Skip to main content

Nanotechnology in Textile Finishing: Recent Developments

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Nanotechnology is one of the prominent areas for research studies in developing super functional materials like fabrics with self-cleaning, UV-protection, antimicrobial, antistatic, soil and stain repellent, water repellent, and fire retardant. The chapter commences with a preface to the classification of nanofinishing on textiles, and then on to the different techniques for application, including the nanoparticles and nanolayers. Later it explains the production of various nanofinishing, namely, Lotus effect/self-cleaning textile materials, nano photocatalysts, water repellent/waterproof fabrics, that are designed to reduce the surface energy through nanostructures and nano surface. The UV-protective textiles by application of TiO2 and ZnO as nanoparticles, durable antimicrobial derivatives from nanosilver, and fire retardant from various nanostructured chemicals are addressed in this chapter. It is irony that nanofinishing in textiles has made a big revolution in the world market for technical textiles, for its potentiality in creating high performance and specialty clothing. The current and future innovations are focused on sustainability and high-performance materials for which nanotechnology is the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Richard (2009) “Plenty of room” revisited. Nat Nanotechnol 4:781–781. https://doi.org/10.1038/nnano.2009.356

  2. Periyasamy AP (2006) Nano technology for achieving high functional textile finishing. Text Mag 48:28–34

    Google Scholar 

  3. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  4. Yang K, Periyasamy AP, Venkataraman M et al (2020) Resistance against penetration of electromagnetic radiation for ultra-light Cu/Ni-coated polyester fibrous materials. Polymers (Basel) 12:2029. https://doi.org/10.3390/polym12092029

    Article  CAS  Google Scholar 

  5. Periyasamy AP, Venkataraman M, Kremenakova D et al (2020) Progress in sol-gel technology for the coatings of fabrics. Materials (Basel) 13:1838. https://doi.org/10.3390/ma13081838

    Article  CAS  Google Scholar 

  6. Periyasamy AP, Yang K, Xiong X et al (2020) Effect of silanization on copper coated milife fabric with improved EMI shielding effectiveness. Mater Chem Phys 239:122008. https://doi.org/10.1016/j.matchemphys.2019.122008

    Article  CAS  Google Scholar 

  7. Periyasamy AP, Yang K, Xiong X et al (2019) Influence of EMI shielding on silane-coated conductive fabric. In: Textile bioengineering and informatics symposium proceedings 2019 – 12th textile bioengineering and informatics symposium, TBIS 2019, pp 67–71

    Google Scholar 

  8. Periyasamy AP, Vikova M, Vik M (2020) Spectral and physical properties organo-silica coated photochromic poly-ethylene terephthalate (PET) fabrics. J Text Inst 111:808–820. https://doi.org/10.1080/00405000.2019.1663633

    Article  CAS  Google Scholar 

  9. hsin Huang H, Orler B, Wilkes GL (1987) Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules. https://doi.org/10.1021/ma00172a026

  10. Kwon DH, Huh HK, Lee SJ (2014) Wettability and impact dynamics of water droplets on rice (Oryza sativa L.) leaves. Exp Fluids 55:1691. https://doi.org/10.1007/s00348-014-1691-y

    Article  CAS  Google Scholar 

  11. Mayser MJ, Bohn HF, Reker M, Barthlott W (2014) Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces. Beilstein J Nanotechnol 5:812–821. https://doi.org/10.3762/bjnano.5.93

    Article  CAS  Google Scholar 

  12. Bixler GD, Bhushan B (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8:11271. https://doi.org/10.1039/c2sm26655e

    Article  CAS  Google Scholar 

  13. Gao X, Yan X, Yao X et al (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217. https://doi.org/10.1002/adma.200601946

    Article  CAS  Google Scholar 

  14. Zhang M, Feng S, Wang L, Zheng Y (2016) Lotus effect in wetting and self-cleaning. Biotribology 5:31–43. https://doi.org/10.1016/j.biotri.2015.08.002

    Article  Google Scholar 

  15. Roy S, Zhai L, Kim JW et al (2020) A novel approach of developing sustainable cellulose coating for self-cleaning-healing fabric. Prog Org Coat 140:105500. https://doi.org/10.1016/j.porgcoat.2019.105500

    Article  CAS  Google Scholar 

  16. Jiang C, Liu W, Yang M et al (2018) Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability. Colloids Surfaces A Physicochem Eng Asp 559:235–242. https://doi.org/10.1016/j.colsurfa.2018.09.048

    Article  CAS  Google Scholar 

  17. Xin JH, Daoud WA, Kong YY (2004) A new approach to UV-blocking treatment for cotton fabrics. Text Res J 74:97–100. https://doi.org/10.1177/004051750407400202

    Article  CAS  Google Scholar 

  18. Daoud WA, Leung SK, Tung WS et al (2008) Self-cleaning keratins. Chem Mater 20:1242–1244. https://doi.org/10.1021/cm702661k

    Article  CAS  Google Scholar 

  19. Bozzi A, Yuranova T, Kiwi J (2005) Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J Photochem Photobiol A Chem 172:27–34. https://doi.org/10.1016/j.jphotochem.2004.11.010

    Article  CAS  Google Scholar 

  20. Pakdel E, Daoud WA (2013) Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. J Colloid Interface Sci 401:1–7. https://doi.org/10.1016/j.jcis.2013.03.016

    Article  CAS  Google Scholar 

  21. Pakdel E, Daoud WA, Wang X (2015) Assimilating the photo-induced functions of TiO2-based compounds in textiles: emphasis on the sol-gel process. Text Res J 85:1404–1428. https://doi.org/10.1177/0040517514551462

    Article  CAS  Google Scholar 

  22. Pakdel E, Daoud WA, Sun L, Wang X (2014) Visible and UV functionality of TiO2 ternary nanocomposites on cotton. Appl Surf Sci 321:447–456. https://doi.org/10.1016/j.apsusc.2014.10.018

    Article  CAS  Google Scholar 

  23. Zahid M, Papadopoulou EL, Suarato G et al (2018) Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles. ACS Appl Bio Mater 1:1154–1164. https://doi.org/10.1021/acsabm.8b00357

    Article  CAS  Google Scholar 

  24. Gaminian H, Montazer M (2015) Enhanced self-cleaning properties on polyester fabric under visible light through single-step synthesis of cuprous oxide doped Nano-TiO2. Photochem Photobiol 91:1078–1087. https://doi.org/10.1111/php.12478

    Article  CAS  Google Scholar 

  25. Afzal S, Daoud WA, Langford SJ (2013) Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Appl Mater Interfaces 5:4753–4759. https://doi.org/10.1021/am400002k

    Article  CAS  Google Scholar 

  26. Pakdel E, Daoud WA, Wang X (2013) Self-cleaning and superhydrophilic wool by TiO2 /SiO2 nanocomposite. Appl Surf Sci 275:397–402. https://doi.org/10.1016/j.apsusc.2012.10.141

    Article  CAS  Google Scholar 

  27. Zhao Q, Wu LYL, Huang H, Liu Y (2016) Ambient-curable superhydrophobic fabric coating prepared by water-based non-fluorinated formulation. Mater Des. https://doi.org/10.1016/j.matdes.2015.12.054

  28. Zhang J, Li B, Wu L, Wang A (2013) Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chem Commun. https://doi.org/10.1039/c3cc43238f

  29. Onar N, Mete G (2016) Development of water repellent cotton fabric with application of ZnO, Al2O3, TiO2 and ZrO2 nanoparticles modified with ormosils. Tekst ve Konfeksiyon

    Google Scholar 

  30. Zhou H, Wang H, Niu H et al (2012) Fluoroalkyl Silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412. https://doi.org/10.1002/adma.201200184

    Article  CAS  Google Scholar 

  31. Wu M, Ma B, Pan T et al (2016) Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties. Adv Funct Mater 26:569–576. https://doi.org/10.1002/adfm.201504197

    Article  CAS  Google Scholar 

  32. Sas I, Gorga RE, Joines JA, Thoney KA (2012) Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J Polym Sci Part B Polym Phys 50:824–845. https://doi.org/10.1002/polb.23070

    Article  CAS  Google Scholar 

  33. Meng L-Y, Han S, Jiang N, Meng W (2014) Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers. Mater Chem Phys 148:798–802. https://doi.org/10.1016/j.matchemphys.2014.08.051

    Article  CAS  Google Scholar 

  34. Zimmermann J, Reifler FA, Fortunato G et al (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18:3662–3669. https://doi.org/10.1002/adfm.200800755

    Article  CAS  Google Scholar 

  35. Lei S, Shi Z, Ou J et al (2017) Durable superhydrophobic cotton fabric for oil/water separation. Colloids Surf A Physicochem Eng Asp 533:249–254. https://doi.org/10.1016/j.colsurfa.2017.08.012

    Article  CAS  Google Scholar 

  36. Shang Q, Liu C, Zhou Y (2018) One-pot fabrication of robust hydrophobia and superoleophilic cotton fabrics for effective oil-water separation. J Coat Technol Res 15:65–75. https://doi.org/10.1007/s11998-017-9947-0

    Article  CAS  Google Scholar 

  37. El-Shafei A, Elshemy M, Abou-Okeil A (2015) Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2014.11.007

  38. Przybylak M, Maciejewski H, Dutkiewicz A (2016) Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2016.06.094

  39. Xue CH, Jia ST, Chen HZ, Wang M (2008) Superhydrophobic cotton fabrics prepared by sol-gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/9/3/035001

  40. Fouda A, EL-Din Hassan S, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261. https://doi.org/10.1016/j.micpath.2018.09.030

    Article  CAS  Google Scholar 

  41. Noorian SA, Hemmatinejad N, Navarro JAR (2020) Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int J Biol Macromol 154:1215–1226. https://doi.org/10.1016/j.ijbiomac.2019.10.276

    Article  CAS  Google Scholar 

  42. Nasouri K, Shoushtari AM, Mirzaei J, Merati AA (2020) Synthesis of carbon nanotubes composite nanofibers for ultrahigh performance UV protection and microwave absorption applications. Diam Relat Mater 107:107896. https://doi.org/10.1016/j.diamond.2020.107896

    Article  CAS  Google Scholar 

  43. Pandimurugan R, Thambidurai S (2017) UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics. Int J Biol Macromol 105:788–795. https://doi.org/10.1016/j.ijbiomac.2017.07.097

    Article  CAS  Google Scholar 

  44. Sun Y, Zhao X, Liu R et al (2018) Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat 123:306–313. https://doi.org/10.1016/j.porgcoat.2018.07.013

    Article  CAS  Google Scholar 

  45. Cerhan-Haink A, Basim GB (2020) Promoting photocatalytic cleaning efficiency of textile finishing solutions with nanoboron as a p-type dopant. J Surfactant Deterg 23:433–444. https://doi.org/10.1002/jsde.12380

    Article  CAS  Google Scholar 

  46. Saleemi S, Naveed T, Riaz T et al (2020) Surface functionalization of cotton and pc fabrics using SiO2 and ZnO nanoparticles for durable flame retardant properties. Coatings 10. https://doi.org/10.3390/coatings10020124

  47. Román LE, Amézquita MJ, Uribe CL et al (2020) In situ growth of CuO nanoparticles onto cotton textiles. Adv Nat Sci Nanosci Nanotechnol 11. https://doi.org/10.1088/2043-6254/ab8a2f

  48. Moazami A, Montazer M (2016) A novel multifunctional cotton fabric using ZrO2 NPs/urea/CTAB/MA/SHP: introducing flame retardant, photoactive and antibacterial properties. J Text Inst 107:1253–1263. https://doi.org/10.1080/00405000.2015.1100806

    Article  CAS  Google Scholar 

  49. Ashjaran A, Azarmi R, Ashjaran M (2014) Overview of some materials and test methods for antimicrobial finishing on textile. Res J Pharm Biol Chem Sci 5:1252–1262

    Google Scholar 

  50. Joshi M, Roy A (2018) Antimicrobial textiles based on metal and metal oxide nano-particles. In: Nanomaterials in the wet processing of textiles. Wiley Blackwell, Department of Textile Technology, Indian Institute of Technology, New Delhi, pp 71–111

    Chapter  Google Scholar 

  51. Bashiri Rezaie A, Montazer M, Mahmoudi Rad M (2018) Scalable, eco-friendly and simple strategy for nano-functionalization of textiles using immobilized copper-based nanoparticles. Clean Techn Environ Policy 20:2119–2133. https://doi.org/10.1007/s10098-018-1596-1

    Article  Google Scholar 

  52. Zheng Z, Gu Z, Huo R, Ye Y (2009) Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution. Appl Surf Sci 255:7263–7267. https://doi.org/10.1016/j.apsusc.2009.03.084

    Article  CAS  Google Scholar 

  53. Singh J, Khan SA, Shah J et al (2017) Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl Surf Sci 422:953–961. https://doi.org/10.1016/j.apsusc.2017.06.068

    Article  CAS  Google Scholar 

  54. Zhao L, Lu J (2017) Fabrication and application of mesoporous TiO2 film coated on Al wire by sol-gel method with EISA. Appl Surf Sci 402:369–371. https://doi.org/10.1016/j.apsusc.2017.01.023

    Article  CAS  Google Scholar 

  55. Touhid SSB, Shawon MRK, Deb H et al (2020) Nature inspired rGO-TiO2 micro-flowers on polyester fabric using semi-continuous dyeing method: a binder-free approach towards durable antibacterial performance. Synth Met 261:116298. https://doi.org/10.1016/j.synthmet.2020.116298

    Article  CAS  Google Scholar 

  56. Yu J, Pang Z, Zheng C et al (2019) Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Appl Surf Sci 470:84–90. https://doi.org/10.1016/j.apsusc.2018.11.112

    Article  CAS  Google Scholar 

  57. Nolan NT, Seery MK, Hinder SJ et al (2010) A systematic study of the effect of silver on the chelation of formic acid to a titanium precursor and the resulting effect on the anatase to rutile transformation of TiO2. J Phys Chem C 114:13026–13034. https://doi.org/10.1021/jp1016054

    Article  CAS  Google Scholar 

  58. Pakdel E, Wang J, Kashi S et al (2020) Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv Colloid Interf Sci 277:102116. https://doi.org/10.1016/j.cis.2020.102116

    Article  CAS  Google Scholar 

  59. Gao D, Liu J, Lyu L et al (2020) Construct the multifunction of cotton fabric by synergism between Nano ZnO and ag. Fibers Polym 21:505–512. https://doi.org/10.1007/s12221-020-9347-4

    Article  CAS  Google Scholar 

  60. Küçük M, Öveçoğlu ML (2018) Surface modification and characterization of polyester fabric by coating with low temperature synthesized ZnO nanorods. J Sol-Gel Sci Technol 88:345–358. https://doi.org/10.1007/s10971-018-4817-5

    Article  CAS  Google Scholar 

  61. Panáček A, Kvítek L, Smékalová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13:65–71. https://doi.org/10.1038/s41565-017-0013-y

    Article  CAS  Google Scholar 

  62. Arvidsson R, Molander S, Sandén BA (2011) Impacts of a silver-coated future. J Ind Ecol 15:844–854. https://doi.org/10.1111/j.1530-9290.2011.00400.x

    Article  CAS  Google Scholar 

  63. Radetić M, Marković D (2019) Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles. Cellulose 26:8971–8991. https://doi.org/10.1007/s10570-019-02714-4

    Article  CAS  Google Scholar 

  64. Khudyakov IV, Turro NJ, Yakushenko IK (1992) Kinetics and mechanism of the photochromic transformations of N-salicylidene-4-hydroxy-3,5-dimethylaniline and its complex with uranium(VI) dioxide. J Photochem Photobiol A Chem 63:25–31. https://doi.org/10.1016/1010-6030(92)85149-O

    Article  CAS  Google Scholar 

  65. Seipel S, Yu J, Periyasamy AP et al (2017) Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light. IOP Conf Ser Mater Sci Eng 254. https://doi.org/10.1088/1757-899X/254/7/072023

  66. Periyasamy AP, Vikova M, Vik M (2017) A review of photochromism in textiles and its measurement. Text Prog 49:53–136. https://doi.org/10.1080/00405167.2017.1305833

    Article  Google Scholar 

  67. Seipel S, Yu J, Periyasamy AP et al (2017) Resource-efficient production of a smart textile uv sensor using photochromic dyes: Characterization and optimization. In: Narrow and smart textiles. Springer Nature Switzerland AG, pp 251–257

    Google Scholar 

  68. Dürr H (2003) General introduction. In: Henri B-L, Dürr H (eds) Photochromism: molecules and systems, first. Elsevier B.V, Amesterdam, pp 1–14

    Google Scholar 

  69. Periyasamy AP, Viková M, Vik M (2020) Preparation of photochromic isotactic polypropylene filaments: influence of drawing ratio on their optical, thermal and mechanical properties. Text Res J 90:2136–2148. https://doi.org/10.1177/0040517520912037

    Article  CAS  Google Scholar 

  70. Seipel S, Yu J, Periyasamy AP et al (2018) Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC Adv 8:28395–28404. https://doi.org/10.1039/C8RA05856C

  71. Periyasamy AP, Vikova M, Vik M (2019) Photochromic polypropylene filaments: impacts of mechanical properties on kinetic behaviour. Fibres Text East Eur 27:19–25. https://doi.org/10.5604/01.3001.0013.0738

    Article  CAS  Google Scholar 

  72. Viková M, Periyasamy AP, Vik M, Ujhelyiová A (2017) Effect of drawing ratio on difference in optical density and mechanical properties of mass colored photochromic polypropylene filaments. J Text Inst 108:1365–1370. https://doi.org/10.1080/00405000.2016.1251290

    Article  CAS  Google Scholar 

  73. White MA, Bourque A (2013) Colorant, thermochromic. In: Luo R (ed) Encyclopedia of color science and technology. Springer, New York, pp 1–12

    Google Scholar 

  74. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  75. Periyasamy AP, Vik M (2018) Chromic materials: fundamentals, measurements, and applications, first. Apple Academic Press (CRC Press), Toronto

    Google Scholar 

  76. Khatri Z, Ali S, Khatri I et al (2015) UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning. Appl Surf Sci 342:64–68. https://doi.org/10.1016/j.apsusc.2015.03.046

    Article  CAS  Google Scholar 

  77. Shuiping L, Lianjiang T, Weili H et al (2010) Cellulose acetate nanofibers with photochromic property: fabrication and characterization. Mater Lett 64:2427–2430. https://doi.org/10.1016/j.matlet.2010.08.018

    Article  CAS  Google Scholar 

  78. Hu S, Wang D, Yang K, et al (2020) Copper coated textiles for inhibition of virus spread. In: Textile Bioengineering and Informatics Symposium Proceedings 2020 – 13th Textile Bioengineering and Informatics Symposium, TBIS 2020

    Google Scholar 

  79. Wang Y-F, Militky J, Periyasamy AP, et al (2020) Disinfection mechanisms of UV light and ozonization. In: Textile Bioengineering and Informatics Symposium Proceedings 2020 – 13th Textile Bioengineering and Informatics Symposium, TBIS 2020

    Google Scholar 

  80. Tan X-D, Peng Q-Y, Yang K, et al (2020) Influence of UV light and ozonization on microbes. In: Textile Bioengineering and Informatics Symposium Proceedings 2020 – 13th Textile Bioengineering and Informatics Symposium, TBIS 2020

    Google Scholar 

Download references

Acknowledgments

The author thanks to Ministry of Education, Youth and Sports of the Czech Republic and the European Union – European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education – project Hybrid Materials for Hierarchical Structures (HyHi, Reg. No. CZ.02.1.01 /0.0/0.0/16_019/0000843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravin Prince Periyasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Periyasamy, A.P., Militky, J., Sachidhanandham, A., Duraisamy, G. (2021). Nanotechnology in Textile Finishing: Recent Developments. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_55

Download citation

Publish with us

Policies and ethics