x ′′
ϕ(x ′′)

)

= [h ◦ ϕ](x) − 1

k · m [h ◦ E](x) ·
∑

x ′′
ϕ(x ′′).
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Calculation of the functional Φ1 is made in the spatial domain using formula
(8). This calculation method allows one to speed up the formation of the functional
values array by several times in comparison with calculation of the functional by
formula (1).

It should be noted that the values Φ1 array has dimensions (K − M + 1) × (k −
m + 1). Here, K × M represents the size of the reference matrix, k × m represents
the size of measured fragment, and the indexes of Φ1 coincide with ones of the
components ΦI

1, Φ
II
1 , Φ

III
1 .

The outlined method of optimization of the computational complexity is applica-
ble to algorithms (2) and (3).

6 Conclusion

In this paper for the case of the microrelief field, the research of the matching func-
tionals of the following three types used in correction systems by geophysical field
was performed: quadratic, normed quadratic, and functional of normed correlation.

A new criterion of correction failure based on analysis of the ratio of the main
and lateral peaks of the matching functional is proposed. A comparative research of
the basic criterion of failure and the new ratio of extrema criterion is performed.

The new criterion of correction failure has an evident advantage over the basic
criterion in the case of the quadratic matching functional. The advantage is that the
new criterion gives the lowest percentage of errors of the first and second kind on
the high informative areas.

Optimal thresholds for the considered criterions of failure were found by using
the Neumann-Pearson criterion. A new method for estimating the correction error is
proposed.

In future, it is planning to extend numerical experiments to find more precise
optimal threshold for the ratio of extrema criterion. It is also planned to investigate
new nondifferentiable matching functional.

Acknowledgements Authors thank Dr. A.L. Ageev for useful discussion of the problem formula-
tion and the work results.
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Method for Constructing Orthorectified
Satellite Image Using Stereo Imagery
and Digital Surface Model

F. A. Kornilov and A. V. Dunaeva

Abstract In the paper, the method for constructing an orthorectified satellite image
using stereo imagery and a digital surface model is presented. It based on using the
Rational Polynomial Coefficients model for orthorectification and the digital surface
model for detection overlapped areas in the stereo images. Also important aspects
of solving this problem are considered: intensity equalization of stereo images and
processing of clouds, which are the reason of information loss about the scene. The
proposed method showed good quality of orthorectification on satellite images.

Keywords Image processing · Orthorectification · Satellite imagery ·
Digital surface model

1 Introduction

Processing of digital satellite imagery plays an important role in many fields of
industry. Most often, the problem facing researchers is to extract necessary infor-
mation from images, for example, to detect certain objects. In order to solve such a
problem, methods of contour and texture analysis or machine learning are applied to
the images. However, spectral information is often ambiguous, and additional data
are needed. In such cases height information is the most significant.

A digital surface model (DSM) is a matrix of the heights of objects and the terrain
surface. It can be obtained with the aid of stereo matching algorithms or LIDAR. The
resulting matrix is orthorectified and georeferenced: for each of its points longitude
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Fig. 1 Illustration of the
pixel mismatch between the
DSM (red) and the satellite
image (blue) for the same
terrain area (green)

and latitude is known. However, the image is usually taken at some angle with
reference to the terrain surface. Therefore at the satellite image, unlike the DSM, the
side surfaces of the buildings and distortion of the relief will be present (Fig. 1) and
they do not match point-by-point. Thus it is necessary to perform orthorectification
which means to obtain one image, having the point wise matching with the DSM
(Fig. 2). Orthorectificated images used in such tasks as agriculture [1], archeology
[2] and others.

To do orthorectification, the following data are required. First, a stereo pair:
two images are necessary for obtaining information about the whole scene, with-
out obstructed areas. Images can be panchromatic or multispectral of any resolution.
It is assumed that the images completely cover considered terrain area. Secondly, a
DSM is necessary. It is worth noting that resolution of the images and the DSM can
be different, since they are obtained from different sources.

For constructing an orthorectified image, information about camera parameters
is required. The camera model that takes into account focal length, pixel size, lens
distortions and camera motion during image receiving was called the Rational Poly-
nomial Coefficients (RPC) model [3]. Its coefficients specify the transformation of
a point on the terrain (longitude, latitude, and height) into a pixel of the image, and
vice versa. The coefficients and acceptable errors of the camera model are supplied
with the satellite image.

The correspondence between the pixel (x, y) in the satellite image and the point
in the DSM is determined by the following formulas [4]:

Fig. 2 Stereo pair images, DSM and orthorectified image (from left to right)
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x = F(samp_num_coeff, P, L , H)

F(samp_den_coeff, P, L , H)
· samp_scale + samp_of f, (1)

y = F(line_num_coeff, P, L , H)

F(line_den_coeff, P, L , H)
· line_scale + line_of f. (2)

Here, P is the longitude, L is the latitude, H is the height; these data can
be obtained from the DSM. The samp_num_coeff and line_num_coeff are 20-
dimensional vectors and, together with samp_scale, samp_of f , line_scale, line
_of f , are coefficients of the RPC model. The function F defines the coordinate
transformation

F(C, P, L , H) = C1 + C6 · L · H + C11 · P · L · H + C16 · P3

+C2 · L + C7 · P · H + C12 · L3 + C17 · P · H 2

+ C3 · P + C8 · L2 + C13 · L · P2 + C18 · L2 · H (3)

+C4 · H + C9 · P2 + C14 · L · H 2 + C19 · P2 · H

+C5 · L · P + C10 · H 2 + C15 · L2 · P + C20 · H 3,

where C is 20-dimensional vector and Ci its coordinate.

2 Orthorectified Image Construction

Using the RPC model allows matching points of the DSM and the satellite image
and, thus, to perform orthorectification. However, the direct use of this approach will
lead to the duplication of high objects (Fig. 3). This result is due to the presence of
overlapping areas in the satellite image. The RPC model transforms the geometry of
the scene into the geometry of the image without taking into account all available
objects of the terrain and their heights. In this case, one point in the image can
correspond to two different points in the DSM (Fig. 4).

Therefore, the orthorectification process consists of two steps:

1. Find the overlapped areas, i. e. sets of DSM points that are not visible in the first
image of stereo pair.

2. Toobtain orthorectificated imageusingRPC, takepixel intensities from the second
image of stereo pair in overlapped areas and the rest pixels from the first one.

Below, two ways of determining the overlapped areas will be given.
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Fig. 3 Satellite image (left) and duplicated buildings (right) in the result of RPC-based orthorec-
tification

Fig. 4 The illustration of the
overlapping problem: two
DSM points (x1, y1) and
(x2, y2) are projected to a
single point in the image
(u, v)

2.1 Point-Wise Detection of Overlapped Areas

The idea of this approach is to make a list of DSM points that are projected to a
particular pixel of a satellite image and select among them only one that has the
highest altitude; all other points are marked as overlapped. However, if resolution
of the image is twice larger than the resolution of the DSM, it can happen that only
single point of the list is projected to the particular pixel of the image. Overcoming
this restriction can be done by processing not individual pixels, but the whole height
level sets. The algorithm consists of the following steps:

1. Sort the DSM points by the height.
2. Choose the set of points with the greatest height. Using the RPC model, project

them onto the satellite image with help (1)–(3), and get a set of polygons.
3. Select the next height level set and, also, project it onto the satellite image.
4. Get the union of two obtained sets of polygons (higher and lower) in such way:

in the intersection area, select points with higher altitude (from the first set) and
remaining points are from the second set.

5. Repeat steps 3–4.
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Fig. 5 Overlapped areas (black) obtained by the neighborhoodmethod; it can be seen that the black
points are present even on the flat surfaces

This approach gives the exact solution, but its execution requires a considerable
time. Therefore, the simplified version is proposed.

1. Sort the DSM points by the height.
2. In order of decreasing height, project each point onto the satellite image, and the

resulting pixel of the image as well as some his neighborhood (for example, 3 by
3 pixels) is marked in a special way.

3. If a point of the DSM projected to a marked pixel, this DSM point is considered
as overlapped.

In this case, in addition to the points overlapped by buildings or relief, many points
of the DSM located on a flat surface will also be marked as overlapped (Fig. 5). If
there is the second image, this does not seem to be a problem. However, it should
be kept in mind that stereo images were taken at different shooting angles and they
have different sets of intensities. Combining their intensity into single image results
in a lot of noise. At the same time, construction of orthorectified images is associated
with the need to solve recognition problems, for which a high quality of input data
is required. Therefore, such a point-by-point approach is unacceptable.

2.2 Detection of Overlapped Areas Based on a Monotonic
Direction Field

The following algorithm combines the simplicity of the point-wise approach with
the accuracy of the area analysis.
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Fig. 6 Projections of the DSM points onto the satellite image along the selected direction (the blue
line); the red arrows indicate points of the overlapped area

1. Choose a direction of the survey that coincides with the direction of shooting
(from top to bottom in Fig. 6).

2. For all DSM points along this direction store their second coordinate (y) and
project them onto the satellite image (Fig. 6).

3. Store the second coordinate (v) from the obtained image pixels and construct a
function graph v = f (y) (Fig. 7).

4. In the resulting graph look for regions of concavity of the coordinate function. On
a flat surface (roads, squares, and others), the shift in the chosen direction at the
DSM (down) coincides in the direction with the shift of the pixels at the satellite
image (also down). This case corresponds to the green arrows in Fig. 6. But in
the overlapped areas (close to buildings), the direction of the shift at the image is

Fig. 7 Dependence of coordinates of the DSM and satellite image points; the concave part of the
function corresponds to the overlapped area
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changed to the opposite (up, the red arrows in Fig. 6). This is due to the fact that
the RPC model projects the DSM points to their true position, which is behind
the foreground object (building). So, the sign of the derived function (Fig. 7) is
reversed. The area marked in red in Fig. 7 corresponds to the overlapped area.

5. Repeat steps 1–4 for the orthogonal direction (for example, from the left to right),
and combine the obtained results.

Note several features of the proposed algorithm.

1. Because of the different resolutions of the DSM and the satellite image (Fig. 7),
different values are plotted along the axes: in the image, the points have been
shifted twice in the distance at the DSM.

2. The proposed algorithm will work only if the shift of points coincides with the
direction of the survey. In the example at Fig. 6 choosing a direction from the
bottom up would lead to incorrect results.

2.3 Post-processing of an Orthorectified Image

The orthorectification procedure combines pixel intensities from stereo images,
which differ due to different shooting angles or change in weather conditions. More-
over, presence of clouds in satellite images leads to loss of information about the
scene. For these reasons, additional processing of orthorectified images is required.
Post-processing consists of two stages.

1. Equalizing intensities of stereo images. In an orthorectified image most of the
pixels are taken from the first stereo image; the pixels of overlapped areas are
taken from the second one. Tomerge the stereo images, average intensities of their
pixels are considered in the neighborhood of the pixel defined as overlapped. The
heights of these neighborhood pixels (according to the DSM) should be close to
the height of the overlapped pixel. Then, the difference of these average values is
added to the intensity of the overlapped pixel, which taken from the second stereo
image. The first algorithm gives an excessive number of overlapped pixels that
is why it is often impossible to equalize their intensities. The second algorithm
gives fewer false positives and, therefore, demonstrates a higher quality of the
orthorectification.

2. Removing the clouds. Having determined the areas covered by clouds in the first
stereo image, they can be replaced by fragments of the second one. In this case,
it is hard to adjust the intensities due to the large area and the complexity of
the scene. On the other hand, just because of the considerable size of the area,
discrepancy of the intensity will be observed only on its boundary.
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Fig. 8 Original satellite image (left) and two orthorectified images: obtained by the point-wise
(center) and monotonic direction field (right) algorithms; the result of the point-wise algorithm
contains much more noise than the second result

2.4 A Comparison of Considered Approaches

In this section, the results of two orthorectification algorithms are provided. Figure8
demonstrates results of the algorithms on the satellite image. It can be seen that use
of the point-wise approach has led to appearance of strong noise even in the areas
of constant height. At the same time, the second algorithm demonstrates the quality
close to the original image. Figure9 is another example of work of the proposed
algorithm, on the image with the cloud cover.

Fig. 9 Orthorectified images obtained by the monotonic direction field algorithm: without cloud
removing (left) and with it (right), to obtain the right image the mask of clouds was used (the red
line in the left image its boundary). This mask also include some areas near clouds to save integrity
of objects (houses and roads)
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3 Conclusion

The algorithm based on a monotonic direction field demonstrates a higher quality of
results than the point-wise approach. However, it requires manual selection of survey
direction.Overcoming this disadvantage is possible by applying epipolar rectification
to the input stereo images. As a result, the survey direction will coincide with the
horizontal direction. In this case, one pass through the DSM will be sufficient to
construct an orthorectified image.

Another complication in orthorectification is intensity equalization of image pair.
The problem is to change intensities of an area that is presented in the first image, but
is not presented in the second one. Calculation of the average intensity of that area
for intensity equalization is coupled with the hardness of detecting the area. This
is solved by comparing the heights of the DSM, but there remains the problem of
difference in textures and shadows,which can significantly shift the average intensity.
To solve this problem, it is necessary firstly to carry out a texture classification of
the input images.

Acknowledgements This work was carried out within the program of the Ural Branch of the
Russian Academy of Sciences no. 18-1-1-14.
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An Effective Subgradient Method
for Simultaneous Restoration and
Segmentation of Blurred Images

T. I. Serezhnikova

Abstract The segmentation of blurred and noise images is of great importance.
There have been several recent works to link the problems of image segmentation
and image reconstruction. Here we describe the universal subgradient method for
simultaneous restoration and segmentation of blurred and noise images. Our method
is based on the universal subgradient construction. Our universal subgradient con-
tains both the brightness function and the brightness function gradient. In the paper
we demonstrate that our method is effective for simultaneous restorations and seg-
mentations of blurred images.

Keywords Image restoration · Denoising · Segmentation ·
Subgradient construction

1 Introduction

Segmentation of blurred image is an important technique in image processing. The
work in the segmentation of blurred image is at an early stage.

Many algorithms can deal with the presence of noise, but blur proves to be more
problematic. Many works treat the problems of image restoration and segmentation
in two steps separately, see [1–16].

In this work our novel contribution is to describe our universal subgradientmethod
for simultaneous restorations and segmentations of blurred and noise images. Our
method is based on the universal subgradient constructions which contains both the
brightness function and the brightness function gradient. The gradient values are
used for determination of the restored segments bounder points.
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Our algorithm can be classified as one stage algorithm in wich the restoration
of both the brightness function and the brightness function gradient are carried out
simultaneously.

The paper is organized as follows. In the Sect. 2, we describe regularization func-
tionals and present the base construction of our technique. In the next Sections, we
describe numerical results and demonstrate graphs for model problems. The last
Section contains conclusions and acknowledgements.

2 Mathematical Model for Simultaneous Restoration and
Segmentation of Images

We consider the following two-dimensional Fredgolm first kind integral equation:

Au ≡
1∫

0

1∫

0

K (x − ξ, y − η)u(x, y)dx, dy = f (ξ, η). (1)

In image reconstruction, the estimation of u from observation of f is referred to
as the two-dimensional image deblurring problem.

In optics, u is called the light source, or object. The kernel function K is known
as the point spread function (PSF), and f is called the blurred image.

We are interested in reconstructions of nonsmooth solutions. Using total variation,
one can effectively reconstruct functions with jump discontinuities.

We construct the original method to solve problem (1).
Let A : U → F be a linear operator, and let U and F be linear normed spaces.

Assume that the inverse operator A−1 is discontinuous, then the equation Au = f is
said to be ill-posed problem.

Abstract methods with full investigation convergence of regularization algorithms
for this problem presented in our works [6, 7].

The foundation of the regularization method is given by

min
{||Ahu − fδ||2L2

+ α (||u||2L2
+ J (u)) : u ∈ U

}
, (2)

here

J (u) =
∫

D

|∇u| dx, (3)

where ∇u denotes the gradient of smooth function u , J (u) is the total variation of
the function u.
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We suggest using the composition of two process: the Tikhonov’s variational
approach from (1) to (3) with iterative technique and introduction of additional
parameter β , see our works [7, 8]:

uk = argmin

⎧⎨
⎩Φα(u) +

1∫

0

1∫

0

βk−1(x, y) (u − uk−1)2dxdy

⎫⎬
⎭ . (4)

The practical implementation of given method assumes the minimization of the
discrete version of functionals in (1)–(4). Complete discrete model may be obtained
also by truncating the integration region in the form of of the small squares h ×
h, h = 1./n and quadratures in the middle point for equations from (1) to (4).

We use the iterative subgradient method in order to compute uk defined in (4):

uk, ν+1 = uk, ν − λk
vk, ν

||vk, ν || , ν = 0, 1, 2, ...,mk , (5)

where Φ
α,β

N (uk, ν) is the functional in (4), vk, ν is an arbitrary subgradient of the
functional Φα,β

N ; λk mk are parameters for the iterative processes control actions.
Seven points are used for the discretization of the gradient ∇u. The numerical

values of the gradient are recalculated in the every iteration step.
Actually, we recalculate the gradient numerical value and the numerical value of

the function u simultaneously in the every iteration step. So, at the end of iterations
we have good approximations for both the function u and the function gradient |∇u|.

After the end of the iteration process, we define for every point: (x, y) is being an
edge point in the image, if the value |∇u(x, y)| lies between specified thresholds:

c1 < |∇u(x, y)| < c2, (6)

where the suitable values for parameters c1, c2 are determinated in experiments.

3 Experimental Results

Our ideas have been confirmed by numerical experiments.
In our experiments, we have investigated the algorithm for the simultaneous

restoration and segmentation of the blurred model image.
Our segmentation algorithm is based on the basic properties of intensity values:

discontinuity and similarity.
We proposed to detect meaning discontinuities in gray level for the absolute value

of the gradient. In the experiment the model image is restorated and the image is
subdivided into its constituting regions.
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Fig. 1 Plot shows: a the true image; b the observed image; c, d the model image u(x, y) restoration
and the |∇u| restoration; e, f the three segments boundaries reconstructions

Figure1a–f demonstrate that proposed image restorating algorithm is effective for
simultaneous restoration and segmentation of blurred images.

We present plots of the true and observed images in Fig. 1a, b. In Fig. 1cwe present
the plot of the image restoration. In Fig. 1d we present the plot of the restoration for
the gradient absolute value.
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After the end of the iteration process, in order to detect the restored bounder
points, we define for every point: (x, y) is being an bounder point in the image, if
the value |∇u(x, y)| lies between specified thresholds:

c1 < |∇u(x, y)| < c2. (7)

where the suitable values for parameters c1, c2 we have used in our experiments are:
c1 = 0.006, c2 = 0.010 for segment blunderers in Fig. 1e; c1 = 0.001, c2 = 0.002
for segment blunderers in Fig. 1f.

The plots in Figs. 1e, f demonstrate segmentations boundaries restorations.
The plots in Fig. 1a–f demonstrate that the proposed image restoring algorithm is

effective for simultaneous restoration and segmentations of blurred images.

4 Conclusions

Segmentation process of blurred image is at an early stage. Many works treat the
problems of image restoration and segmentation separately. In the paper we have
described the effective variational model and the subgradient construction method
for simultaneous restoration and segmentation of blurred images. We don’t use any
additional grey-level interpolation for the determination of segments boundaries.
The proposed subgradient contains both the brightness function and the brightness
function gradient. In our algorithm the gradient values are used for the determination
of the restored segments boundaries. In the model test we have demonstrated that
our method is effective for simultaneous restorations and segmentations of blurred
images and it can be classified as one stage for the restoration and segmentation of
blurred images. In the future we are going to conduct some numerical experiments
for the parameters selections recommendations end extend our image decomposition
methods for biomedical applications.
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