Skip to main content

Functional Properties of Virus-Encoded and Virus-Regulated G Protein-Coupled Receptors

  • Protocol
  • First Online:
G Protein-Coupled Receptor Genetics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

During coevolution with their hosts, viruses have developed several survival strategies that involve exploitation of 7 transmembrane spanning (7TM) G protein-coupled receptors (GPCRs). These include virus-encoded GPCRs and ligands and viral regulation of endogenous GPCRs. Many functional properties have been ascribed to virus-exploited GPCRs, and although the list of putative functions is steadily growing, the presence and/or function of virus-associated GPCRs is still poorly understood. This review focuses on three well-described functional properties of virus-associated GPCRs: (1) the immune evasion strategies, exemplified by γ1-herpesvirus-encoded BILF1 receptors, the human cytomegalovirus (HCMV)-encoded US28 receptor, and the Epstein-Barr virus (EBV)-regulated EBI2 (or GPR183); (2) the tissue tropism and virus-dissemination properties, exemplified by the murine CMV-encoded M33; and (3) the tumorigenic properties, exemplified by the human herpesvirus 8 (HHV8)-encoded ORF74, HCMV-US28, and EBV-BILF1. Given the general high “druggability” of GPCRs and the recent progress in understanding the immune evasive functions of the virus-exploited GPCRs in particular, we put special emphasis on the progress of novel antiviral therapeutic tools targeting these virus-associated GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sodhi A, Montaner S, Gutkind JS (2004) Viral hijacking of G-protein-coupled-receptor signaling networks. Nat Rev Mol Cell Biol 5:998–1012

    Article  CAS  PubMed  Google Scholar 

  2. Davis-Poynter NJ, Farrell HE (1996) Masters of deception: a review of herpesvirus immune evasion strategies. Immunol Cell Biol 74: 513–522

    Article  CAS  PubMed  Google Scholar 

  3. Rosenkilde MM, Kledal TN (2006) Targeting herpesvirus reliance of the chemokine system. Curr Drug Targets 7:103–118

    Article  CAS  PubMed  Google Scholar 

  4. Vassilatis DK, Hohmann JG, Zeng H et al (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA 100:4903–4908

    Article  CAS  PubMed  Google Scholar 

  5. Lee BJ, Koszinowski UH, Sarawar SR et al (2003) A gammaherpesvirus G protein-coupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. J Immunol 170:243–251

    CAS  PubMed  Google Scholar 

  6. Costanzi S (2013) Modeling G protein-coupled receptors and their interactions with ligands. Curr Opin Struct Biol 23:185–190

    Article  CAS  PubMed  Google Scholar 

  7. Rajagopal S, Kim J, Ahn S et al (2010) Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci USA 107:628–632

    Article  PubMed  Google Scholar 

  8. Young LS, Rickinson AB (2004) Epstein-Barr virus: 40 years on. Nat Rev Cancer 4: 757–768

    Article  CAS  PubMed  Google Scholar 

  9. Kutok JL, Wang F (2006) Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Phytopathol 1:375–404

    Article  CAS  Google Scholar 

  10. Griffin BD, Gram AM, Mulder A et al (2013) EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. J Immunol 110:24–62

    Google Scholar 

  11. Paulsen SJ, Rosenkilde MM, Eugen-Olsen J et al (2005) Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 79:536–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Beisser PS, Verzijl D, Gruijthuijsen YK et al (2005) The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol 79:441–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zuo J, Quinn LL, Tamblyn J et al (2011) The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J Virol 85:1604–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nijmeijer S, Leurs R, Smit MJ et al (2010) The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning. J Biol Chem 285:29632–29641

    Article  CAS  PubMed  Google Scholar 

  15. Zuo J, Currin A, Griffin BD et al (2009) The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 5:e1000255

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Zuo J, Thomas W, Van Leeuwen D et al (2008) The DNase of gammaherpesviruses impairs recognition by virus-specific CD8+ T cells through an additional host shutoff function. J Virol 82:2385–2393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rosenkilde MM, Smit MJ, Waldhoer M (2008) Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 153:S154–S166

    Article  CAS  PubMed  Google Scholar 

  18. Lyngaa R, Nørregaard K, Kristensen M et al (2010) Cell transformation mediated by the Epstein-Barr virus G protein-coupled receptor BILF1 is dependent on constitutive signaling. Oncogene 29:4388–4398

    Article  CAS  PubMed  Google Scholar 

  19. Smith C, Khanna R (2010) Herpesvirus vaccines: challenges and future prospects. Hum Vaccin 6:1062–1067

    Article  CAS  PubMed  Google Scholar 

  20. Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513

    Article  CAS  PubMed  Google Scholar 

  21. Ressing ME, Horst D, Griffin BD et al (2008) Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol 18:397–408

    Article  CAS  PubMed  Google Scholar 

  22. Noriega V, Redmann V, Gardner T et al (2012) Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 54:140–151

    Article  CAS  PubMed  Google Scholar 

  23. Jochum S, Moosmann A, Lang S et al (2012) The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog 8:e1002704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rowe M, Glaunsinger B, Van Leeuwen D et al (2007) Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci USA 104: 3366–3371

    Article  CAS  PubMed  Google Scholar 

  25. Hislop AD, Ressing ME, Van Leeuwen D et al (2007) A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. J Exp Med 204:1863–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Barel MT, Ressing M, Pizzato N et al (2003) Human cytomegalovirus-encoded US2 differentially affects surface expression of MHC class I locus products and targets membrane-bound, but not soluble HLA-G1 for degradation. J Immunol 171:6757–6765

    CAS  PubMed  Google Scholar 

  27. Rivailler P, Cho Y-g, Wang F (2002) Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ehlers B, Spiess K, Leendertz F et al (2010) Lymphocryptovirus phylogeny and the origins of Epstein-Barr virus. J Gen Virol 91:630–642

    Article  CAS  PubMed  Google Scholar 

  29. Cho Y, Ramer J, Rivailler P et al (2001) An Epstein-Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci USA 98:1224–1229

    Article  CAS  PubMed  Google Scholar 

  30. Schmidtko J, Wang R, Wu C-L et al (2002) Posttransplant lymphoproliferative disorder associated with an Epstein-Barr-related virus in cynomolgus monkeys. Transplantation 73:1431–1439

    Article  PubMed  Google Scholar 

  31. Fogg MH, Kaur A, Cho Y-G, Wang F (2005) The CD8+ T-cell response to an Epstein-Barr virus-related gammaherpesvirus infecting rhesus macaques provides evidence for immune evasion by the EBNA-1 homologue. J Virol 79:12681–12691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Craig FE, Johnson LR, Harvey SAK et al (2007) Gene expression profiling of Epstein-Barr virus-positive and -negative monomorphic B-cell posttransplant lymphoproliferative disorders. Diagn Mol Pathol 16:158–168

    Article  CAS  PubMed  Google Scholar 

  33. Birkenbach M, Josefsen K, Yalamanchili R et al (1993) Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J Virol 67:2209–2220

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Yoshida R, Imai T, Hieshima K et al (1997) Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J Biol Chem 272:13803–13809

    Article  CAS  PubMed  Google Scholar 

  35. Rosenkilde MM, Benned-Jensen T, Andersen H et al (2006) Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity. J Biol Chem 281:13199–13208

    Article  CAS  PubMed  Google Scholar 

  36. Surgand J-S, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62:509–538

    Article  CAS  PubMed  Google Scholar 

  37. Hannedouche S, Zhang J, Yi T et al (2011) Oxysterols direct immune cell migration via EBI2. Nature 475:524–527

    Article  CAS  PubMed  Google Scholar 

  38. Pereira JP, Kelly LM, Xu Y et al (2009) EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460:1122–1126

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Gatto D, Brink R (2013) B cell localization: regulation by EBI2 and its oxysterol ligand. Trends Immunol 34:336–341

    Article  CAS  PubMed  Google Scholar 

  40. Liu C, Yang XV, Wu J et al (2011) Oxysterols direct B-cell migration through EBI2. Nature 475:519–523

    Article  CAS  PubMed  Google Scholar 

  41. Benned-Jensen T, Norn C, Laurent S et al (2012) Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). J Biol Chem 287:35470–35483

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Shih AY, Yang XV et al (2012) Identification of structural motifs critical for Epstein-Barr virus-induced molecule 2 function and homology modeling of the ligand docking site. Mol Pharmacol 82:1094–1103

    Article  CAS  PubMed  Google Scholar 

  43. Benned-Jensen T, Smethurst C, Holst PJ et al (2011) Ligand modulation of the Epstein-Barr virus-induced seven-transmembrane receptor EBI2: identification of a potent and efficacious inverse agonist. J Biol Chem 286:29292–29302

    Article  CAS  PubMed  Google Scholar 

  44. Benned-Jensen T, Madsen CM, Arfelt KN (2013) Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation. FEBS Open Bio 3:156–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gatto D, Paus D, Basten A et al (2009) Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31:259–269

    Article  CAS  PubMed  Google Scholar 

  46. Kelly LM, Pereira JP, Yi T et al (2011) EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol 187:3026–3032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. MacLennan IC, Liu YL, Ling NR (1988) B cell proliferation in follicles, germinal centre formation and the site of neoplastic transformation in Burkitt’s lymphoma. Curr Top Microbiol Immunol 141:138–148

    CAS  PubMed  Google Scholar 

  48. Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82

    Article  CAS  PubMed  Google Scholar 

  49. Amon W, Farrell PJ (2005) Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15:149–156

    Article  PubMed  Google Scholar 

  50. Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20:202–213

    Article  PubMed  Google Scholar 

  51. Rubin RH (1990) Impact of cytomegalovirus infection on organ transplant recipients. Rev Infect Dis 12:S754–S766

    Article  PubMed  Google Scholar 

  52. Attwood TK, Findlay JB (1994) Fingerprinting G-protein-coupled receptors. Protein Eng 7:195–203

    Article  CAS  PubMed  Google Scholar 

  53. Rosenkilde MM (2005) Virus-encoded chemokine receptors–putative novel antiviral drug targets. Neuropharmacology 48:1–13

    Article  CAS  PubMed  Google Scholar 

  54. Murphy PM (2001) Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2:116–122

    Article  CAS  PubMed  Google Scholar 

  55. Hulshof JW, Vischer HF, Verheij MHP et al (2006) Synthesis and pharmacological characterization of novel inverse agonists acting on the viral-encoded chemokine receptor US28. Bioorg Med Chem 14:7213–7230

    Article  CAS  PubMed  Google Scholar 

  56. Smit MJ, Vink C, Verzijl D et al (2003) Virally encoded G protein-coupled receptors: targets for potentially innovative anti-viral drug development. Curr Drug Targets 4: 431–441

    Article  CAS  PubMed  Google Scholar 

  57. Tschische P, Tadagaki K, Kamal M et al (2011) Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 82:610–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kledal TN, Rosenkilde MM, Schwartz TW (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441:209–214

    Article  CAS  PubMed  Google Scholar 

  59. Casarosa P, Bakker RA, Verzijl D et al (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137

    Article  CAS  PubMed  Google Scholar 

  60. Waldhoer M, Kledal TN, Farrell H, Schwartz TW (2002) Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76:8161–8168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Moepps B, Tulone C, Kern C, Minisini R et al (2008) Constitutive serum response factor activation by the viral chemokine receptor homologue pUS28 is differentially regulated by Galpha(q/11) and Galpha(16). Cell Signal 20:1528–1537

    Article  CAS  PubMed  Google Scholar 

  62. Minisini R, Tulone C, Lüske A et al (2003) Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 77:4489–4501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Fraile-Ramos A, Kohout TA, Waldhoer M et al (2003) Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic 4: 243–253

    Article  CAS  PubMed  Google Scholar 

  64. Fraile-Ramos A, Kledal TN, Pelchen-Matthews A et al (2001) The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12:1737–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Fraile-Ramos A, Pelchen-Matthews A, Kledal TN et al (2002) Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3:218–232

    Article  CAS  PubMed  Google Scholar 

  66. Billstrom MA, Lehman LA, Scott Worthen G (1999) Depletion of extracellular RANTES during human cytomegalovirus infection of endothelial cells. Am J Respir Cell Mol Biol 21:163–167

    Article  CAS  PubMed  Google Scholar 

  67. Bodaghi B, Jones TR, Zipeto D et al (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Randolph-Habecker J-R, Rahill B, Torok-Storb B et al (2002) The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine 19:37–46

    Article  CAS  PubMed  Google Scholar 

  69. Boomker JM, De Jong EK, De Leij LFMH et al (2006) Chemokine scavenging by the human cytomegalovirus chemokine decoy receptor US28 does not inhibit monocyte adherence to activated endothelium. Antiviral Res 69:124–127

    Article  CAS  PubMed  Google Scholar 

  70. Streblow DN, Kreklywich C, Yin Q et al (2003) Cytomegalovirus-mediated upregulation of chemokine expression correlates with the acceleration of chronic rejection in rat heart transplants. J Virol 77:2182–2194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Sahagun-Ruiz A, Sierra-Honigmann AM, Krause P et al (2004) Simian cytomegalovirus encodes five rapidly evolving chemokine receptor homologues. Virus Genes 28:71–83

    Article  CAS  PubMed  Google Scholar 

  72. Case R, Sharp E, Benned-Jensen T, Rosenkilde MM et al (2008) Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo. J Virol 82:1884–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Davis-Poynter NJ, Lynch DM, Vally H et al (1997) Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71:1521–1529

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Cardin RD, Schaefer GC, Allen JR et al (2009) The M33 chemokine receptor homolog of murine cytomegalovirus exhibits a differential tissue-specific role during in vivo replication and latency. J Virol 83:7590–7601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. McLean KA, Holst PJ, Martini L et al (2004) Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325: 241–251

    Article  CAS  PubMed  Google Scholar 

  76. Miller WE, Houtz DA, Nelson CD et al (2003) G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J Biol Chem 278:21663–21671

    Article  CAS  PubMed  Google Scholar 

  77. Streblow DN, Vomaske J, Smith P et al (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278:50456–50465

    Article  CAS  PubMed  Google Scholar 

  78. Streblow DN, Soderberg-Naucler C, Vieira J et al (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520

    Article  CAS  PubMed  Google Scholar 

  79. Hjortø GM, Kiilerich-Pedersen K, Selmeczi D et al (2013) Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface. J Gen Virol 94:1111–1120

    Article  PubMed  CAS  Google Scholar 

  80. Farrell HE, Abraham AM, Cardin RD et al (2011) Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues. J Virol 85:6091–6095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Barton E, Mandal P, Speck SH (2011) Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397

    Article  CAS  PubMed  Google Scholar 

  82. Mounce BC, Mboko WP, Bigley TM et al (2013) A conserved gammaherpesvirus protein kinase targets histone deacetylases 1 and 2 to facilitate viral replication in primary macrophages. J Virol 2:712–713

    Google Scholar 

  83. Verzijl D, Fitzsimons CP, Van Dijk M et al (2004) Differential activation of murine herpesvirus 68- and Kaposi’s sarcoma-associated herpesvirus-encoded ORF74 G protein-coupled receptors by human and murine chemokines. J Virol 78:3343–3351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Kirshner JR, Staskus K, Haase A et al (1999) Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi’s sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J Virol 73:6006–6014

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ebrahimi B, Dutia BM, Roberts KL et al (2003) Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J Gen Virol 84:99–109

    Article  CAS  PubMed  Google Scholar 

  86. Rochford R, Lutzke ML, Alfinito RS et al (2001) Kinetics of murine gammaherpesvirus 68 gene expression following infection of murine cells in culture and in mice. J Virol 75:4955–4963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Wakeling MN, Roy DJ, Nash AA et al (2001) Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor. J Gen Virol 82:1187–1197

    CAS  PubMed  Google Scholar 

  88. Lee BJ, Koszinowski UH, Sarawar SR et al (2003) A gammaherpesvirus G protein-coupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. Am J Immunol 170:243–251

    CAS  Google Scholar 

  89. Moorman NJ, Virgin HW, Speck SH (2003) Disruption of the gene encoding the gammaHV68 v-GPCR leads to decreased efficiency of reactivation from latency. Virology 307:179–190

    Article  CAS  PubMed  Google Scholar 

  90. Bais C, Santomasso B, Coso O et al (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89

    Article  CAS  PubMed  Google Scholar 

  91. Boshoff C, Weiss RA (eds) (2007) Kaposi sarcoma herpesvirus: new perspectives. Curr Top Microbiol Immunol 312:137–156

    Google Scholar 

  92. Montaner S, Sodhi A, Pece S et al (2001) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–2648

    CAS  PubMed  Google Scholar 

  93. Couty JP, Geras-Raaka E, Weksler BB et al (2001) Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor signals through multiple pathways in endothelial cells. J Biol Chem 276:33805–33811

    Article  CAS  PubMed  Google Scholar 

  94. Rosenkilde MM, Kledal TN, Bräuner-Osborne H et al (1999) Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J Biol Chem 274:956–961

    Article  CAS  PubMed  Google Scholar 

  95. Jenner RG, Boshoff C (2002) The molecular pathology of Kaposi’s sarcoma-associated herpesvirus. Biochim Biophys Acta 1602:1–22

    CAS  PubMed  Google Scholar 

  96. Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC et al (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350

    Article  CAS  PubMed  Google Scholar 

  97. Rosenkilde MM, Kledal TN, Holst PJ et al (2000) Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J Biol Chem 275:26309–26315

    Article  CAS  PubMed  Google Scholar 

  98. Cannon M, Philpott NJ, Cesarman E (2003) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 77:57–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Rosenkilde MM, David R, Oerlecke I et al (2006) Conformational constraining of inactive and active States of a seven transmembrane receptor by metal ion site engineering in the extracellular end of transmembrane segment V. Mol Neuropharmacol 70: 1892–1901

    CAS  Google Scholar 

  100. Guo H-G, Pati S, Sadowska M et al (2004) Tumorigenesis by human herpesvirus 8 vGPCR is accelerated by human immunodeficiency virus type 1 Tat. J Virol 78:9336–9342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Jensen KK, Manfra DJ, Grisotto MG et al (2005) The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi’s sarcoma. Am J Immunol 174:3686–3694

    CAS  Google Scholar 

  102. Montaner S (2003) Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36

    Article  CAS  PubMed  Google Scholar 

  103. Yang TY, Chen SC, Leach MW et al (2000) Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 191:445–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Cesarman E, Mesri EA, Gershengorn MC (2000) Viral G protein-coupled receptor and Kaposi’s sarcoma: a model of paracrine neoplasia? J Exp Med 191:417–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Holst PJ, Rosenkilde MM, Manfra D et al (2001) Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J Clin Invest 108:1789–1796

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Cinatl J, Scholz M, Kotchetkov R et al (2004) Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol Med 10:19–23

    Article  CAS  PubMed  Google Scholar 

  107. Shen Y, Zhu H, Shenk T (1997) Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci USA 94:3341–3345

    Article  CAS  PubMed  Google Scholar 

  108. Michaelis M, Doerr HW, Cinatl J (2009) The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 11:1–9

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Caposio P, Orloff SL, Streblow DN (2011) The role of cytomegalovirus in angiogenesis. Virus Res 157:204–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Vomaske J, Varnum S, Melnychuk R et al (2010) HCMV pUS28 initiates pro-migratory signaling via activation of Pyk2 kinase. Herpesviridae 1:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Yu Y, Clippinger AJ, Alwine JC (2011) Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol 19:360–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Hume AJ, Kalejta RF (2009) Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div 4:1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Casarosa P, Menge WM, Minisini R et al (2003) Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J Biol Chem 278:5172–5178

    Article  CAS  PubMed  Google Scholar 

  114. Maussang D, Verzijl D, Van Walsum M et al (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103: 13068–13073

    Article  CAS  PubMed  Google Scholar 

  115. Lieblein JC, Ball S, Hutzen B et al (2008) STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC cancer 8:302

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Dziurzynski K, Chang SM, Heimberger AB et al (2012) Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-oncology 14:246–255

    Article  PubMed Central  PubMed  Google Scholar 

  117. Cobbs CS (2011) Evolving evidence implicates cytomegalovirus as a promoter of malignant glioma pathogenesis. Herpesviridae 2:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Adamson C, Kanu OO, Mehta AI et al (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083

    Article  CAS  PubMed  Google Scholar 

  119. Soroceanu L, Matlaf L, Bezrookove V et al (2011) Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res 71: 6643–6653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Van Grunsven WM, Nabbe A, Middeldorp JM (1993) Identification and molecular characterization of two diagnostically relevant marker proteins of the Epstein-Barr virus capsid antigen complex. J Med Virol 40:161–169

    Article  PubMed  Google Scholar 

  121. Rickinson A, Kieff E (2001) Epstein-Barr virus. In: Fields’ virology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, p 2575

    Google Scholar 

  122. Chaisuparat R, Hu J, Jham BC et al (2008) Dual inhibition of PI3Kalpha and mTOR as an alternative treatment for Kaposi’s sarcoma. Cancer Res 68:8361–8368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Sodhi A, Montaner S, Patel V et al (2004) Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci USA 101:4821–4826

    Article  CAS  PubMed  Google Scholar 

  124. Rostaing L, Kamar N (2010) mTOR inhibitor/proliferation signal inhibitors: entering or leaving the field? J Nephrol 23:133–142

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the Novo Nordisk Foundation, the Lundbeck Foundation, and the Danish Council for Independent Research | Medical Sciences. The authors would like to thank Ann-Sofie Mølleskov Jensen, Anne Marie Førrisdahl Steen, Olav Larsen, and Kristine Niss Arfelt for their help and expert advice in every aspect of this review.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Spiess, K., Rosenkilde, M.M. (2014). Functional Properties of Virus-Encoded and Virus-Regulated G Protein-Coupled Receptors. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics