Skip to main content

Fault Detection and Isolation in Smart Grid Devices Using Probabilistic Boolean Networks

  • Chapter
  • First Online:
Computational Intelligence in Emerging Technologies for Engineering Applications

Abstract

The area of smart power systems needs continuous improvement of its efficiency and reliability, to produce power with optimal quality in a resilient, fault-tolerant grid. Components must be highly reliable, properly maintained, and the occurrence of faults and failures has to be studied. Guaranteeing correct system operation to performance specifications involving the aforementioned activities is an active research area that applies novel methodology to the detection, classification, and isolation of faults and failures, modeling and simulating processes using predictive algorithms, with innovative AI techniques. To maintain complex power grids, predictive analytics is necessary, as employing it to plan and perform activities lowers maintenance costs and minimizes downtime. Detecting multiple faults in dynamic systems is a difficult task. Biomimetic methodologies have been applied widely in engineering systems to solve many complex problems of this field. This contribution presents a complex-adaptive bioinformatic, self-organizing framework, probabilistic Boolean networks (PBN), as a means to understand the rules that govern dynamic power systems, and to model and analyze their behavior. They are used to describe Gene Regulatory Networks, but have been recently expanding to other fields. PBNs can model system behavior, and with model checking and formal logic, assure the process’ mathematical correct-ness. They enable designers, reliability and electrical engineers, and other experts to make intelligent decisions, since PBNs self-organize into attractors that model the system’s operating modes, permit design for reliability, create intelligent fault diagnosis systems, assist the reliability engineering design process, and use data to analyze a system’s behavior, achieving predictive maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta Diaz, C., Camps Echevarria, L., Prieto Moreno, A., Silva Neto, A.J., Llanes-Santiago, O.: A model-based fault diagnosis in a nonlinear bioreactor using an inverse problem approach. Chem. Eng. Res. Des. 114, 18–29 (2016)

    Article  Google Scholar 

  2. Arnosti, D.N., Ay, A.: Boolean modeling of gene regulatory networks: Driesch redux. Proc. Natl. Acad. Sci. 109(45), 18239–18240 (2012). https://doi.org/10.1073/pnas.1215732109

    Article  Google Scholar 

  3. Bachschmid, N., Pennacchi, P., Vania, A.: Identification of multiple faults in rotor systems. J. Sound Vib. 254, 327–366 (2002)

    Article  Google Scholar 

  4. Bane, V., Ravanmehr, V., Krishnan, A.R.: An information theoretic approach to constructing robust Boolean gene regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(1), 52–65 (2012)

    Article  Google Scholar 

  5. Bartenstein, T., Heaberlin, D., Huisman, D., Sliwinski, D.: Diagnosing combinational logic de-signs using the single location at-a-time (slat) paradigm. In: Proceedings of IEEE International Test Conference (ITC), pp. 287–296. IEEE, Piscataway (2001). https://doi.org/10.1109/TEST.2001.966644

  6. Camps Echevarría, L., Silva Neto, A.J., Llanes-Santiago, O., Hernández Fajardo, J.A., Jiménez Sánchez, D.: A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation. Eng. Appl. Artif. Intell. 28, 36–51 (2014)

    Article  Google Scholar 

  7. Camps Echevarría, L., Campos Velho, H.F., Becceneri, J.C., Silva Neto, A.J., Llanes-Santiago, O.: The fault diagnosis inverse problem with ant colony optimization and ant colony optimization with dispersion. Appl. Math. Comput. 227(15), 687–700 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Camps Echevarría, L., Llanes-Santiago, O., Fraga de Campos Velho, H., Silva Neto, A.J.: Fault Diagnosis Inverse Problems: Solution with Metaheuristics. Springer, New York (2019). https://doi.org/10.1007/978-3-319-89978-7

  9. Chaouiya, C., Ourrad, O., Lima, R.: Majority rules with random tie-breaking in Boolean gene regulatory networks. PLOS One 8(7), e69626 (2013). https://doi.org/10.1371/journal.pone.0069626

    Article  Google Scholar 

  10. Chen, H., Sun, J.: Stability and stabilisation of context-sensitive probabilistic Boolean networks. IET Control Theory Appl. 8(17), 2115–2121 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Jiang, H., Ching, W.: On construction of sparse probabilistic Boolean networks. East Asian J. Appl. Math. 2(1), 1–18 (2012). https://doi.org/10.4208/eajam.030511.060911a

    Article  MathSciNet  Google Scholar 

  12. Ching, W., Chen, X., Tsing, N.: Generating probabilistic Boolean networks from a prescribed transition probability matrix. IET Syst. Biol. 3, 453–464 (2009)

    Article  Google Scholar 

  13. Ching, W., Zhang, S., Jiao, Y., Akutsu, T., Tsing, N., Wong, A.: Optimal control policy for probabilistic Boolean networks with hard constraints. IET Syst. Biol. 3(2), 90–99 (2009)

    Article  Google Scholar 

  14. Didier, G., Remy, E.: Relations between gene regulatory networks and cell dynamics in Boolean models. Discret. Appl. Math. 160(15), 2147–2157 (2012). https://doi.org/10.1002/asjc.1722

    Article  MathSciNet  Google Scholar 

  15. Ebeling, C.E.: An Introduction to Reliability and Maintainability Engineering. McGraw-Hill, New York (1997)

    Google Scholar 

  16. Frank, P.M.: Analytical and qualitative model-based fault diagnosis - a survey and some new results. Eur. J. Control 2(1), 6–28 (1996)

    Article  Google Scholar 

  17. Gao, Y., Xu, P., Wang, X., Liu, W.: The complex fluctuations of probabilistic Boolean networks. BioSystems 114, 78–84 (2013). https://doi.org/10.1016/j.biosystems.2013.07.008

    Article  Google Scholar 

  18. Heising, C., Janssen, A.L.J., Lanz, W., Colombo, E., Dialynas, E.N.: Summary of CIGRE 13.06 working group world wide reliability data and maintenance cost data on high voltage circuit breakers above 63kv. In: Industry Applications Society Annual Meeting, vol. 3, pp. 2226–2234 (1994)

    Google Scholar 

  19. Irizarry-Rivera, A.A., Rodríguez-Martínez, M., Vélez, B., Vélez-Reyes, M., Ramirez-Orquin, A.R., O’neill-Carrillo, E., Cedeño, J.R.: Operation and Control of Electric Energy Processing Systems, chap. Intelligent Power Routers: Distributed Coordination for Electric Energy Processing Networks, pp. 47–85. Springer, Berlin (2010). https://doi.org/10.1002/9780470602782.ch3

  20. Isermann, R.: Process fault detection based on modelling and estimation methods - a survey. Automatica 20(4), 387–404 (1984). https://doi.org/10.1016/0005-1098(84)90098-0

  21. Isermann, R.: Model based fault detection and diagnosis. Status and applications. Ann. Rev. Control 29(1), 71–85 (2005)

    Article  Google Scholar 

  22. Isermann, R.: Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems, vol. 24. Springer, Berlin (2011). https://doi.org/10.1002/rnc.3142

    MATH  Google Scholar 

  23. Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969). https://doi.org/10.1038/224177a0

    Article  Google Scholar 

  24. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969). https://doi.org/10.1016/0022-5193(69)90015-0

  25. Kobayashi, K., Hiraishi, K.: Reachability analysis of probabilistic Boolean networks using model checking. In: Proceedings of SICE Annual Conference 2010, vol. 2014, pp. 1–8 (2010). https://doi.org/10.1155/2014/968341

  26. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0: verification of probabilistic real-time systems. In: G. Gopalakrishnan, S. Qadeer (eds.) Computer Aided Verification. Lecture Notes in Computer Science, vol. 6806, pp. 585–591. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  27. Liu, Q., Zeng, Q., Huang, J., Li, D.: Optimal intervention in semi-Markov-based asynchronous probabilistic Boolean networks. Complexity 2018(ID 8983670) (2018). https://doi.org/10.1155/2018/8983670

  28. Mendonça, L., Sousa, J., Sá da Costa, J.: An architecture for fault detection and isolation based on fuzzy methods. Expert Syst. Appl. 36, 1092–1104 (2009). https://doi.org/10.1016/j.eswa.2007.11.009

  29. Rivera Torres, P., Serrano Mercado, E.: Probabilistic Boolean network modeling as an aid for DFMEA in manufacturing systems. In: Proceedings of XVIII Scientific Convention in Engineering and Architecture (CCIA 2016). La Habana, Cuba (2016)

    Google Scholar 

  30. Rivera Torres, P., Serrano Mercado, E., Llanes-Santiago, O., Anido Rifón, L.: Modeling preventive maintenance of manufacturing processes with probabilistic Boolean networks with interventions. J. Intell. Manuf. 29(8), 1941–1952 (2018). https://doi.org/10.1007/s10845-017-1321-7

    Article  Google Scholar 

  31. Rivera Torres, P.J., Serrano Mercado, E., Anido, R.L.: Probabilistic Boolean network modeling of an industrial machine. J. Intell. Manuf. 29(4), 875–890 (2018). https://doi.org/10.1007/s10845-015-1143-4

    Article  Google Scholar 

  32. Rivera Torres, P.J., Serrano Mercado, E., Anido Rifón, L.: Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems. J. Intell. Manuf. 29(6), 1393–1413 (2018). https://doi.org/10.1007/s10845-015-1183-9

    Article  Google Scholar 

  33. Rodríguez Ramos, A., Domínguez Acosta, C., Rivera Torres, P.J., Serrano Mercado, E.I., Beauchamp Báez, G., Anido Rifón, L., Llanes-Santiago, O.: An approach to multiple fault diagnosis using fuzzy logic. J. Int. Manag. (2016). https://doi.org/10.1007/s10845-016- 1256-4

  34. Ruan, S., Zhou, Y., Feili, Y., Pattipati, K., Willett, P., Patterson-Hine, A.: Dynamic multiple-fault diagnosis with imperfect tests. IEEE Trans. Syst. Man Cybern. A: Syst. Humans 39, 1224–1236 (2009). https://doi.org/10.1109/tsmca.2009.2025572

    Article  Google Scholar 

  35. Shmulevich, I., Dougherty, E., Kim, S.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002). https://doi.org/10.1093/bioinformatics/18.2.261

    Article  Google Scholar 

  36. Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: Modeling and Control of Gene Regulatory Networks. SIAM, Philadelphia (2010). https://doi.org/10.1137/1.9780898717631

    Book  Google Scholar 

  37. Simani, S., Farsoni, S., Castaldi, P.: Wind turbine simulator fault diagnosis via fuzzy modelling and identification techniques. Sustainable Energy, Grids Netw. 1, 45–52 (2015). https://doi.org/10.1016/j.segan.2014.12.001

  38. Sobhani-Tehrani, E., Talebi, H., Khorasani, K.: Hybrid fault diagnosis of nonlinear systems using neural parameter estimators. Neural 50, 12–32 (2014). https://doi.org/10.1016/j.neunet.2013.10.005

    MATH  Google Scholar 

  39. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.: Recent development and biomedical applications of probabilistic Boolean networks. Cell Commun. Signal 11, 46 (2013). https://doi.org/10.1186/1478-811x-11-46

    Article  Google Scholar 

  40. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003). https://doi.org/10.1016/s0098-1354(02)00161-8

  41. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part II: qualitative model-based methods and search strategies. Comput. Chem. Eng. 27(3), 313–326 (2003). https://doi.org/10.1016/s0098-1354(02)00161-8

    Article  Google Scholar 

  42. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part III: process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003). https://doi.org/10.1016/s0098-1354(02)00161-8

    Article  Google Scholar 

  43. Vong, C., Wong, P., Wong, K.: Simultaneous-fault detection based on qualitative symptom descriptions for automotive engine diagnosis. Appl. Soft Comput. 22, 238–248 (2014). https://doi.org/10.1016/j.asoc.2014.05.014

    Article  Google Scholar 

  44. Wang, Z., Marek’Sadowska, M., Tsai, K., Rajski, J.: Analysis and methodology for multiple fault diagnosis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25, 558–575 (2006)

    Article  Google Scholar 

  45. Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems From Analytical to Soft Computing Approaches, vol. 354. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71116-2

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of University of Puerto Rico-Río Piedras, and Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Rivera-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera-Torres, P.J., Llanes Santiago, O. (2020). Fault Detection and Isolation in Smart Grid Devices Using Probabilistic Boolean Networks. In: Llanes Santiago, O., Cruz Corona, C., Silva Neto, A., Verdegay, J. (eds) Computational Intelligence in Emerging Technologies for Engineering Applications. Studies in Computational Intelligence, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-030-34409-2_10

Download citation

Publish with us

Policies and ethics