Skip to main content

Effects of Salinity and Arbuscular Mycorrhizal Fungi (AMF) on Root Growth Development and Productivity of Chia (Salvia hispanica L.), a Promising Salt-Tolerant Crop, Under Mediterranean Conditions

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Chia is an ancient crop from Central America which has been recently rediscovered as a source of plant omega-3 fatty acids and nutraceuticals. Field experiments were conducted to determine the effects of water salinity and arbuscular mycorrhizal fungi (AMF) inoculation on root growth and productivity of chia under Mediterranean conditions. The experiments conducted at two sites (Aliartos and Agrinio, Greece) during 2016 were laid out in a split-plot design with three replicates and three main plots (irrigation water salinity treatments: 0.5, 10, and 20 mM NaCl) and two sub-plots (AMF-inoculated and AMF-non-inoculated plants). Mean weight diameter of soil aggregates, total porosity, organic matter, and total nitrogen content of the soil decreased with the increase of NaCl concentration in irrigation water. Root length density and root mass density were decreased with the increasing rates of applied NaCl in drip irrigation water. The total dry weight and seed yield were also negatively affected by water salinity, and the lowest values (3647–3876 and 679–805 kg ha−1 for biomass and seed yield, respectively) were found in the plants irrigated with irrigation water containing 20 mM NaCl. AMF colonization in chia plants grown in saline environment was shown to increase biomass yield, seed yield, and nitrogen uptake. Despite the negative effects of irrigation water salinity treatments, plants were able to complete their life cycles under salt-stressed conditions under all treatments. The unique nutritive quality of chia and its outstanding tolerance to chloride salinity make this species a promising halophyte candidate for saline agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Fattah, G. M., Asrar, A. A., Al-Amri, S. M., & Abdel-Salam, E. M. (2014). Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica, 52, 581–588.

    Article  CAS  Google Scholar 

  • Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109, 1–7.

    Article  Google Scholar 

  • Amato, M., Caruso, M. C., Guzzo, F., Commisso, M., Bochicchio, R., Galgano, F., Labella, R., & Favati, F. (2015). Seed quality, oxidative stability and leaf metabolites of chia (Salvia hispanica L.) grown in southern Italy under different nitrogen fertilization. Journal of the Science of Food and Agriculture, 241(5), 615–625.

    CAS  Google Scholar 

  • Arienzo, M., Christen, E. W., Quayle, W., & Kumar, A. (2009). A review of the fate of potassium in the soil-plant system after land application of wastewaters. Journal of Hazardous Materials, 164, 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M., Shahzad, S. M., Imtiaz, M., & Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants – Focusing on the activities of nitrogen metabolizing enzymes: A review. Journal of Plant Nutrition, 41(8), 1065–1108.

    Article  CAS  Google Scholar 

  • Ayerza, R., & Coates, W. (2009). Influence of environment on growing period and yield, protein, oil and linolenic content of three chia (Salvia hispanica L.) selections. Industrial Crops and Products, 30, 321–324.

    Article  CAS  Google Scholar 

  • Bañón, S., Miralles, J., Ochoa, J., & Sánchez-Blanco, M. J. (2012). The effect of salinity and high boron on growth, photosynthetic activity and mineral contents of two ornamental shrubs. Horticultural Science (Prague), 39, 188–194.

    Article  Google Scholar 

  • Barin, M., Aliasgharzad, N., Olsson, P. A., & Rasouli-Sadaghiani, M. (2015). Salinity-induced differences in soil microbial communities around the hypersaline Lake Urmia. Soil Research, 53, 494–504.

    Article  CAS  Google Scholar 

  • Baumann, K., & Marschner, P. (2011). Effects of salinity on microbial tolerance to drying and rewetting. Biogeochemistry, 112, 71–80.

    Article  CAS  Google Scholar 

  • Bheemareddy, V. S., & Lakshman, H. C. (2011). Effect of salt and acid stress on Triticum aestivum inoculated with Glomus fasciculatum. Journal of Animal Plant Science, 7, 945–956.

    Google Scholar 

  • Bhutta, W. M., Ibrahim, M., Akhtar, J., Shahzad, A., Haq, T., & Haq, M. A. (2004). Comparative performance of sunflower (Helianthus annuus L.) genotypes against NaCl salinity. Caderno de Pesquisa Sér Bio, 16(1), 7–18.

    Google Scholar 

  • Bilalis, D., Tabaxi, I., Zervas, G., Tsiplakou, E., Travlos, I. S., Kakabouki, I., & Tsioros, S. (2016). Chia (Salvia hispanica) fodder yield and quality as affected by sowing rates and organic fertilization. Communications in Soil Science and Plant Analysis, 47(15), 1764–1770.

    CAS  Google Scholar 

  • Bochicchio, R., Philips, T. D., Lovelli, S., Labella, R., Galgano, F., Di Marisco, A., Perniola, M., & Amato, M. (2015). Innovative crop productions for healthy food: The case of Chia (Salvia hispanica L.). In A. Vastola (Ed.), The sustainability of agro-food and natural resource systems in the Mediterranean Basin (pp. 29–45). Cham: Springer.

    Google Scholar 

  • Borde, M., Dudhane, M., & Kulkarni, M. (2017). Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In A. Varma, R. Prasad, & N. Tuteja (Eds.), Mycorrhiza-eco-physiology, secondary metabolites. Nanomaterials (pp. 71–86). Cham: Springer.

    Chapter  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Campanelli, A., Ruta, C., De Mastro, G., & Morone-Fortunato, I. (2013). The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis, 59, 65–76.

    Article  Google Scholar 

  • Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.

    Article  CAS  PubMed  Google Scholar 

  • Cook, F. J., Jayawardane, N. S., Rassam, D. W., Christen, E. W., Hornbuckle, J. W., Stirzaker, R. J., Bristow, K. L., & Biswas, K. T. (2006). The state of measuring, diagnosing, amelioration and managing solute effects in irrigated systems. Australia: CRC for irrigation futures, Technical report no. 04/06.

    Google Scholar 

  • Craine, J. M. (2005). Reconciling plant strategy theories of Grime and Tilman. Journal of Ecology, 93(6), 1041–1052.

    Article  Google Scholar 

  • Dadkhah, A. R., & Grrifiths, H. (2006). The effect of salinity on growth, inorganic ions and dry matter partitioning in sugar beet cultivars. Journal of Agricultural Science and Technology, 8, 199–210.

    Google Scholar 

  • Eker, S., Cömertpay, G., Konuşkan, Ö., Ülger, A. C., Öztürk, L., & Çakmak, I. (2006). Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turkish Journal of Agriculture and Forestry, 30(5), 365–373.

    CAS  Google Scholar 

  • Erktan, A., Cécillon, L., Graf, F., Roumet, C., Legout, C., & Rey, F. (2016). Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant and Soil, 398, 121–137.

    Article  CAS  Google Scholar 

  • Evelin, H., Giri, B., & Kapoor, R. (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 22, 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Flint, A., & Flint, L. E. (2002). Particle density. In W. A Dick (Ed), Laboratory methods, Methods of soil analysis, Part 4 – Physical methods (SSA book series: 5, pp. 229–240). Madison: SSSA.

    Google Scholar 

  • Food and Agriculture Organization [FAO]. (2015). Status of the world’s soil resources (SWSR) – main report, United Nations. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. The New Phytologist, 84, 489–500.

    Article  Google Scholar 

  • Hameed, A., Egamberdieva, D., Abd Allah, E. F., Hashem, A., Kumar, A., & Ahmad, P. (2014). Salinity stress and arbuscular mycorrhizal symbiosis in plants. In M. Miransari (Ed.), Use of microbes for the alleviation of soil stresses (Vol. 1, pp. 139–159). New York: Springer.

    Chapter  Google Scholar 

  • Hoff, T., Stummann, B. M., & Henningsen, K. W. (1992). Structure, function and regulation of nitrate reductase in higher plants. Physiologia Plantarum, 84, 616–624.

    Article  CAS  Google Scholar 

  • Jacobsen, S. J., Sørensen, M., Pedersen, S. M., & Weiner, J. (2013). Feeding the world: genetically modified crops versus agricultural biodiversity. Agronomy for Sustainable Development, 33, 651–662.

    Article  Google Scholar 

  • Jamil, M., Rehman, S. U., Lee, K. J., Kim, J. M., & Rha, H. K. (2007). Salinity reduced growth ps2 photochemistry and chlorophyll content in radish. Scientia Agricola (Piracicaba, Braz), 64(2), 111–118.

    Article  CAS  Google Scholar 

  • Juniper, S., & Abbott, L. K. (2006). Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Kakabouki, I. P., Roussis, I., Hela, D., Papastylianou, P., Folina, A., & Bilalis, D. (2019). Root growth dynamics and productivity of quinoa (Chenopodium quinoa Willd.) in response to fertilization and soil tillage. Folia Horticulturae, 31(2), 285–299.

    Article  Google Scholar 

  • Kapoor, K., & Srivastana, A. (2010). Assessment of salinity tolerance of Vigna mungo var. Pu-19 using ex vitro and in vitro methods. Asian Journal of Biotechnology, 2(2), 73–85.

    Google Scholar 

  • Khan, G. S., & Afzal, T. (1990). Hydraulic characteristics of some important soil levels of Pakistan. In Soil physics-Application under stress environment (pp. 224–237). Islamabad: Pakistan Agricultural Research Council.

    Google Scholar 

  • Kokko, E. G., Volkmar, K. M., Gowen, B., & Entz, T. (1993). Determination of total root surface area in soil core samples by image analysis. Soil and Tillage Research, 26, 33–43.

    Google Scholar 

  • Kontopoulou, C. K., Bilalis, D., Pappa, V. A., Rees, R. M., & Savvas, D. (2015). Impact of organic farming practices and salinity on yield and greenhouse gas emissions from a common bean crop grown in a Mediterranean environment. Scientia Horticulturae, 183, 48–57.

    Article  CAS  Google Scholar 

  • Laura, R. D. (1977). Salinity and nitrogen mineralization in soil. Soil Biology and Biochemistry, 9, 333–336.

    Article  CAS  Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444, 139–158.

    Article  CAS  PubMed  Google Scholar 

  • Marschner, H., & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89–102.

    Article  CAS  Google Scholar 

  • Martin, S. L., Mooney, S. J., Dickinson, M. J., & West, H. M. (2012). The effects of simultaneous root colonization by three Glomus species on soil pore characteristics. Soil Biology and Biochemistry, 49, 167–173.

    Article  CAS  Google Scholar 

  • Mathur, N., Singh, J., Bohra, S., Bohra, A., & Vyas, A. (2006). Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. American Journal of Plant Physiology, 1(2), 210–213.

    Article  Google Scholar 

  • Milleret, R., Bayon, R. C. L., Lamy, F., Gobat, J. M., & Boivin, P. (2009). Impact of roots, mycorrhizas and earthworms on soil physical properties assessed by shrinkage analysis. Journal of Hydrology, 373, 499–507.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Norlaily, M. A., Swee, K. Y., Wan, Y. H., Boon, K., Sheau, W. T., & Soon, G. T. (2012). The promising future of chia, Salvia Hispanica L. Journal of Biomedicine & Biotechnology, 2012(171956), 1–9.

    Google Scholar 

  • Peinemann, N., Guggenberger, G., & Zech, W. (2005). Soil organic matter and its lignin component in surface horizons of salt- affected soils of the Argentinian Pampa. Catena, 60, 113–128.

    Article  CAS  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 157–161.

    Article  Google Scholar 

  • Quirk, J. P., & Schofield, R. K. (1955). The effect of electrolyte concentration on soil permeability. Journal of Soil Science, 6(2), 163–178.

    Article  CAS  Google Scholar 

  • Rath, K. M., & Rousk, J. (2015). Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology and Biochemistry, 81, 108–123.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano, J. M., Azcón, R., & Gomez, M. (1996). Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.

    Article  CAS  Google Scholar 

  • Shalhevet, J., Huck, M. G., & Schroeder, B. P. (1995). Root and shoot growth responses to salinity in Maize and Soybean. Agronomy Journal, 87, 512–516.

    Article  Google Scholar 

  • Sheng, M., Tang, M., Zhang, F., & Huang, Y. (2011). Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza, 21, 423–430.

    Article  PubMed  Google Scholar 

  • Talaat, N. B., & Shawky, B. T. (2011). Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. Journal of Plant Nutrition and Soil Science, 174, 283–291.

    Article  CAS  Google Scholar 

  • US Department of Agriculture. (2004). Seeds, chia seeds, dried. Nutrient Database for Standard Reference, Release 27: Basic report: 12006.

    Google Scholar 

  • Valdivia-López, M. Á., & Tecante, A. (2015). Chia (Salvia hispanica): A review of native Mexican seed and its nutritional and functional properties. Advances in Food and Nutrition Research, 75, 53–75.

    Article  PubMed  CAS  Google Scholar 

  • Van Bavel, C. M. (1949). MWD of soil aggregates as a statistical index of aggregation. Soil Science Society of America Proceedings, 14, 20–23.

    Article  Google Scholar 

  • Verbruggen, E., Veresoglou, S. D., Anderson, I. C., Caruso, T., Hammer, E. C., Kohler, J., & Rillig, M. C. (2013). Arbuscular mycorrhizal fungi – Short-term liability but long-term benefits for soil carbon storage? The New Phytologist, 197, 366–368.

    Article  PubMed  Google Scholar 

  • Volkamar, K. M., Hu, Y., & Steppuhn, H. (1998). Physiological responses of plants to salinity: A review. Canadian Journal of Plant Science, 78, 19–27.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtiareff methods for determining soil organic matter and a proposed modification of chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, M., Li, Y., Wu, A., & Huang, J. (2018). Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One, 13(4), e0196408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, Q. S., Zou, Y. N., & Abd Allah, E. F. (2014). Mycorrhizal association and ROS in plants. In P. Ahmad (Ed.), Oxidative damage to plants (pp. 453–475). New York: Elsevier.

    Chapter  Google Scholar 

  • Yunwei, D., Tingting, J., & Shuanglin, D. (2007). Stress responses to rapid temperature changes of the juvenile sea cucumber (Apostichopus japonicus Selenka). Journal Ocean University of China, 6(3), 275–280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bilalis, D.J., Roussis, I., Kakabouki, I., Karydogianni, S. (2020). Effects of Salinity and Arbuscular Mycorrhizal Fungi (AMF) on Root Growth Development and Productivity of Chia (Salvia hispanica L.), a Promising Salt-Tolerant Crop, Under Mediterranean Conditions. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_117-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_117-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics