Keywords

Kinematic/Kinetic Definitions

The present study considers materials which may undergo viscoelastoplastic damage under finite strains. The configurations and associated deformation gradients are depicted in Fig. 1, where F c is viscoplastic/creep, F d is damage, and F veis viscoelastic, with F = F eF dF c the multiplicative decomposition of the total deformation. τ is the Kirchhoff stress.

Fig. 1
figure 1

Body configurations κ R (reference), \( \overline{\kappa} \), \( \tilde{\kappa} \) and κ t (current time). X K, \( {\overline{x}}_{\Lambda} \), \( {\tilde{x}}_{\alpha } \), x j are coordinates

Denoting also F dc = F dF cfor convenience and with F e = F ve and E e = E ve (Voigt assumption), strain measures are given by, strain measures are given by

$$ \mathbf{E}=\frac{1}{2}\left({\mathbf{F}}^T\mathbf{F}-\mathbf{I}\right)={\mathbf{F}}^T\mathbf{eF},\kern1em \mathbf{e}=\frac{1}{2}\Big(\mathbf{I}-{\left({\mathbf{F}}^e{\mathbf{F}}^{dc}\right)}^{-T}{\left({\mathbf{F}}^e{\mathbf{F}}^{dc}\right)}^{-1} $$
$$ {\overline{\mathbf{E}}}^d=\frac{1}{2}\left({\mathbf{F}}^{dT}{\mathbf{F}}^d-\mathbf{I}\right),\kern1em {\overline{\mathbf{e}}}^c=\frac{1}{2}\left(\mathbf{I}-{\mathbf{F}}^{c-T}{\mathbf{F}}^{c-1}\right) $$
$$ {\tilde{\mathbf{E}}}^d={\mathbf{F}}^{d-T}{\overline{\mathbf{E}}}^d{\mathbf{F}}^{d-1},\kern1em {\tilde{\mathbf{e}}}^c={\mathbf{F}}^{d-T}{\overline{\mathbf{e}}}^c{\mathbf{F}}^{d-1},\kern1em {\tilde{\mathbf{E}}}^e=\frac{1}{2}\left({\mathbf{F}}^{eT}{\mathbf{F}}^e-\mathbf{I}\right), $$
$$ \tilde{\mathbf{E}}={\tilde{\mathbf{E}}}^e+{\tilde{\mathbf{E}}}^d+{\tilde{\mathbf{e}}}^c. $$

It can be noted that while \( {\tilde{\mathbf{E}}}^e={\tilde{\mathbf{E}}}^e\left[{\mathbf{F}}^e\right] \) and \( {\tilde{\mathbf{e}}}^d={\tilde{\mathbf{e}}}^d\left[{\mathbf{F}}^d\right] \), \( {\tilde{\mathbf{e}}}^c \) has the mixed dependency \( {\tilde{\mathbf{e}}}^c\left[{\mathbf{F}}^c,{\mathbf{F}}^d\right] \), but \( {\tilde{\mathbf{e}}}^c=0 \) when F c = 0 and \( {\tilde{\mathbf{e}}}^c \) pushes/pulls properly with the deformation.

The Lie derivatives employed for tensors associated with \( \tilde{\kappa} \) are material derivatives of these tensors when pulled back to the reference configuration κ R, then pushed back to \( \tilde{\kappa} \), as illustrated by that of \( \tilde{\mathbf{E}} \):

$$ \overset{\varDelta }{\tilde{\mathbf{E}}}={\mathbf{\mathcal{L}}}^{dc}\tilde{\mathbf{E}}={\mathbf{F}}^{dc-T}\overset{\cdotp }{\overline{\left({\mathbf{F}}^{dc T}\tilde{\mathbf{E}}{\mathbf{F}}^{dc}\right)}}{\mathbf{F}}^{dc-1}={\mathbf{F}}^{dc-T}\dot{\mathbf{E}}{\mathbf{F}}^{dc-1}={\mathbf{F}}^{eT}{\mathbf{d}\mathbf{F}}^e=\tilde{\mathbf{d}}=\dot{\tilde{\mathbf{E}}}+{\left({\tilde{\mathbf{l}}}^{dc}\right)}^T\tilde{\mathbf{E}}+{\tilde{\mathbf{E}}\tilde{\mathbf{l}}}^{dc} $$
$$ \mathbf{d}=\frac{1}{2}\left({\left(\dot{\mathbf{F}}{\mathbf{F}}^{-1}\right)}^T+\dot{\mathbf{F}}{\mathbf{F}}^{-1}\right),\kern1em {\tilde{\mathbf{l}}}^{dc}={\dot{\mathbf{F}}}^{dc}{\mathbf{F}}^{dc-1}. $$

Stress measures and stress power combinations are given by:

$$ \mathbf{S}={\mathbf{F}}^{-1}{\boldsymbol\uptau \mathbf{F}}^{-T}={\mathbf{F}}^{dc-1}\tilde{\mathbf{S}}{\mathbf{F}}^{dc-T}={\mathbf{F}}^{c-1}\overline{\mathbf{S}}{\mathbf{F}}^{c-T}\kern1em \tilde{\mathbf{S}}={\mathbf{F}}^{e-1}{\boldsymbol\uptau \mathbf{F}}^{e-T}\kern1em \overline{\mathbf{S}}={\mathbf{F}}^{ed-1}{\boldsymbol\uptau \mathbf{F}}^{ed-T} $$
$$ \tilde{\mathbf{S}}\cdot \overset{\varDelta }{\tilde{\mathbf{E}}}=\tilde{\mathbf{S}}\cdot \tilde{\mathbf{d}}=\boldsymbol\uptau \cdot \mathbf{d}=\mathbf{S}\cdot \dot{\mathbf{E}} $$

with

$$ \mathrm{tr}\left(\mathbf{TS}\right)={\mathbf{T}}_{ij}{\mathbf{S}}_{ji}=\mathbf{T}\cdot \mathbf{S}. $$

A similar kinematic/kinetic framework with one intermediate configuration is detailed by Stumpf [1].

Thermodynamics/Constitutive Development

The reduced energy dissipation equation, assuming a split of the entropy production into mechanical and thermal components, is given by (ψ, ρ o, η, θ, q 0 are respectively Helmholtz energy, reference density, specific entropy, temperature, and heat flux referred to the reference configuration):

$$ -{\rho}_0\dot{\psi}-{\rho}_0\eta \dot{\theta}+\tilde{\mathbf{S}}\cdot \overset{\triangle }{\tilde{\mathbf{E}}}-{\mathbf{q}}_0\cdot \frac{\nabla_0\theta }{\theta }={\rho}_0\theta \zeta \equiv \xi $$
$$ -{\rho}_0\dot{\psi}+\tilde{\mathbf{S}}\cdot \overset{\triangle }{\tilde{\mathbf{E}}}={\xi}^{mech},\kern1em -{\rho}_0\eta \dot{\theta}-{\mathbf{q}}_0\cdot \frac{\nabla_0\theta }{\theta }={\xi}^{thermal} $$

Assuming \( \psi =\tilde{\psi}\left[{\tilde{\mathbf{E}}}^{ve},{\tilde{\mathbf{e}}}^d,{\tilde{\mathbf{e}}}^c\right] \) with the chain rule for \( \overset{\triangle }{\psi } \) it follows:

$$ \mathrm{tr}\left[\tilde{\mathbf{S}}\left(\overset{\triangle \kern0.5em }{{\tilde{\mathbf{E}}}^{ve}}+\overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d}+\overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^c}\right)\right]-{\rho}_0\overset{\triangle }{\psi }={\xi}^{mech}\ge 0 $$
$$ \left(\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^e\right)\cdot \overset{\triangle \kern0.5em }{{\tilde{\mathbf{E}}}^{ve}}+\left(\tilde{\mathbf{S}}+\tilde{\mathbf{Y}}\right)\cdot \overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d}+\left(\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^{c\ast}\right)\cdot \overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^c}={\xi}^{mech}\ge 0 $$
$$ {\tilde{\mathbf{S}}}^e={\rho}_0{\left(\frac{\partial \tilde{\psi}}{\partial {\tilde{\mathbf{E}}}^{ve}}\right)}^T\kern1em \tilde{\mathbf{Y}}=-{\rho}_0{\left(\frac{\partial \tilde{\psi}}{\partial {\tilde{\mathbf{e}}}^d}\right)}^T\kern1em {\tilde{\mathbf{S}}}^{c\ast }={\rho}_0{\left(\frac{\partial \tilde{\psi}}{\partial {\tilde{\mathbf{e}}}^c}\right)}^T $$

Based on the dissipation relation, the following are adopted as inelastic activation criteria:

$$ \left(\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^e\right)\overset{\triangle \kern0.5em }{\cdot {\tilde{\mathbf{E}}}^{ve}}={\xi}^{ve}\ge 0,\kern1em \left(\tilde{\mathbf{S}}+\tilde{\mathbf{Y}}\right)\cdot \overset{\triangle \kern0.5em }{{\overline{\mathbf{e}}}^d}={\xi}^d\ge 0,\kern1em \left(\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^{c\ast}\right)\cdot \overset{\triangle \kern0.5em }{{\overline{\mathbf{e}}}^c}={\xi}^c\ge 0 $$
$$ {\xi}^{mech}={\xi}^{ve}+{\xi}^d+{\xi}^c $$

The second activation criterion is noteworthy. \( {\tilde{\mathbf{e}}}^d \) is a strain-based measure of damage; \( \tilde{\mathbf{Y}} \) is thus called here the damage strain energy release rate, and appropriately reflects the loss of stored energy occurring with damage. The combination of \( \tilde{\mathbf{Y}} \)with the stress \( \tilde{\mathbf{S}} \) is thus thermodynamically implied to drive damage in accordance with the dissipation eq.

A Lagrange function is defined for application of assumed maximization of the rate of dissipation (cf. [2, 3]), where \( s=\left\{{\tilde{\mathbf{E}}}^{ve},{\tilde{\mathbf{e}}}^d,{\tilde{\mathbf{e}}}^c\right\} \)is the state and λ is a Lagrange multiplier constraining the assumed dissipation function \( {\tilde{\xi}}^{mech}\left[\overset{\triangle \kern0.75em }{{\tilde{\mathbf{E}}}^{ve}},\overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d},\overset{\triangle \kern1.75em }{{\tilde{\mathbf{e}}}^c;s}\right]={\tilde{\xi}}^{ve}\left[\overset{\triangle \kern0.5em }{{\tilde{\mathbf{E}}}^{ve}};s\right]+{\tilde{\xi}}^d\left[\overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d};s\right]+{\tilde{\xi}}^c\left[\overset{\triangle \kern1.75em }{{\tilde{\mathbf{e}}}^c;s}\right] \) to obey the derived dissipation equation:

$$ \Phi ={\tilde{\xi}}^{mech}\left[\overset{\triangle \kern0.75em }{{\tilde{\mathbf{E}}}^{ve}},\overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d},\overset{\triangle \kern1.75em }{{\tilde{\mathbf{e}}}^c;s}\right]-\lambda \left\{\left(\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^e\right)\cdot \overset{\triangle \kern0.75em }{{\tilde{\mathbf{E}}}^{ve}}+\left(\tilde{\mathbf{S}}+\tilde{\mathbf{Y}}\right)\cdot \overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d}+\left(\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^{c\ast}\right)\cdot \overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^c}-{\tilde{\xi}}^{mech}\left[\overset{\triangle \kern0.75em }{{\tilde{\mathbf{E}}}^{ve}},\overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d},\overset{\triangle \kern1.75em }{{\tilde{\mathbf{e}}}^c;s}\right]\right\} $$

Maximization of Φ leads to

$$ \mu \frac{\partial {\tilde{\xi}}^{ve}}{\partial \overset{\triangle \kern0.5em }{{\tilde{\mathbf{E}}}^{ve}}}=\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^e,\kern1em \mu \frac{\partial {\tilde{\xi}}^d}{\partial \overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^d}}=\tilde{\mathbf{S}}+\tilde{\mathbf{Y}},\kern1em \mu \frac{\partial {\tilde{\xi}}^c}{\partial \overset{\triangle \kern0.5em }{{\tilde{\mathbf{e}}}^c}}=\tilde{\mathbf{S}}-{\tilde{\mathbf{S}}}^{c\ast },\kern1em \mu =\frac{1+\lambda }{\lambda } $$

Assuming simple quadratic dissipation relations for each of \( {\tilde{\xi}}^{ve},{\tilde{\xi}}^d,{\tilde{\xi}}^c \) leads to the following integrable relations:

E ̃ ve = N v 1 s S ̃ S ̃ e s e ̃ d = H d 1 s S ̃ + Y ̃ s e ̃ c = K c 1 s S ̃ S ̃ c s

Conclusion

The described model corresponds to a Voigt viscoelastic element in combination with damage and viscoplastic elements. The stress employed in the above relations is obtained via an effective stress continuum damage argument, e.g [4]. A fourth-order damage measure connected to the damage strain \( {\tilde{\mathbf{e}}}^d \) permits memory of the accrued damage state while \( {\tilde{\mathbf{e}}}^d \)fluctuates with deformation. Work continues on further defining the detailed constitutive relations and computational implementations.