Skip to main content

Methods of Endoscopic Images Enhancement and Analysis in CDSS

  • Chapter
  • First Online:
Computer Vision in Advanced Control Systems-5

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 175))

Abstract

In this chapter, the methods of medical image enhancement and analysis in Clinical Decision Support Systems (CDSS) are discussed. Three general groups of tasks in CDSS development are described: medical images quality improvement, synthesis of images with increased diagnostic value, and medical images automatic analysis for differential diagnostics. For the first group, the review and analysis of noise reduction methods are presented. The new state-of-the art algorithm for virtual chromoendoscopy is proposed as an illustration of the second group. Automatic images analysis concerning to the third group is shown on example of two algorithms: for the polyps’ segmentation and bleeding detection. The algorithm for bleeding detection is based on two-stage strategy that gives the sensitivity and specificity scores of 0.85/0.97 for test set. The segmentation of polyps is based on deep learning technology and shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FICE atlas of spectral endoscopic images. https://en.fujifilmla.com/products/endoscopy/catalogs/pdf/index/fice-atlas-esp.pdf. Accessed 8 Aug 2019

  2. PENTAX medical I-scan mini-atlas for gastroenterology. https://www.i-scanimaging.com/fileadmin/user_upload/PENTAX_i-scan_Mini-Atlas.pdf. Accessed 8 Aug 2019

  3. Han, S., Fahed, J., Cave, D.R.: Suspected blood indicator to identify active gastrointestinal bleeding: a prospective validation. Gastroenterology Res. 11(2), 106–111 (2018)

    Article  Google Scholar 

  4. Liao, Z., Gao, R., Xu, C., Li, Z.S.: Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest. Endosc. 71(2), 280–286 (2010)

    Article  Google Scholar 

  5. Jung, Y.S., Kim, Y.H., Lee, D.H., Kim, J.H.: Active blood detection in a high resolution capsule endoscopy using color spectrum transformation. In: International Conference on BioMedical Engineering and Informatics, vol. 1, pp. 859–862 (2008)

    Google Scholar 

  6. Pan, G., Xu, F., Chen, J.: A novel algorithm for color similarity measurement and the application for bleeding detection in WCE. Int. J. Image, Graphics and Signal Process. 3(5), 1–7 (2011)

    Article  Google Scholar 

  7. Xiong, Y., Zhu, Y., Pang, Z., Ma, Y., Chen, D., Wang, X.: Bleeding detection in wireless capsule endoscopy based on MST clustering and SVM. IEEE Work. Signal Process. Syst. 35, 1–4 (2015)

    Google Scholar 

  8. Brzeski, A., Blokus, A., Cychnerski, J.: An overview of image analysis techniques in endoscopic bleeding detection. Int. J. Innov. Res. Comput. Commun. Eng. 1(6), 1350–1357 (2013)

    Google Scholar 

  9. Nishimura, J., Nishikawa, J., Nakamura, M., Goto, A., Hamabe, K., Hashimoto, S., Okamoto, T., Suenaga, M., Fujita, Y., Hamamoto, Y., Sakaida, I.: Efficacy of i-scan imaging for the detection and diagnosis of early gastric carcinomas. Gastroenterol. Res. Pract. 1–6 (2014)

    Article  Google Scholar 

  10. Münzer, B., Schoeffmann, K., Böszörmenyi, L.: Content-based processing and analysis of endoscopic images and videos: a survey. Multimed. Tools Appl. 77(1), 1323–1362 (2018)

    Article  Google Scholar 

  11. Sheraizin, S., Sheraizin, V.: Endoscopy imaging intelligent contrast improvement. In: 27th Annual International Conference on IEEE Engineering in Medicine and Biology Society, pp. 6551–6554 (2006)

    Google Scholar 

  12. Asari, K., Kumar, S., Radhakrishnan, D.: A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation. IEEE Trans. Medical Imaging 18(4), 345–354 (1999)

    Article  Google Scholar 

  13. Barreto, J., Swaminathan, R., Roquette, J.: Non-parametric distortion correction in endoscopic medical images. In: 2007 3DTV Conference, pp. 1–4 (2007)

    Google Scholar 

  14. Oulhaj, H., Amine A., Rziza M., Aboutajdine, D.: Noise reduction in medical images—comparison of noise removal algorithms. In: International Conference on Multimedia Computing and Systems, pp. 1–6 (2012)

    Google Scholar 

  15. Damiani, E., Dipanda, A., Yetongnon, K., Legrand, L., Schelkens, P., Chbeir, R. (eds.): Signal Processing for Image Enhancement and Multimedia Processing. Springer US, New York, PA (2007)

    Google Scholar 

  16. Imtiaz, M.S., Khan, T.H., Wahid, K.A.: New color image enhancement method for endoscopic images. In: 2nd International Conference on Advances in Electrical Engineering, pp. 263–266 (2013)

    Google Scholar 

  17. Miyake, Y., Kouzu, T., Takeuchi, S., Yamataka, S., Nakaguchi, T., Tsumura, N.: Development of new electronic endoscopes using the spectral images of an internal organ. In: 13th Color and Imaging Conference, pp. 261–263 (2005)

    Google Scholar 

  18. Imtiaz, M.S., Wahid, K.A.: Image enhancement and space-variant color reproduction method for endoscopic images using adaptive sigmoid function. In: Computational and Mathematical Methods in Medicine, pp. 607407.1–607407.19 (2015)

    Google Scholar 

  19. Xia, W., Chen, E., Peters, T.: Endoscopic image enhancement with noise suppression. Healthc. Technol. Lett. 5(5), 154–157 (2018)

    Article  Google Scholar 

  20. Imtiaz, M.S., Mohammed, S.K., Deeba, F., Wahid, K.A.: Tri-Scan: a three stage color enhancement tool for endoscopic images. J. Med. Syst. 41(6), 1–16 (2017)

    Article  Google Scholar 

  21. The Kvasir dataset. https://datasets.simula.no/kvasir/. Accessed 8 Aug 2019

  22. Akbari, M., Mohrekesh, M., Nasr-Esfahani, E., Soroushmehr, S.M.R., Karimi, N., Samavi, S., Najarian, K.: Polyp segmentation in colonoscopy images using fully convolutional network. arXiv:1802.00368, pp. 1–5 (2018)

  23. Khan, T.H., Mohammed, S.K., Imtiaz, M.S., Wahid, K.A.: Color reproduction and processing algorithm based on real-time mapping for endoscopic image. Springerplus 5(17), 1–16 (2016)

    Google Scholar 

  24. Siddharth, V., Bhateja, A.: Modified unsharp masking algorithm based on region segmentation for digital mammography. In: 4th International Conference on Electronics Computer Technology, pp. 63–67 (2012)

    Google Scholar 

  25. Wenchao, J., Qi, J.: An improved approximate K-nearest neighbors nonlocal-means denoising method with GPU acceleration. In: Yang, J., Fang, F., Sun, C. (eds.) Intelligent Science and Intelligent Data Engineering, LNCS, vol. 7751, pp. 425–432. Springer, PA (2012)

    Google Scholar 

  26. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  27. Vonikakis, V., Andreadis, I.: Multi-scale image contrast enhancement. In: 10th International Conference on Control, Automation, Robotics and Vision, pp. 17–20 (2008)

    Google Scholar 

  28. Tao, L., Asari, V.K.: Adaptive and integrated neighborhood dependent approach for nonlinear enhancement of color images. SPIE J. Electron. Imaging 14(4), 1–14 (2005)

    Google Scholar 

  29. Arigela, S., Asari, V.K.: A locally tuned nonlinear technique for color image enhancement. WSEAS Transl. Signal Process. 4(8), 514–519 (2008)

    Google Scholar 

  30. Obukhova, N., Motyko, A., Alexandr Pozdeev, A.: Review of noise reduction methods and estimation of their effectiveness for medical endoscopic images processing. In: 22nd Conference on FRUCT Association, pp. 204–210 (2018)

    Google Scholar 

  31. Obukhova, N., Motyko, A.: Image analysis in clinical decision support system. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-4, ISRL, vol. 136, pp. 261–298. Springer International Publishing, Switzerland (2018)

    Chapter  Google Scholar 

  32. Yadav, G., Maheshwari, S., Agarwal, A.: Contrast limited adaptive histogram equalization based enhancement for real time video system. In: 2014 International Conference on Advances in Computing, Communications and Informatics, pp. 2392–2397 (2014)

    Google Scholar 

  33. Pogorelov, K., Randel, K.R., Griwodz, C., Eskeland, S.L., de Lange, T., Johansen, D., Spampinato, C., Dang-Nguyen, D.-T., Lux, M., Schmidt, P.T., Riegler, M., Halvorsen, P.: Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: 8th ACM on Multimedia Systems Conference, pp. 164–169 (2017)

    Google Scholar 

  34. Shen, C.H., Chen, H.H.: Robust focus measure for low-contrast images, consumer electronics. In: 2006 Digest of Technical Papers International Conference on Consumer Electronics, pp. 69–70 (2006)

    Google Scholar 

  35. Manjunath, B.S., Salembier, P., Sikora, T. (eds.): Introduction to MPEG-7: Multimedia Content Description Interface. Wiley (2002)

    Google Scholar 

  36. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: 6th ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)

    Google Scholar 

  37. Chatzichristofis, S.A., Boutalis, Y.S., Lux, M.: Selection of the proper compact composite descriptor for improving content based image retrieval. In: Signal Processing, Pattern Recognition and Applications, pp. 134–140 (2009)

    Google Scholar 

  38. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst., Man, Cybern. 8(6), 460–473 (1978)

    Article  Google Scholar 

  39. Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image indexing using color correlograms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)

    Google Scholar 

  40. Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, New York, NY, USA (2012)

    Book  Google Scholar 

  41. CVC Colon DB. http://mv.cvc.uab.es/projects/colon-qa/cvccolondb. Accessed 8 Aug 2019

  42. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliia Obukhova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obukhova, N., Motyko, A., Pozdeev, A. (2020). Methods of Endoscopic Images Enhancement and Analysis in CDSS. In: Favorskaya, M., Jain, L. (eds) Computer Vision in Advanced Control Systems-5. Intelligent Systems Reference Library, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-030-33795-7_8

Download citation

Publish with us

Policies and ethics