Skip to main content

Recent Progress of Gold Nanomaterials in Cancer Therapy

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 235 Accesses

Abstract

In radiotherapy, ionizing radiation causes deoxyribonucleic acid (DNA) damage in cancer cells, so that the cancer can be controlled by terminating the reproduction of these affected cells. DNA is a biological molecule in nanometer scale in a living cell necessary for cell reproduction. Adding heavy-atom nanomaterial as radiosensitizer to the cancer cells can enhance the DNA damage in the cells, as the irradiated cancer cells can be more easily detected by medical imaging. This is because the addition of heavy-atom nanomaterial in the cancer cell increases the compositional atomic number of the cell, resulting in a photoelectric interaction enhancement with increased secondary electron yield for energy deposition. The gold nanomaterial addition to the cancer tumour benefits radiotherapy that produces a highly conformal dose distribution covering the cancer target, while sparing the surrounding critical organs. We use Monte Carlo simulation to study the nanodosimetry of DNA, guiding us to evaluate the effectiveness of nanomaterials such as gold nanoparticles transported to the cancer cells. Monte Carlo simulation is a mathematical method to model the interaction between the DNA and radiation beam. In this chapter, we review the basic concept and recent progress of Monte Carlo simulation used in predicting the dose and imaging contrast enhancement in gold nanoparticle-enhanced radiotherapy. We also review the dose and imaging contrast enhancement ratios among different nanoparticle materials using different photon beam energies in the kilovoltage range. In gold nanoparticle-enhanced radiotherapy using the flattening-filter-free and flattening-filter photon beams, we examine the recent results of dose and imaging contrast enhancement between these photon beams using Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Her S, Jaffray DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101

    Article  CAS  Google Scholar 

  2. Chow JCL (2018) Monte Carlo nanodosimetry in gold nanoparticle-enhanced radiotherapy. In: Chan MF (ed) Recent advancements and applications in dosimetry, Chapter 2. Nova Science Publishers, New York

    Google Scholar 

  3. Chow JCL (2017) Dose enhancement effect in radiotherapy: adding gold nanoparticle to tumour in cancer treatment. Nanostruct Cancer Ther 2017:383–400

    Article  Google Scholar 

  4. Chow JCL (2017) Application of nanoparticle materials in radiation therapy. In: Martinez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer Nature, Cham

    Google Scholar 

  5. Chow JCL (2016) Photon and electron interactions with gold nanoparticles: a Monte Carlo study on gold nanoparticle-enhanced radiotherapy. Nanobiomater Med Imaging 8:45–70

    Article  CAS  Google Scholar 

  6. Chow JCL (2015) Characteristics of secondary electrons from irradiated gold nanoparticle in radiotherapy, Chapter 10. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer, Cham, pp 41–65

    Google Scholar 

  7. Albayedh F, Chow JCL (2018) Monte Carlo simulation on the imaging contrast enhancement in nanoparticle-enhanced radiotherapy. J Med Phys 43:195–199

    Article  Google Scholar 

  8. He C, Chow JCL (2016) Gold nanoparticle DNA damage in radiotherapy: a Monte Carlo study. AIMS Bioeng 3:352–361

    Article  CAS  Google Scholar 

  9. Zhang XD, Guo ML, Wu HY, Sun YM, Ding YQ, Feng X, Zhang LA (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomedicine 4:165

    Article  CAS  Google Scholar 

  10. Berbeco RI, Korideck H, Ngwa W, Kumar R, Patel J, Sridhar S, Johnson S, Price BD, Kimmelman A, Makrigiorgos GM (2012) DNA damage enhancement from gold nanoparticles for clinical MV photon beams. Radiat Res 178(6):604–608

    Article  CAS  Google Scholar 

  11. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309

    Article  CAS  Google Scholar 

  12. Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38(2):624–631

    Article  CAS  Google Scholar 

  13. Chow JCL (2018) Recent progress in Monte Carlo simulation on gold nanoparticle radiosensitization. AIMS Biophys 5(4):231–244

    Article  CAS  Google Scholar 

  14. Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36(7):861

    Article  CAS  Google Scholar 

  15. Rogers DW (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51(13):R287

    Article  CAS  Google Scholar 

  16. Chow JC, Owrangi AM (2014) Dosimetric dependences of bone heterogeneity and beam angle on the unflattened and flattened photon beams: a Monte Carlo comparison. Radiat Phys Chem 101:46–52

    Article  CAS  Google Scholar 

  17. Chow JC, Owrangi AM (2016) A surface energy spectral study on the bone heterogeneity and beam obliquity using the flattened and unflattened photon beams. Report Pract Oncol Radiother 21(1):63–70

    Article  Google Scholar 

  18. Zubizarreta E, Van DJ, Lievens Y (2016) Analysis of global radiotherapy needs and costs by geographic region and income level. Clin Oncol 29:84–92

    Article  Google Scholar 

  19. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435

    Article  CAS  Google Scholar 

  20. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707

    Article  CAS  Google Scholar 

  21. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128:5–15

    Article  CAS  Google Scholar 

  22. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3–4):638–665

    Article  CAS  Google Scholar 

  23. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  CAS  Google Scholar 

  24. Chow JC, Leung MK, Fahey S, Chithrani DB, Jaffray DA (2012) Monte Carlo simulation on low-energy electrons from gold nanoparticle in radiotherapy. J Phys Conf Ser 341(1):012012. IOP Publishing

    Article  CAS  Google Scholar 

  25. Zheng XJ, Chow JCL (2017) Radiation dose enhancement in skin therapy with nanoparticle addition: a Monte Carlo study on kilovoltage photon and megavoltage electron beams. World J Radiol 9:63–71

    Article  Google Scholar 

  26. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    Article  CAS  Google Scholar 

  27. Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50(15):N163

    Article  Google Scholar 

  28. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5(2):136–142

    Article  CAS  Google Scholar 

  29. Berbeco RI, Ngwa W, Makrigiorgos GM (2011) Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy. Int J Radiat Oncol Biol Phys 81(1):270–276

    Article  Google Scholar 

  30. Herold M, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76(10):1357–1364

    Article  CAS  Google Scholar 

  31. Boudaı̈ffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458):1658–1660

    Article  Google Scholar 

  32. Zheng Y, Wagner JR, Sanche L (2006) DNA damage induced by low-energy electrons: electron transfer and diffraction. Phys Rev Lett 96(20):208101

    Article  CAS  Google Scholar 

  33. Barrios R, Skurski P, Simons J (2002) Mechanism for damage to DNA by low-energy electrons. J Phys Chem B 106(33):7991–7994

    Article  CAS  Google Scholar 

  34. Bird GA (1981) Monte-Carlo simulation in an engineering context. Prog Astronaut Aeronaut 74:239–255

    CAS  Google Scholar 

  35. Oran ES, Oh CK, Cybyk BZ (1998) Direct simulation Monte Carlo: recent advances and applications. Annu Rev Fluid Mech 30(1):403–441

    Article  Google Scholar 

  36. Chow JC, Leung MK, Van Dyk J (2009) Variations of lung density and geometry on inhomogeneity correction algorithms: a Monte Carlo dosimetric evaluation. Med Phys 36(8):3619–3630

    Article  Google Scholar 

  37. Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol 48(21):R107

    Article  CAS  Google Scholar 

  38. Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, G B, Behner F (2003) GEANT4 – a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303

    Article  CAS  Google Scholar 

  39. Battistoni G, Cerutti F, Fasso A, Ferrari A, Muraro S, Ranft J, Roesler S, Sala PR (2007) The FLUKA code: description and benchmarking. AIP Conf Proc 896(1):31–49. AIP

    Article  CAS  Google Scholar 

  40. Salvat F, Fernández-Varea JM, Sempau J (2006) PENELOPE-2006: a code system for Monte Carlo simulation of electron and photon transport. In: Workshop proceedings, vol. 4, no. 7. Nuclear Energy Agency, Organization for Economic Co-operation and Development, Barcelona

    Google Scholar 

  41. El Naqa I, Pater P, Seuntjens J (2012) Monte Carlo role in radiobiological modelling of radiotherapy outcomes. Phys Med Biol 57(11):R75

    Article  CAS  Google Scholar 

  42. Kawrakow I (2001) The EGSnrc code system, Monte Carlo simulation of electron and photon transport. NRCC report Pirs-701

    Google Scholar 

  43. Briesmeister JF (1986) MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2. Los Alamos National Lab, Los Alamos

    Google Scholar 

  44. Chow JC, Leung MK, Lindsay PE, Jaffray DA (2010) Dosimetric variation due to the photon beam energy in the small-animal irradiation: a Monte Carlo study. Med Phys 37(10):5322–5329

    Article  CAS  Google Scholar 

  45. Chow JC, Leung MK (2007) Treatment planning for a small animal using Monte Carlo simulation. Med Phys 34(12):4810–4817

    Article  Google Scholar 

  46. Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Guèye P, Mantero A, Mascialino B, Moretto P, Nieminen P (2010) The Geant4-DNA project. Int J Model Simul Sci Comput 1(02):157–178

    Article  Google Scholar 

  47. Li J, Li C, Qiu R, Yan C, Xie W, Wu Z, Zeng Z, Tung C (2015) DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC. Radiat Prot Dosim 166(1–4):38–43

    Article  CAS  Google Scholar 

  48. Montenegro M, Nahar SN, Pradhan AK, Huang K, Yu Y (2009) Monte Carlo simulations and atomic calculations for Auger processes in biomedical nanotheranostics. J Phys Chem A 113(45):12364–12369

    Article  CAS  Google Scholar 

  49. He X, Cheng F, Chen ZX (2016) The Lattice Kinetic Monte Carlo simulation of atomic diffusion and structural transition for gold. Sci Rep 6:33128

    Article  CAS  Google Scholar 

  50. Martinov MP, Thomson RM (2017) Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization. Med Phys 44(2):644–653

    Article  CAS  Google Scholar 

  51. Sakata D, Incerti S, Bordage MC, Lampe N, Okada S, Emfietzoglou D, Kyriakou I, Murakami K, Sasaki T, Tran H, Guatelli S (2016) An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit. J Appl Phys 120(24):244901

    Article  CAS  Google Scholar 

  52. Zabihzadeh M, Moshirian T, Ghorbani M, Knaup C, Behrooz MA (2018) A Monte Carlo study on dose enhancement by homogeneous and inhomogeneous distributions of gold nanoparticles in radiotherapy with low energy X-rays. J Biomed Phys Eng 8(1):13

    CAS  Google Scholar 

  53. Brivio D, Zygmanski P, Arnoldussen M, Hanlon J, Chell E, Sajo E, Makrigiorgos GM, Ngwa W (2015) Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): a Monte Carlo evaluation. Phys Med Biol 60(24):9203

    Article  CAS  Google Scholar 

  54. Chow JCL, Owrangi AM (2018) Mucosal dosimetry on unflattened photon beams: a Monte Carlo phantom study. Biomed Phys Eng Express 5:015007. https://doi.org/10.1088/2057-1976/aaeaaa

    Article  Google Scholar 

  55. Chow JC, Jiang R (2012) Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams. Phys Med Biol 57(12):3885

    Article  Google Scholar 

  56. Chow JC, Leung MK, Jaffray DA (2012) Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys Med Biol 57(11):3323

    Article  CAS  Google Scholar 

  57. Swinehart DF (1962) The Beer-Lambert law. J Chem Educ 39(7):333

    Article  CAS  Google Scholar 

  58. Georg D, Knöös T, McClean B (2011) Current status and future perspective of flattening filter free photon beams. Med Phys 38(3):1280–1293

    Article  Google Scholar 

  59. Martelli S, Chow JCL (2019) Dose enhancement in gold nanoparticle-enhanced Prostate VMAT: a Monte Carlo Phantom study. Med Phys 46:e490

    Google Scholar 

  60. Abdulle A, Chow JCL (2019) Contrast enhancement of MV portal imaging in nanoparticle-enhanced radiotherapy: a Monte Carlo Phantom study. Med Phys 46:e437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chun Lam Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chow, J.C.L. (2021). Recent Progress of Gold Nanomaterials in Cancer Therapy. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_2

Download citation

Publish with us

Policies and ethics