Skip to main content

Soil Remediation Under Microplastics Pollution

  • Reference work entry
  • First Online:
Handbook of Microplastics in the Environment

Abstract

The problematic of microplastics pollution in the terrestrial environment has only received attention recently by different sectors of the world society. Although most part of the research has focused in the beaches and oceans, the agricultural sites are the most vulnerable areas, because substrates containing microplastics, such as sewage sludge and compost, produce an ecosystem alteration by itself and also they constitute a vehicle of these particles that are unintentionally added to the agricultural soils into deeper soil layers, and in most of the cases, end up later on in the marine environment through run-off or by means of submarine groundwater discharges. In addition, the use of plastic mulch, which was initially a very innovative invention to maintain soil moisture and promote crops, is now a source of contamination when it is not properly collected from the ground. In this chapter, a discussion about the steps to follow to perform a remediation of soils contaminated by microplastics will be discussed. This chapter does not intend to present new alternatives or solutions, but rather discusses what could be the actions to follow in order to develop a technology that could be useful, accessible, and applicable in all corners of our planet. Nevertheless, until now there is no magic wand to make the plastic pollution disappear in the soil of agricultural sites. However, microorganisms belonging to digestive tract of invertebrates (i.e., those from the phylum Firmicutes) constitute a very promising tool in order to solve the problem of plastic pollution in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aeschelmann F, Michael C (2015) Biobased building blocks and polymers in the world: capacities, production, and applications–status quo and trends towards 2020. Ind Biotechnol 11(3):154–159

    Google Scholar 

  • Akutsu H, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62

    Google Scholar 

  • Albertsson AC, Erlandsson B, Hakkarainen M, Karlsson S (1998) Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene. J Environ Polym Degrad 6(4):187–195

    CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  • Anthony SD, Meizhong L, Christopher EB, Robin LB, David LF (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Applied and Environmental Microbiology 70(10):6092–6097

    Google Scholar 

  • Arcos-Hernandez MV, Laycock B, Pratt S, Donose BC, Nikolić MAL, Luckman P, Werker A, Lant PA (2012) Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polym Degrad Stab 97(11):2301–2312

    CAS  Google Scholar 

  • Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegrad 63(1):106e111

    Google Scholar 

  • Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci 115(19):E4350–E4357

    CAS  Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh Kannan V (2010) High-density polyethylene (HDPE) – degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51(2):205–211

    CAS  Google Scholar 

  • Beyler CL, Hirschler MM (2002) Thermal decomposition of polymers. In: SFPE handbook offire protection engineering, vol 2, Sect. 1, Chap 7. National Fire Protection Association, Quincy

    Google Scholar 

  • Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27(8):R292–R293

    CAS  Google Scholar 

  • Boontip T, Waditee-Sirisattha R, Honda K, Napathorn SC (2020) Enhanced functional expression of the polyhydroxyalkanoate synthase gene from Cupriavidus Necator A-04 using a cold-shock promoter for efficient poly(3-hydroxybutyrate) production in Escherichia Coli. Res Square. https://doi.org/10.21203/rs.3.rs-28241/v1

  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    CAS  Google Scholar 

  • Brandon AM, Gao S-H, Tian R, Ning D, Yang S-S, Zhou J, Wu W-M, Criddle CS (2018) Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environ Sci Technol 52(11):6526–6533

    CAS  Google Scholar 

  • Brodhagen M, Goldberger JR, Hayes DG, Inglis DA, Marsh TL, Miles C (2017) Policy considerations for limiting unintended residual plastic in agricultural soils. Environ Sci Pol 69:81–84

    Google Scholar 

  • Burger J (2019) A framework for increasing sustainability and reducing risk to ecological resources through integration of remediation planning and implementation, Environmental Research 172:586–595

    Google Scholar 

  • Chae Y, An Y (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395

    CAS  Google Scholar 

  • Chatterjee S, Roy B, Roy D, Banerjee R (2010) Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species. Polym Degrad Stab 95(2):195–200

    CAS  Google Scholar 

  • Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V (2019) Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 671:411–420

    CAS  Google Scholar 

  • Danso D, Chow J, Streit WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85(19):01095-19

    Google Scholar 

  • De Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol. 24:1405–1416

    Google Scholar 

  • De Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53(10):6044–6052

    Google Scholar 

  • Ehrenstein GW (2012) Polymeric materials: structure, properties, applications. Hanser Gardner Publications, München

    Google Scholar 

  • Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3

    CAS  Google Scholar 

  • Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitteri S, Samuel G, Pichon G, Lemaire J, Delort A (2010) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95(6):1011–1021

    CAS  Google Scholar 

  • Foruzanmehr M, Elkoun S, Fam A, Robert M (2015) Degradation characteristics of newbio-resin based- fiber-reinforced polymers for external rehabilitation of structures. J Compos Mater 50:1227–1239

    Google Scholar 

  • Gautam R, Bassi AS, Yanful EK (2007) A review of biodegradation of synthetic plastic and foams. Appl Biochem Biotechnol 141:85–108

    CAS  Google Scholar 

  • GESAMP (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment

    Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:1700782

    Google Scholar 

  • Ghimire S, Flury M, Scheenstra EJ, Miles CA (2020) Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Sci Total Environ 703

    Google Scholar 

  • Gilan Orr I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65(1):97–104

    Google Scholar 

  • Gómez EF, Michel FC (2013) Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym Degrad Stab 98(12):2583–2591

    Google Scholar 

  • Göpferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–2604

    Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    CAS  Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98(5):1093–1100

    CAS  Google Scholar 

  • Haider TP, Völker C, Kramm J, Landfester K, Wurm FRA (2019) Chem Int Ed 58:50

    Google Scholar 

  • Haward M (2018) Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat Commun 9:667

    Google Scholar 

  • Hayes DG, Wadsworth LC, Sintim HY, Flury M, English M, Schaeffer SM, Saxton AM (2017) Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym Test 62:454–467

    CAS  Google Scholar 

  • Higgs ES (1997) What is good ecological restoration? Conserv Biol 11:338–348. https://doi.org/10.1046/j.1523-1739.1997.95311

    Article  Google Scholar 

  • Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegrad 49(4):245e252

    Google Scholar 

  • Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salanki T, van der Ploeg M, Besseling E, Koelmans A, Geissen V (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50(5):2685–2691

    CAS  Google Scholar 

  • Huerta Lwanga E, Vega JM, Quej VK, de los Angeles Chi J, del Cid LS, Chi C, Koelmans AA (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7(1):14071

    Google Scholar 

  • Huerta Lwanga E, Thapa B, Yang X, Gertsen H, Salánki T, Geissen V, Garbeva P (2018) Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of The Total Environment 624:753–757

    Google Scholar 

  • Huerta E, van der Wal H (2012) Soil macroinvertebrates’ abundance and diversity in home gardens in Tabasco, Mexico, vary with soil texture, organic matter and vegetation cover. Eur J Soil Biol 50:68–75

    Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Marine pollution. Plastic waste inputs from land into the ocean. Science 347:768–771

    CAS  Google Scholar 

  • Janczak K, Hrynkiewicz K, Znajewska Z, Dąbrowska G (2018) Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. International Biodeterioration & Biodegradation 130:65–75.

    Google Scholar 

  • Joo S, Cho IJ, Seo H et al (2018) Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat Commun 9:382

    Google Scholar 

  • Karlsson S, Ljungquist O, Albertsson A (1988) Biodegradation of polyethylene and the influence of surfactants. Polym Degrad Stabil 21(3):237–250

    CAS  Google Scholar 

  • Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529

    CAS  Google Scholar 

  • Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759

    CAS  Google Scholar 

  • Kawai F, Kawabata T, Oda M (2019) Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol 103:4253–4268

    CAS  Google Scholar 

  • Khan B, Bilal Khan Niazi M, Samin G, Jahan Z (2017) Thermoplastic starch: a possible biodegradable food packaging material–a review. Journal of Food Process Engineering 40:e12447

    Google Scholar 

  • Koutny M, Sancelme M, Dabin C, Pichon N, Delort A, Lemaire J (2006) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91(7):1495–1503

    CAS  Google Scholar 

  • Koutny M, Amato P, Muchova M, Ruzicka J, Delort A (2009) Soil bacterial strains able to grow on the surface of oxidized polyethylene film containing prooxidant additives. Int Biodeterior Biodegrad 63(3):354–357

    CAS  Google Scholar 

  • Lambert S, Wagner S (2018) Microplastics are contaminants of emerging concern in freshwater environments: an overview. In: Barcelo D, Kostianov A (eds) Freshwater microplastics, pp 1–24

    Google Scholar 

  • Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci 205:323–330

    CAS  Google Scholar 

  • Liu M, Lu S, Song Y, Lei L, Hu J, Lv W, Zhou W, Cao C, Shi H, Yang X, He D (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ Pollut 242(Part A):855–862

    CAS  Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: Mechanisms and estimation techniques – A review. Chemosphere 73(4):429–442

    Google Scholar 

  • Maaß S, Daphi D, Lehmann A, Rillig MC (2017) Transport of microplastics by two collembolan species. Environ Pollut 225:456–459

    Google Scholar 

  • MacArthur Ellen Foundation (2017) The new plastics economy: rethinking the future of plastics and catalysing action. Ellen MacArthur Foundation, Cowes, UK

    Google Scholar 

  • MacArthur Ellen Foundation, World Economic Forum (2014). http://www3.weforum.org/docs/WEF_The_New_Plastics_Econom

  • Manzur A, Limon-Gonzalez M, Favela-Torres E (2004) Biodegradation of physicochemically treated LDPE by a consortium of filamentous fungi. J Appl Polym Sci 92(1):265–271

    CAS  Google Scholar 

  • Mogilnitskii GM, Sagatelyan RT, Kutishcheva TN, Zhukova SV, Kerimov SI, Parfenova TB (1987) Disruption of the protective properties of the polyvinyl chloride coating under the effect of microorganisms Protect. Met 23(1):173–175

    Google Scholar 

  • Mohan AJ, Sekhar VC, Bhaskar T, Madhavan Nampoothiri K (2016) Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology 213:204–207

    Google Scholar 

  • Moharir RV, Kumar S (2019) Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review. J Clean Prod 208:65–76

    CAS  Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber, Biodegradation of polystyrene. Biodegradation 19:851–858

    Google Scholar 

  • Muenme S, Chiemchaisria W, Chiemchaisri C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int. Biodeterior. Biodegrad 113:244e255

    Google Scholar 

  • Müller R -J, Schrader H, Profe J, Dresler K, Deckwer WD (2005) Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from T. fusca. Macromol. Rapid Commun 26:1400–1405. https://doi.org/10.1002/marc.200500410

  • Nakajima H, Kimura Y (2013) Chapter 1, General introduction: overview of the current development of biobased polymers. In: Kimura Y (ed) Bio-based polymers, 1st edn. CMC Publishing, Tokyo, pp 1–23. ISBN 978-4-7813-0271-3.

    Google Scholar 

  • Neufeld L, Stassen F, Sheppard R, Gilman T (eds) (2016) The new plastics economy: rethinking the future of plastics. World Economic Forum

    Google Scholar 

  • Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

    Article  CAS  Google Scholar 

  • Nizzetto L, Futter M, Langaas S (2016) Environ Sci Technol 50(20):10777–10779

    CAS  Google Scholar 

  • Nowak B, Pajak J, Drozd-Bratkowicz k M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegrad 65(6):757–767

    CAS  Google Scholar 

  • O’Leary ND, O’Connor KE, Ward P, Goff M, Dobson AD (2005) Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71:4380–4387

    Google Scholar 

  • Orr IG, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65(1):97–104

    Google Scholar 

  • Paço A, Duarte K, da Costa, João P, Santos PSM, Pereira R, Pereira ME, Freitas Ana C, Duarte Armando C, Rocha-Santos, Teresa AP (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment 586:10–15

    Google Scholar 

  • PlasticsEurope (2019) Plastics – the facts 2019. An analysis of European plastics production, demand and waste data. PlasticsEurope, Brussels

    Google Scholar 

  • Pometto AL, Lee BT, Johnson KE (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58(2):731–733

    CAS  Google Scholar 

  • Potts JE, Clendinning RA, Ackart WB, Niegisch WD (1973) The biodegradability of synthetic polymers. In: Guillet J (ed) Polymers and ecological problems. Springer US, Boston, MA, pp 61–79

    Google Scholar 

  • Pramila R, Vijaya Ramesh K (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. J Microbiol Biotechnol Res 1(4):131–136

    CAS  Google Scholar 

  • Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455

    CAS  Google Scholar 

  • Qi Y, Ossowicki A, Yang X, Huerta Lwanga E, Dini-Andreote F, Geissen V, Garbeva P (2020) Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater 387:121711

    CAS  Google Scholar 

  • Rajandas H, Parimannan S, Sathasivam K, Ravichandran M, Su YL (2012) A novel FTIR-ATR spectroscopy based technique for the estimation of lowdensity polyethylene biodegradation. Polym Test 31(8):1094–1099

    CAS  Google Scholar 

  • Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery — poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation. Polymer (Guildf) 22:494–498

    CAS  Google Scholar 

  • Rezaei M, Riksen MJPM, Sirjani E, Sameni A, Geissen V (2019) Wind erosion as a driver for transport of light density microplastics. Sci Total Environ 669:273–281

    Google Scholar 

  • Rillig Matthias C, de Souza Machado AA, Anika L, Uli K (2018) Evolutionary implications of microplastics for soil biota. Environ Chem 16:3–7

    Google Scholar 

  • Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7:1362

    Google Scholar 

  • Rivera-Hernández JR, Fernández B, Santos-Echeandía J, Garrido S, Morante M, Santos P, Albentosa M (2019) Biodynamics of mercury in mussel tissues as a function of exposure pathway: natural vs microplastic routes. Sci Total Environ 674:412–423. https://doi.org/10.1016/j.scitotenv.2019.04.175

    Article  CAS  Google Scholar 

  • Rodica L, Tudorachi N, Darie-Nita RN, Oprica L, Vasile C, Chiriac A (2016) Biodegradation of poly (lactic acid) and some of its based systems with Trichoderma viride. Int J Biol Macromol 88:515e526

    Google Scholar 

  • Rodrigues JP, Duarte AC, Santos-Echeandía J, Rocha-Santos T (2019) Significance of interactions between microplastics and POPs in the marine environment: a critical overview. TrAC Trends Anal Chem 111:252–260. https://doi.org/10.1016/j.trac.2018.11.038

    Article  CAS  Google Scholar 

  • Ronkvist ÃSM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Google Scholar 

  • Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922

    Google Scholar 

  • Sander M (2019) Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions. Environ Sci Technol 53(5):2304–2315

    CAS  Google Scholar 

  • Santos-Echeandía J, Rivera-Hernández JR, Rodrigues JP, Moltó V (2020) Interaction of mercury with beached plastics with special attention to zonation, degradation status and polymer type. Mar Chem 222(March):103788–103776. https://doi.org/10.1016/j.marchem.2020.103788

    Article  CAS  Google Scholar 

  • Savoldelli J, Tomback D, Savoldelli H (2017) Breaking down polystyrene through the application of a two-step thermal degradation and bacterial method to produce usable by products. Waste Manag 60:123–126

    CAS  Google Scholar 

  • Scheurer M, Bigalke M (2018) Environ Sci Technol 52(6):3591–3598

    CAS  Google Scholar 

  • Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, Liebmann B (2019) Detection of various microplastics in human stool. Ann Intern Med 171(7):453–457

    Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylenedegrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72(2):346–352

    Google Scholar 

  • Skoczinski PRC, Carus M, Baltus W, de Guzman DHK, Raschka A, Ravenstijn J (2019) Global markets and trends of bio-based building blocks and polymers 2019–2024

    Google Scholar 

  • Song Y, Cao C, Qiu R, Hu J, Liu M, Lu S, Shi H, Raley-Susman KM, He D (2019) Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ Pollut 250:447–455

    CAS  Google Scholar 

  • Sowmya HV, Ramalingappa M, Krishnappa M (2012) Degradation of polyethylene by Chaetomium sp. and Aspergillus flavus. Int J Recent Sci Res 3(6):513–517

    Google Scholar 

  • Stoleru E, Hitruc EG, Vasile C, Oprică L (2017) Biodegradation of poly(lactic acid)/chitosan stratified composites in presence of the Phanerochaete chrysosporium fungus, Polymer Degradation and Stability 143:118–129

    Google Scholar 

  • Sudhakar M, Priyadarshini C, Doble M, Sriyutha Murthy P, Venkatesan R (2007) Marine bacteria mediated degradation of nylon 66 and 6. Int Biodeterior Biodegrad 60:144–151

    CAS  Google Scholar 

  • Urbanek AK, Rybak J, Wróbel M, Leluk K, Mirończuk AM (2020) A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environ Pollut 262:114281

    CAS  Google Scholar 

  • Van de Zee M (2011) Analytical methods for monitoring biodegradation processes of environmentally degradable polymers. In: Handbook of biodegradable polymers: synthesis, characterization and applications. pp 263–281

    Google Scholar 

  • van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V (2020) Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ Pollut 261:114198

    Google Scholar 

  • Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus subtilis. Procedia Technol 24:232–239

    Google Scholar 

  • Volova T, Gladyshev M, Trusova MY, Zhila N (2007) Degradation of polyhydroxyalkanoates in eutrophicreservoir. Polym Degrad Stab 92:580–586

    CAS  Google Scholar 

  • Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S (2005) Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(llactide). Biomaterials 26:4453–4459

    CAS  Google Scholar 

  • Wang W, Gao H, Jin S, Li R, Na G (2019) The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: a review. Ecotoxicol Environ Saf 173

    Google Scholar 

  • Watanabe T, Ohtake Y, Asabe H, Murakami N, Furukawa M (2009) Biodegradability and degrading microbes of low-density polyethylene. J Appl Polym Sci 111(1):551–559.

    Google Scholar 

  • Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microbial Biotechnology 10(6):1751–7915

    Google Scholar 

  • Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4(4):eaap8060

    Google Scholar 

  • Whitney PJ, Swaffield CH, Graffam AJ (1993) Int Biodeter Biodegrad 31:179

    CAS  Google Scholar 

  • Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ (2019) A catchment-scale perspective of plastic pollution. Glob Chang Biol 25:1207–1221

    Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72(2):323–327

    CAS  Google Scholar 

  • Yang J, Yang Y, Wu W-M, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–13784

    CAS  Google Scholar 

  • Yang S-S, Wu W, Brandon AM, Fan H, Receveur J, Li Y, Wang Z, Fan RL, McClellan R, Gao S-H, Ning D, Phillips D, Peng B-Y, Wang H, Cai S-Y, Li P, Cai W, Ding L-Y, Yang J, Criddle C (2018) Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). 212

    Google Scholar 

  • Yoo ES, Im SS (1999) Effect of crystalline and amorphous structures on biodegradability of poly(tetramethylene succinate). J Environ Polym Degrad 7:19–26

    CAS  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351(6278):1196

    CAS  Google Scholar 

  • Yu M, van der Ploeg M, Huerta Lwanga E, Yang X, Zhang S, Ma X, Ritsema CJ, Geissen V (2019) Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry 16:31–40

    Google Scholar 

  • Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation, critical reviews in Biotechnology 25(4):243–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Huerta Lwanga .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huerta Lwanga, E., Santos-Echeandía, J. (2022). Soil Remediation Under Microplastics Pollution. In: Rocha-Santos, T., Costa, M.F., Mouneyrac, C. (eds) Handbook of Microplastics in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-39041-9_23

Download citation

Publish with us

Policies and ethics