Skip to main content

Pathology of Pancreatic Ductal Adenocarcinoma

  • Reference work entry
  • First Online:
Hepato-Pancreato-Biliary Malignancies

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers despite the recent improvements in its diagnosis and management. Surgical resection remains the main therapeutic strategy upon feasibility. A careful and thorough examination of tissue specimens at macroscopic and microscopic levels in a pathology laboratory is warranted for cancer diagnosis and classification, margin status evaluation, and tumor staging. PDACs include multiple histological subtypes/variants in addition to the conventional one with shared or distinctive immunohistochemical phenotypes and molecular bases. Cytopathology sample collection through fine-needle aspiration (FNA) with or without core needle biopsies and subsequent cytological evaluation is an extremely valuable technique widely used to diagnose and characterize the tumor with a minimal risk to patients. Identifying variable precursor lesions of PDAC is helpful in understanding tumor biology, stratifying cancer risk, and predicting prognosis. Molecular genetic profiling of the precursor lesions and invasive carcinoma has been playing a vital role in early detection and appropriate management of the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer. 2020. Available from: https://gco.iarc.fr/today. Accessed 21 Feb 2020.

  2. SEER cancer stat facts: pancreatic cancer. National Cancer Institute. Bethesda. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed 21 Feb 2020.

  3. WHO Classification of Tumours Editorial Board. WHO classification of tumours of the digestive system, vol. 1. 5th ed. Lyon: International Agency for Research on Cancer; 2019.

    Google Scholar 

  4. Adsay NV, Basturk O, Saka B, et al. Whipple made simple for surgical pathologists: orientation, dissection, and sampling of pancreaticoduodenectomy specimens for a more practical and accurate evaluation of pancreatic, distal common bile duct, and ampullary tumors. Am J Surg Pathol. 2014;38(4):480–93.

    Article  Google Scholar 

  5. Lüttges J, Schemm S, Vogel I, et al. The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol. 2000;191(2):154–61.

    Article  Google Scholar 

  6. Giulianotti PC, Boggi U, Fornaciari G, et al. Prognostic value of histological grading in ductal adenocarcinoma of the pancreas: Kloppel vs TNM grading. Int J Pancreatol. 1995;17(3):279–89.

    Article  CAS  Google Scholar 

  7. Seidel G. Almost all colloid carcinomas of the pancreas and periampullary region arise from insitu papillary neoplasms. Am J Surg Pathol. 2002;26(7):952–3.

    Article  Google Scholar 

  8. Adsay N, Pierson C, Sarkar F, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25:26–42.

    Article  CAS  Google Scholar 

  9. Simone CG, Toro TZ, Chan E, et al. Characteristics and outcomes of adenosquamous carcinoma of the pancreas. Gastrointest Cancer Res. 2013;6(3):75–9.

    Google Scholar 

  10. Yamamoto H, Itoh F, Nakamura H, et al. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res. 2001;61(7):3139–44.

    CAS  Google Scholar 

  11. Kuo PC, Chen SC, Shyr YM, Kuo YJ, Lee RC, Wang SE. Hepatoid carcinoma of the pancreas. World J Surg Oncol. 2015;13:185. https://doi.org/10.1186/s12957-015-0586-6. PMID: 25986692; PMCID: PMC4443511.

    Article  Google Scholar 

  12. Bagci P, Andea AA, Basturk O, Jang KT, Erbarut I, Adsay V. Large duct type invasive adenocarcinoma of the pancreas with microcystic and papillary patterns: a potential microscopic mimic of non-invasive ductal neoplasia. Mod Pathol. 2012;25(3):439–48.

    Article  Google Scholar 

  13. Hoorens A, Prenzel K, Lemoine NR, Klöppel G. Undifferentiated carcinoma of the pancreas: analysis of intermediate filament profile and Ki-ras mutations provides evidence of a ductal origin. J Pathol. 1998;185(1):53–60.

    Article  CAS  Google Scholar 

  14. Muraki T, Reid MD, Basturk O, et al. Undifferentiated carcinoma with osteoclastic giant cells of the pancreas: clinicopathologic analysis of 38 cases highlights a more protracted clinical course than currently appreciated. Am J Surg Pathol. 2016;40(9):1203–16. https://doi.org/10.1097/PAS.0000000000000689.

    Article  Google Scholar 

  15. Lin F, Chen ZE, Wang HL. Utility of immunohistochemistry in the pancreatobiliary tract. Arch Pathol Lab Med. 2015;139(1):24–38.

    Article  Google Scholar 

  16. Amin MB, Edge SB, Greene FL, et al., editors. AJCC cancer staging manual. 8th ed. New York: Springer; 2017.

    Google Scholar 

  17. Hyland C, Kheir SM, Kashlan MB. Frozen section diagnosis of pancreatic carcinoma – a prospective study of 64 biopsies. Am J Surg Pathol. 1981;5:179–81.

    Article  CAS  Google Scholar 

  18. Kakar S, Shi C, Adsay NV, et al. Protocol for the examination of specimens from patients with carcinoma of the pancreas. College of American Pathologists. 2020 Feb. https://documents.cap.org/protocols/cp-gihepatobiliary-pancreasexocrine-20-4100.pdf. Accessed 13 July 2020.

  19. Nagaria TS, Wang H, Chatterjee D, Wang H. Pathology of treated pancreatic ductal adenocarcinoma and its clinical implications [published online ahead of print, 2020 Feb 5]. Arch Pathol Lab Med. 2020; https://doi.org/10.5858/arpa.2019-0477-RA.

  20. Chatterjee D, Katz MH, Rashid A, et al. Histologic grading of the extent of residual carcinoma following neoadjuvant chemoradiation in pancreatic ductal adenocarcinoma: a predictor for patient outcome. Cancer. 2012;118(12):3182–90.

    Article  Google Scholar 

  21. Bluen BE, Lachter J, Khamaysi I, et al. Accuracy and quality assessment of EUS-FNA: a single-center large cohort of biopsies. Diagn Ther Endosc. 2012;2012:139563. https://doi.org/10.1155/2012/139563.

    Article  Google Scholar 

  22. Iglesias-Garcia J, Dominguez-Munoz JE, Abdulkader I, Larino-Noia J, Eugenyeva E, Lozano-Leon A, et al. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. Am J Gastroenterol. 2011;106:1705–10.

    Article  Google Scholar 

  23. Hruban R, Fukushima N. Pancreatic adenocarcinoma: update on the surgical pathology of carcinomas of ductal origin and PanINs. Mod Pathol. 2007;20:S61–70. https://doi.org/10.1038/modpathol.3800685.

    Article  Google Scholar 

  24. Wagner DG, Russell DK, Benson JM, Schneider AE, Hoda RS, Bonfiglio TA. Cellient™ automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining. Diagn Cytopathol. 2011;39(10):730–6. https://doi.org/10.1002/dc.21457.

    Article  Google Scholar 

  25. Hruban RH, Adsay NV. Molecular classification of neoplasms of the pancreas. Hum Pathol. 2009;40(5):612–23. https://doi.org/10.1016/j.humpath.2009.01.008.

    Article  CAS  Google Scholar 

  26. Tanaka M, Fernández-del Castillo C, Adsay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12(3):183–97. https://doi.org/10.1016/j.pan.2012.04.004.

    Article  Google Scholar 

  27. Kobayashi M, Fujinaga Y, Ota H. Reappraisal of the immunophenotype of pancreatic intraductal papillary mucinous neoplasms (IPMNs)-gastric pyloric and small intestinal immunophenotype expression in gastric and intestinal type IPMNs. Acta Histochem Cytochem. 2014;47(2):45–57. https://doi.org/10.1267/ahc.13027.

    Article  Google Scholar 

  28. Takaori K. “Revisions of the International Consensus Fukuoka Guidelines for the Management of IPMN of the Pancreas”: progress for twelve years. Pancreatology. 2017;17(5):645–6. https://doi.org/10.1016/j.pan.2017.08.008.

    Article  Google Scholar 

  29. Basturk O, Tan M, Bhanot U, et al. The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Mod Pathol. 2016;29:1058–69. https://doi.org/10.1038/modpathol.2016.98.

    Article  CAS  Google Scholar 

  30. Kim H, Ro JY. Intraductal tubulopapillary neoplasm of the pancreas: an overview. Arch Pathol Lab Med. 2018;142(3):420–3.

    Article  CAS  Google Scholar 

  31. Din NU, Zubair M, Abdul-Ghafar J, et al. Pancreatic mucinous cystic neoplasms: a clinicopathological study of 11 cases and detailed review of literature. Surg Exp Pathol. 2020;3:6. https://doi.org/10.1186/s42047-020-0059-2.

    Article  Google Scholar 

  32. Hidalgo M. Pancreatic cancer [published correction appears in N Engl J Med. 2010 Jul 15;363(3):298]. N Engl J Med. 2010;362(17):1605–17. https://doi.org/10.1056/NEJMra0901557.

    Article  CAS  Google Scholar 

  33. de Biase D, et al. The role of next-generation sequencing in the cytologic diagnosis of pancreatic lesions. Arch Pathol Lab Med. 2018;142(4):458–64.

    Article  Google Scholar 

  34. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20(10):1218–49. https://doi.org/10.1101/gad.1415606.

    Article  CAS  Google Scholar 

  35. Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6. https://doi.org/10.1126/science.1164368.

    Article  CAS  Google Scholar 

  36. Downward J. Targeting RAS signaling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22. https://doi.org/10.1038/nrc969.

    Article  CAS  Google Scholar 

  37. Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 1999;18(3):664–74. https://doi.org/10.1093/emboj/18.3.664.

    Article  CAS  Google Scholar 

  38. Maitra A, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol. 2006;20(2):211–26. https://doi.org/10.1016/j.bpg.2005.10.002.

    Article  CAS  Google Scholar 

  39. Redston MS, Caldas C, Seymour AB, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res. 1994;54(11):3025–33.

    CAS  Google Scholar 

  40. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–21. https://doi.org/10.1038/nrc1208.

    Article  CAS  Google Scholar 

  41. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition [published correction appears. J Clin Invest. 2010 May 3;120(5):1786]. J Clin Invest. 2009;119(6):1420–8. https://doi.org/10.1172/JCI39104.

    Article  CAS  Google Scholar 

  42. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. https://doi.org/10.1038/nrc822.

    Article  CAS  Google Scholar 

  43. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20. https://doi.org/10.1111/j.1349-7006.2007.00550.x.

    Article  CAS  Google Scholar 

  44. Collado M, Gil J, Efeyan A, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005;436(7051):642. https://doi.org/10.1038/436642a.

    Article  CAS  Google Scholar 

  45. Liu M, Hancock SE, Sultani G, et al. Snail-overexpression induces epithelial-mesenchymal transition and metabolic reprogramming in human pancreatic ductal adenocarcinoma and non-tumorigenic ductal cells. J Clin Med. 2019;8(6):822. https://doi.org/10.3390/jcm8060822.

    Article  CAS  Google Scholar 

  46. Al-Haddad MA, Kowalski T, Siddiqui A, et al. Integrated molecular pathology accurately determines the malignant potential of pancreatic cysts. Endoscopy. 2015;47(2):136–42. https://doi.org/10.1055/s-0034-1390742.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, X., Jones, K., Chen, G. (2022). Pathology of Pancreatic Ductal Adenocarcinoma. In: Doria, C., Rogart, J.N. (eds) Hepato-Pancreato-Biliary Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-41683-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41683-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41682-9

  • Online ISBN: 978-3-030-41683-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics